PERDITA DI CARICO IN UNA CONDUTTURA ORIZZONTALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PERDITA DI CARICO IN UNA CONDUTTURA ORIZZONTALE"

Transcript

1 LICEO SCIENTIFICO E SCIENTIFICO TECNOLOGICO PRIMO LEVI VIA BIAGI N., 30 MONTEBELLUNA (TV) CONCORSO SPERIMENTA ANCHE TU 006 PERDITA DI CARICO IN UNA CONDUTTURA ORIZZONTALE CLASSE A B LICEO SCIENTIFICO TECNOLOGICO SIMONE BANDIERA, ALBERTO BASSO, ALVISE PICCOLO, ALBERTO SOLIGO, ENRICO DE BORTOLI, FRANCESCO NUBIÉ DOCENTE COORDINATORE: PROF. MASSIMO BASURTO Il dispositivo che presentiamo evidenzia il problema delle perdite di carico di un liquido reale in una conduttura orizzontale di forma cilindrica e sezione costante. Questo fenomeno, in modo più o meno marcato, interessa qualsiasi liquido che scorre all interno di una tubazione e, come vedremo, è legato alla presenza dell attrito viscoso che si manifesta in seno al liquido e fra il liquido e le pareti della conduttura.. L equazione di continuità, l equazione di Bernoulli e il fenomeno della perdita di carico. L equazione di continuità e l equazione di Bernoulli sono due leggi fondamentali della fluidodinamica che descrivono il moto dei fluidi incomprimibili, non viscosi (fluidi conservativi) in moto laminare e in regime stazionario all interno di un tubo di flusso. L equazione di continuità formula matematicamente la condizione di incomprimibilità, soddisfatta con ottima approssimazione per i liquidi reali. Considerando in tratto di tubo senza pozzi né sorgenti il volume del liquido che attraversa la sezione A nell unità di tempo, con velocità media v, è uguale al volume del liquido che esce dalla sezione A, con velocità media v, nella stessa unità di tempo; pertanto (.) A v = Av. L equazione di Bernoulli (.) ρ v + ρgy + P = ρv + ρgy + P, traduce il principio di conservazione dell energia meccanica per i fluidi conservativi, in particolare per i liquidi non viscosi. Nell equazione (.) il coefficiente ρ indica la densità del liquido, g=9.8 m/s è l accelerazione di gravità terrestre, y e y sono le altezze delle sezioni A e A, rispettivamente, misurate a partire da un piano orizzontale di riferimento; infine P e P denotano le pressioni del liquido che attraversa rispettivamente le sezioni A e A. Tutti i liquidi reali non sono esattamente incomprimibili, tuttavia nella pratica è questo ciò che si osserva con ottima approssimazione. In molte applicazioni alcuni liquidi reali, come ad esempio l acqua, possono essere considerati non viscosi, nel senso che in una varietà di applicazioni gli effetti della viscosità possono essere considerati trascurabili. Pertanto, trattando un liquido come incomprimibile e non viscoso, le equazioni (.) e (.) valgono contemporaneamente e formano dunque il sistema (.3) Av = Av ρv + ρgy + P = ρv + ρgy + P Se aggiungiamo l ipotesi che il liquido scorra in un tubo orizzontale (y =y ) e a sezione costante (A =A ), dall equazione di continuità segue v =v e l equazione di Bernoulli porge P =P qualunque siano le sezioni

2 e del tubo. Ne consegue che la pressione del liquido è necessariamente uguale in tutti i punti della conduttura orizzontale. Orbene, questa previsione teorica non sempre si riscontra in tutte le applicazioni pratiche con liquidi reali. In questo senso anche la comune acqua, ad esempio, può nascondere delle insidie. Per rendercene conto abbiamo costruito il dispositivo schematizzato nella figura seguente, formato da un insieme di vasi comunicanti montati verticalmente a una serie di raccordi idraulici uniti in modo da formare un lungo tubo orizzontale, cilindrico, di sezione costante A=πr entro cui scorre dell acqua con velocità media W. Fig... Nelle cannule trasparenti del dispositivo considerato in figura il liquido non raggiunge la stessa quota perché nel liquido reale (acqua) che scorre nella conduttura orizzontale si verifica una perdita di carico. Sul fondo del recipiente di raccolta vi è una pompa che recupera l acqua a la invia al serbatoio. Il moto è mantenuto stazionario. L acqua entra dall estremità sinistra ed esce dall estremità destra del tubo orizzontale. Non entriamo nel merito della costruzione dell apparecchiatura, che verrà descritta nel paragrafo seguente, ma ci limitiamo unicamente a rilevare che l acqua si dispone all interno delle cannule con un livello che diminuisce vistosamente man mano che aumenta la distanza dal punto d ingresso, contravvenendo curiosamente al principio dei vasi comunicanti conseguenza della legge di Stevin. Vediamo che cosa implica questo risultato sperimentale. Consideriamo due sezioni qualsiasi, e, del condotto orizzontale in corrispondenza delle quali sono fissate due cannule. Sia x la distanza che separa le due sezioni. Supponiamo che la sezione si trovi a sinistra della sezione, pertanto se indichiamo con h l altezza del liquido nella cannula n. e con h l altezza del liquido all interno della cannula n., risulta h >h. Poiché il moto è stazionario la pressione del liquido alla base delle due colonnine è quella che si deduce in condizioni idrostatiche applicando la legge di Stevin quindi, indicando con P atm. la pressione atmosferica, risulta (.) P = ρgh +P atm. e P = ρgh +P atm. e quindi, essendo h >h, risulta anche P >P. Poiché questo vale qualunque sia la coppia di sezioni considerate, è dimostrato che un dislivello h del liquido nelle cannule si traduce in una corrispondente perdita di pressione (.5) p =ρg h in seno al fluido che scorre nel tubo orizzontale verso il rubinetto di uscita. Questa perdita di pressione viene detta, in idraulica, perdita di carico. Questa evidenza sperimentale smentisce la previsione teorica che si ha combinando l equazione di Bernoulli con l equazione di continuità, poiché ci troviamo nelle condizioni in cui il liquido non vede diminuire la propria velocità W lungo il tubo orizzontale, essendo la sezione costante e la portata la stessa in tutte le sezioni, tuttavia vede diminuire la sua pressione durante il moto. L equazione di continuità vale certamente, poiché il liquido è incomprimibile; evidentemente l equazione di Bernoulli non vale quindi almeno una delle ipotesi di lavoro viene a cadere. D altra parte l unica ipotesi debole è quella sulla non viscosità del liquido, di conseguenza in questa applicazione la viscosità non può essere trascurata, ovvero lo studio va eseguito trattando il liquido come un liquido viscoso e applicando una teoria appropriata. Parlare di liquido viscoso significa considerare, all interno del liquido, delle forze di attrito interno che, come abbiamo visto, possono avere effetti notevoli sul moto. Poiché non si ha diminuzione di velocità, l energia cinetica K del liquido è la stessa lungo le varie sezioni del tubo e il lavoro fatto dalle forze di pressione va speso, evidentemente, contro queste forze di attrito dette forze di attrito viscoso che, come tutti gli attriti, sono forze non conservative. Il complesso delle forze di attrito viscoso può essere riassunto da una grandezza fisica detta appunto viscosità, che denotiamo con µ e misuriamo in Pa s (Pascal per secondo).

3 Utilizzando il teorema dell energia cinetica è possibile determinare una relazione che leghi la viscosità alla portata Q e alla differenza di pressione p. In effetti la variazione di energia cinetica è uguale alla somma del lavoro fatto dalle forze di pressione L press. con il lavoro fatto dall attrito viscoso L a.v., per cui (.6) K K = L press. + L a. v. = p Q t + = pq t ρv ρv = ( P P ) A x + La. v. = p ( AW ) t + La. v. 0 L a. v. 3 L a. v.. Se poniamo t = s allora risulta che, nell unità di tempo, si sviluppa in seno al liquido una forza di attrito di modulo L a.v. = pq, da cui risulta L L (.7) Q a. v. v p f ( r L) p p ( a.. = = µ,,. p) Nella (.7) si è espresso la portata Q in funzione di p, esplicitamente, e di una quantità f che è funzione della viscosità e di parametri geometrici, come il raggio r e la lunghezza L della tubatura. Questa grandezza f può essere modellata in diversi modi. Se la velocità media W può essere considerata relativamente bassa così da poter considerare il moto praticamente come un flusso laminare, si può assumere πr (.8) f ( µ, r, L) L che permette di ottenere la legge di Poiseuille πr (.9) Q = p. 8 µ L Se la velocità supera quel valore critico oltre il quale il moto diventa marcatamente turbolento si deve ricorrere ad altre teorie: di questo problema non ci siamo occupati perché abbiamo ritenuto che la velocità media massima W fosse ragionevolmente moderata (W 0.8 m/s) e quindi abbiamo sempre considerato la formula (.9) e quelle che da esse si deducono. In particolare, sapendo che la sezione è circolare di area A=πr allora Q=AW=πr W, pertanto l equazione (.9) implica per confronto πr r πr W = p W = p, L L da cui si ricava anche LW LW LW (.0) p = ρg h = h = r r ρgr e quindi l espressione esplicita della viscosità ρgr µ = h 8 LW in funzione di tutte le altre grandezze misurabili. Introducendo l espressione del diametro interno D=r del tubo, che può essere misurato direttamente col calibro o fornito dal costruttore, si ottiene infine ρgd (.) µ = h. 3 LW Quindi un dispositivo che evidenzia la perdita di carico mediante il dislivello tra le superfici libere del liquido che si distribuisce in un sistema di vasi comunicanti, che attraversa un unica conduttura cilindrica orizzontale, permette anche di stimare dinamicamente l entità del coefficiente di viscosità µ del liquido con cui si opera. Naturalmente la stima più attendibile è quella che si ottiene eseguendo la media dei valori calcolati mediante la formula (.) in un certo numero di prove.. Descrizione del dispositivo. L apparecchiatura che abbiamo realizzato è formata da una serie di otto cannule verticali in gomma trasparente collegate ad altrettanti raccordi a T tutti dello stesso tipo, uniti l uno con l altro in modo da formare un tubo cilindrico orizzontale, a sezione pressoché costante, della lunghezza di 7 cm circa e del diametro interno di 3/8 di pollice (D 0.95 cm). La distanza tra una cannula e l altra è costante. L estremità sinistra del tubo è il punto in cui entra il liquido, una miscela di densità ρ=00 kg/m 3 ottenuta diluendo 0.5 litri di antigelo di colore verde in 0 litri di acqua, mentre l estremità destra è collegata a un rubinetto che permette al liquido di fuoriuscire. Il tutto è montato su un pannello sul quale sono tracciate delle linee

4 orizzontali di riferimento spaziate di cm l una dall altra. Il pannello è montato verticalmente su un vecchio banco di scuola, sul quale è praticato un foro che consente al liquido di essere raccolto all interno di un serbatoio da 0 litri ricavato da una tanica di latta stagnata, montata sotto il piano del banco. Sotto la tanica è stata saldata una lattina che serve ad alloggiare una piccola pompa elettrica a immersione del tipo da acquario, che serve a convogliare l acqua dal serbatoio a una tanica di plastica da 0 litri montata dietro il pannello verticale, a un altezza di 5 cm rispetto all asse della tubatura. Dal serbatoio sopraelevato il liquido scende per gravità all interno di un tubo di plastica ed entra nell estremità sinistra della conduttura orizzontale. Si ottiene così un circuito idraulico all interno del quale supponiamo che il liquido si muova di moto laminare (bassa velocità). La pompa viene azionata tenendo premuto un apposito pulsante (START). Fig... Il dispositivo sperimentale: parte anteriore (a sinistra) e parte posteriore (a destra). 3. Esecuzione dell esperimento. Raccolta e analisi dei dati. Anzitutto bisogna accertarsi che il rubinetto sia chiuso e che il serbatoio sopraelevato e le cannule siano completamente piene: se così non fosse bisognerebbe chiudere il rubinetto e azionare la pompa fino a riempimento completo. Fatto ciò, l esperimento può essere eseguito cominciando ad aprire moderatamente il rubinetto e osservando il modo in cui si distribuisce il liquido nelle cannule. La distribuzione delle altezze h=h(x) ricalca la distribuzione delle pressioni P(x)=ρg h(x)+p atm nei diversi punti x del condotto orizzontale. Come si è detto si osserva un profilo pressoché rettilineo con pendenza verso il basso, come quello rappresentato dalla linea tratteggiata di Fig... Man mano che passa il tempo, però, il livello del liquido tende ovviamente ad abbassarsi e questo avviene tanto più rapidamente quanto più è aperto il rubinetto. Per ovviare a questo inconveniente, che può rendere molto difficile l osservazione del fenomeno, si deve tenere premuto il pulsante START che, mettendo in funzione la pompa sommersa, consente di riportare il liquido in cima al serbatoio sopraelevato. Se si riesce a modulare l apertura del rubinetto in modo opportuno, contemporaneamente all azionamento della pompa, è possibile sincronizzare la portata del liquido che esce dal condotto orizzontale con quella che del liquido che vi entra. Quando questo accade il flusso è stazionario e il profilo delle pressioni appare inchiodato, fisso e costante nel tempo, fornendo un impronta visiva della perdita di carico distribuita lungo il condotto. Le altezze h(x) sono state lette, trascritte in una tabella EXCEL e analizzate mediante il calcolo della retta di regressione lineare e dell errore. L analisi dei dati ha confermato che, entro i limiti degli errori sperimentali, la pressione si distribuisce seguendo un andamento rettilineo con pendenza negativa (la correlazione lineare è sempre molto vicino al valore ). L esperimento è stato ripetuto diverse volte alla pressione atmosferica P atm. = 758 mmhg = 0058 Pa e i dati sono riportati di seguito, in forma tabulare e grafica. PROVA N. x (m) h (m) P (Pa) Regressione lineare Errore Errore % 0,000 0, ,00 6,7 0, ,0 3,9 0, ,06 0,3 0, ,07 6,857 0, ,06 33,57 0, ,0 0,86 0, ,05 7,000 0, ,03

5 Pressione (Pa) ,000 0,000 0,000 30,000 0,000 50,000 y = -8,87x R = 0,978 PROVA N. 0,000 0, ,00 6,7 0, ,05 3,9 0, ,05 0,3 0, ,09 6,857 0, , 33,57 0, ,05 0,86 0, ,05 7,000 0, , Pressione (Pa) ,000 0,000 0,000 30,000 0,000 50,000 y = -3,973x R = 0,9877 PROVA N. 3 0,000 0, ,00 6,7 0, ,06 3,9 0, ,07 0,3 0, ,08 6,857 0, , 33,57 0, ,0 0,86 0, ,07 7,000 0, ,06 5

6 Pressione (Pa) ,000 0,000 0,000 30,000 0,000 50,000 y = -9,37x R = 0,989 PROVA N. 0,000 0, ,00 6,7 0, , 3,9 0, ,3 0,3 0, , 6,857 0, , 33,57 0, ,0 0,86 0, ,05 7,000 0, , Pressione (Pa) ,000 0,000 0,000 30,000 0,000 50,000 y = -56,03x R = 0,9855 PROVA N. 5 0,000 0, ,00 6,7 0, ,5 3,9 0, ,3 0,3 0, ,0 6,857 0, , 33,57 0, ,0 0,86 0, ,0 7,000 0, , 6

7 Pressione (Pa) ,000 0,000 0,000 30,000 0,000 50,000 y = -77,683x R = 0, Deduzione della viscosità. Utilizzando i dati raccolti e applicando la già nota formula (.) che esprime µ in funzione degli altri parametri, abbiamo ricavato la viscosità della nostra miscela acqua-antigelo in ciascuna prova. Di questi valori abbiamo poi calcolato la media. Calcolo della viscosità per la miscela acqua-antigelo PROVA W (m/s) P min (Pa) P max (Pa) P (Pa) µ (Pa s) 0, ,033 0, ,00 3 0, ,0357 0, , , ,03689 Media 0,08 7

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 L'idraulica è la scienza che studia l'utilizzazione dei

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia 1 Principi di idraulica Definizioni MECCANICA DEI FLUIDI È il ramo della fisica che studia le proprietà dei fluidi, cioè liquidi, vapori e gas. Idrostatica Studia i fluidi in quiete Idrodinamica Studia

Dettagli

I D R O S T A T I C A

I D R O S T A T I C A I D R O S T A T I C A Caratteristiche stato liquido (descr.) FLUIDI Massa volumica (def. + formula) Volume massico (def. + formula) Peso volumico (def. + formula) Legame massa volumica - peso volumico

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

Cap Fluidi

Cap Fluidi N.Giglietto A.A. 2005/06-15.4 - Legge di Stevino, fluidi a riposo - 1 Cap 15.1-15.2 - Fluidi Un fluido è una sostanza in grado di scorrere: i fluidi prendono la forma dei contenitori nei quali sono confinati.

Dettagli

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) In un fluido Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) le molecole non sono vincolate a posizioni fisse a differenza di quello che avviene nei solidi ed in particolare nei cristalli Il numero di molecole

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Un fluido è un insieme di molecole tenute insieme da deboli forze di coesione e da forze esercitate dalla parete del contenitore (possono essere sia

Dettagli

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli). Meccanica dei fluidi! definizioni;! statica dei fluidi (principio di Archimede);! dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]

Dettagli

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T].

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T]. IDRODINAMICA Portata e velocità media Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T]. In una corrente d acqua la velocità

Dettagli

Densita. FLUIDI : liquidi o gas. macroscop.:

Densita. FLUIDI : liquidi o gas. macroscop.: 6-SBAC Fisica 1/10 FLUIDI : liquidi o gas macroscop.: microscop.: sostanza che prende la forma del contenitore che la occupa insieme di molecole tenute insieme da deboli forze di coesione (primi vicini)

Dettagli

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale TEOREMA DI BERNOULLI FLUIDI NON PERFETTI Materia: Idraulica agraria (6 CFU) docente:

Dettagli

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Dinamica dei fluidi Universita' di Udine 1 Caratteristiche di un fluido In generale: FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene) liquido volume limitato dalla superficie

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1 Dall idrostatica alla idrodinamica Fisica con Elementi di Matematica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo

Dettagli

PRESSIONE ATMOSFERICA

PRESSIONE ATMOSFERICA PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 197 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

SCHEDA 1 PORTATA DI UNA CONDOTTA

SCHEDA 1 PORTATA DI UNA CONDOTTA SCHEDA 1 PORTATA DI UNA CONDOTTA Q = V / t [m 3 /s] oppure [litri/s] 1 litro = 1 dm 3 = 1 / 1000 m 3 1 m 3 = 1000 dm 3 = 1000 litri Definizione: La portata è la quantità di liquido che attraversa una sezione

Dettagli

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone.

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone. IL PRINCIPIO DI PASCAL Consideriamo un fluido incomprimibile come in figura contenuto in un cilindro chiuso superiormente da un pistone. Applicando al pistone una forza esterna, si esercita una pressione

Dettagli

Esempi di esercizi per la preparazione al primo compito di esonero

Esempi di esercizi per la preparazione al primo compito di esonero Esempi di esercizi per la preparazione al primo compito di esonero 1. Quanto sangue è approssimativamente presente in un essere umano? Esprimere il risultato in ml. 2. La densità dell etanolo e pare a

Dettagli

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl Prima verifica F1) Un corpo di massa 200 g si muove lungo l asse x sotto l azione di una forza, parallela all asse x, la cui intensità in funzione di x è data nel grafico B Per quali valori di x l accelerazione

Dettagli

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI Meccanica dei fluidi La meccanica dei fluidi si occupa sia della statica (idrostatica) sia del movimento (idrodinamica) dei fluidi. Per fluidi si intendono

Dettagli

è completamente immerso in acqua. La sua

è completamente immerso in acqua. La sua In un tubo scorre in regime stazionario un liquido ideale con densità 1.00 10 3 kg/m 3 ; in un punto A il tubo ha raggio R A = 2.00 cm, la velocità di scorrimento è v A = 5.00 m/se la pressione è P A =

Dettagli

In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue

In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue Esercizio In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue 1 MOTO DI FLUIDI REALI 2 MOTO DI UN FLUIDO

Dettagli

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5 Fluidi 1 Stati di aggregazione della materia 2 Densità (II) n La densità assoluta è definita dal rapporto tra la massa M di una sostanza omogenea ed il suo volume V: d = M / V n Nel sistema internazionale

Dettagli

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 1 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

Verifica della conservazione dell energia meccanica mediante rotaia a cuscino d aria

Verifica della conservazione dell energia meccanica mediante rotaia a cuscino d aria Verifica della conservazione dell energia meccanica mediante rotaia a cuscino d aria Lo scopo dell esperimento L esperimento serve a verificare il principio di conservazione dell energia meccanica, secondo

Dettagli

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Legge di Stevino La pressione in un liquido a densità costante cresce linearmente con la profondità Il principio di

Dettagli

PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE

PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE Ministero dell istruzione, dell università e della ricerca Istituto d Istruzione Superiore Severi-Correnti IIS Severi-Correnti 02-318112/1 via Alcuino 4-20149 Milano 02-33100578 codice fiscale 97504620150

Dettagli

Lezione 10 Moto dei fluidi

Lezione 10 Moto dei fluidi Lezione 10 Moto dei fluidi Caratterizzazione del moto Consideriamo soltanto il caso di liquidi in moto nei condotti. Parametri descrittivi del moto: Portata Q di un condotto: è il volume di liquido che

Dettagli

Corso di Idraulica Agraria ed Impianti Irrigui

Corso di Idraulica Agraria ed Impianti Irrigui Corso di Idraulica Agraria ed Impianti Irrigui Docente: Ing. Demetrio Antonio Zema Lezione n. 6: Idrodinamica (parte seconda) Anno Accademico 0-0 0 Perdite di carico concentrate (o localizzate) Perdite

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi Modulo B Unità 3 Equilibrio dei fluidi Pagina Solidi, liquidi, aeriformi I solidi hanno forma e volume propri, i liquidi hanno volume proprio e forma del recipiente che li contiene, gli aeriformi hanno

Dettagli

I fluidi. 2 La densità di un olio è 0,08 g/cm 3. L altezza h della colonna di olio nella figura è: A 2 cm. B 4,6 cm. C 8 cm. D 10 cm. E 11,8.

I fluidi. 2 La densità di un olio è 0,08 g/cm 3. L altezza h della colonna di olio nella figura è: A 2 cm. B 4,6 cm. C 8 cm. D 10 cm. E 11,8. I fluidi 1 Per misurare pressioni relativamente basse, in un barometro anziché mercurio è utilizzato olio di densità 8,5 10 2 kg/m 3. Un cambiamento di pressione di 1,0 Pa produce una variazione nell altezza

Dettagli

Meccanica dei FLUIDI

Meccanica dei FLUIDI Meccanica dei FLUIDI Densità Portata Pressione Moto stazionario: equazione di continuità Legge di Stevino Pressione idrostatica Spinta di Archimede Teorema di Bernoulli Viscosità Moto laminare: equazione

Dettagli

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio IL MOTO DEI FLUIDI con applicazione al sistema circolatorio Portata Pressione Moto stazionario: equazione di continuità Applicazione al sistema circolatorio: pressione e velocità del sangue Moto laminare

Dettagli

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta INTRODUZIONE ALLA TERMODINAMICA Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta in un recipiente, ad esempio 5g di ossigeno. Dato l elevato numero di molecole

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

PIANO DI STUDIO D ISTITUTO

PIANO DI STUDIO D ISTITUTO PIANO DI STUDIO D ISTITUTO Materia: FISICA Casse 2 1 Quadrimestre Modulo 1 - RIPASSO INIZIALE Rappresentare graficamente nel piano cartesiano i risultati di un esperimento. Distinguere fra massa e peso

Dettagli

Moto dei fluidi: equazione di bilancio energetico

Moto dei fluidi: equazione di bilancio energetico Lezione XIX - 03/04/003 ora 4:30-6:30 - Bilancio di energia, perdite di carico, esperienza di Reynolds - Originale di Berti Sara. Introduzione alla fluidodinamica Lo studio dei fluidi in movimento è l

Dettagli

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio IL MOTO DEI FLUIDI con applicazione al sistema circolatorio Portata Pressione Moto stazionario: equazione di continuità Applicazione al sistema circolatorio: pressione e velocità del sangue Moto laminare

Dettagli

Idrodinamica prova scritta 12/03/ Compito A

Idrodinamica prova scritta 12/03/ Compito A Idrodinamica prova scritta 1/03/007 - Compito Calcolare la spinta S esercitata dal liquido in movimento sulla superficie laterale del gomito illustrato in figura, avente sezione circolare, posto su un

Dettagli

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella Programma di fisica. Classe 1^ sez. F A. S. 2015/2016 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: LE GRANDEZZE FISICHE. Notazione scientifica dei numeri, approssimazione, ordine di grandezza.

Dettagli

Laboratorio di Impianti Chimici

Laboratorio di Impianti Chimici Università degli Studi di Torino Corso di Studi in Chimica Industriale Laboratorio di Impianti Chimici Docente: Guido Sassi 2. Esercitazioni pratiche di Misura di Perdite di Carico Dispense curate da:

Dettagli

PERDITE DI CARICO. Gianluca Simonazzi matr Michael Zecchetti matr Lezione del 28/03/2014 ora 14:30-17:30

PERDITE DI CARICO. Gianluca Simonazzi matr Michael Zecchetti matr Lezione del 28/03/2014 ora 14:30-17:30 Gianluca Simonazzi matr. 3969 Michael Zecchetti matr. 390 Lezione del 8/03/04 ora 4:30-7:30 PERDITE DI CARICO Le perdite di carico distribuite (in un tubo liscio, dritto e privo di ostacoli) dipendono

Dettagli

Illustrazione 1: Sviluppo dello strato limite idrodinamico in un flusso laminare interno a un tubo circolare

Illustrazione 1: Sviluppo dello strato limite idrodinamico in un flusso laminare interno a un tubo circolare 1 Flusso interno Un flusso interno è caratterizzato dall essere confinato da una superficie. Questo fa sì che lo sviluppo dello strato limite finisca per essere vincolato dalle condizioni geometriche.

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000.

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000. STATI DI AGGREGAZIONE DELLA MATERIA Solido Liquido Gassoso Il coro ha volume e forma ben definiti Il coro ha volume ben definito, ma assume la forma del reciiente che lo contiene Il coro occua tutto lo

Dettagli

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da:

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: Statica Distribuzione delle pressioni La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: z+p/γ= cost LEE DI STEVIN Il valore della costante è

Dettagli

Esercitazione 3. Esercizio 1

Esercitazione 3. Esercizio 1 Esercitazione 3 Esercizio 1 Una pompa centrifuga opera con velocità di rotazione n d = 1450 rpm. Al punto di massimo rendimento la pompa elabora una portata volumetrica pari a V d = 0.153 m 3 /s di acqua,

Dettagli

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Idraulica e Fluidi

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Idraulica e Fluidi Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Idraulica e Fluidi 1) L acqua di un ruscello cade da una cascata alta 10 m con velocità iniziale praticamente nulla. Quanto

Dettagli

STATICA DEI FLUIDI (Giuseppe Frangiamore con la collaborazione di Michele Sorce)

STATICA DEI FLUIDI (Giuseppe Frangiamore con la collaborazione di Michele Sorce) STATICA DEI FLUIDI (Giuseppe Frangiamore con la collaborazione di Michele Sorce) Definizione Di Pressione In questo capitolo si analizzeranno le caratteristiche meccaniche dei fluidi in condizioni di equilibrio

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 9: Le lunghe condotte pompe ed impianti di sollevamento

Dettagli

Pillole di Fluidodinamica e breve introduzione alla CFD

Pillole di Fluidodinamica e breve introduzione alla CFD Pillole di Fluidodinamica e breve introduzione alla CFD ConoscereLinux - Modena Linux User Group Dr. D. Angeli diego.angeli@unimore.it Sommario 1 Introduzione 2 Equazioni di conservazione 3 CFD e griglie

Dettagli

( pi + σ ) nds = 0 (3)

( pi + σ ) nds = 0 (3) OLUZIONE IMULAZIONE EAME 0 DICEMBRE 05 I Parte Domanda (5 punti) Un fluido incomprimibile viene pompato in tubo orizzontale di lunghezza L e diametro D. La differenza di pressione agli estremi del tubo

Dettagli

EFFETTI FISIOLOGICI DELLA PRESSIONE IDROSTATICA

EFFETTI FISIOLOGICI DELLA PRESSIONE IDROSTATICA LEZIONE n.5 ENERGIA NEI FLUIDI TEOREMA DI BERNOULLI E APPLICAZIONI PRESSIONE IDROSTATICA EFFETTI FISIOLOGICI DELLA PRESSIONE IDROSTATICA TEOREMA DI BERNOULLI IL TEOREMA DI BERNOULLI, ESPRIME LA LEGGE DI

Dettagli

Lezione 9. Statica dei fluidi

Lezione 9. Statica dei fluidi Lezione 9 Statica dei fluidi Meccanica dei fluidi Un fluido e un corpo che non ha una forma definita, ma che, se e contenuto da un contenitore solido, tende a occupare (riempire) una parte o tutto il volume

Dettagli

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE 1 PERDITE DI CARICO CONTINUE Sono le perdite di carico (o di pressione) che un fluido, in moto attraverso un condotto, subisce a causa delle resistenze

Dettagli

Lezione 9. Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille.

Lezione 9. Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille. Lezione 9 Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille. Moto dei fluidi Studiare il moto di un fluido è un problema complicato, soprattutto

Dettagli

ESAME DI AERODINAMICA 11/02/2015

ESAME DI AERODINAMICA 11/02/2015 ESAME DI AERODINAMICA 11/02/2015 In un profilo alare non simmetrico, al diminuire dell angolo di incidenza, la coordinata del centro di pressione: (a) tende verso il bordo di attacco (b) tende verso il

Dettagli

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B 1 ENERGI PTENZILE 1 Energia potenziale 1.1 orze conservative Se un punto materiale è sottoposto a una forza costante, cioè che non cambia qualunque sia la posizione che il punto materiale assume nello

Dettagli

Legge di Stevino ( d.c.)

Legge di Stevino ( d.c.) Legge di Stevino (1548-1620 d.c.) PA =F A /A= (Ah)g/A= hg conosciuta come legge di Stevino che quindi afferma che la pressione esercitata dal liquido su una superficie interna e' proporzionale alla densita'

Dettagli

Note su Meccanica dei fluidi ideali + esercizi svolti

Note su Meccanica dei fluidi ideali + esercizi svolti Note su Meccanica dei uidi ideali + esercizi svolti Richiamiamo brevemente definizioni e relazioni fra le grandezze della uidodinamica illustrate a lezione. Il carattere di questa nota è sintetico, non

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica Dall idrostatica alla idrodinamica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo il valore della pressione atmosferica

Dettagli

METODI DI RAPPRESENTAZIONE DI UN SISTEMA

METODI DI RAPPRESENTAZIONE DI UN SISTEMA METODI DI RAPPRESENTAZIONE DI UN SISTEMA PROPRIETA ELEMENTARI Proprietà elementari dei componenti idraulici Proprietà elementari dei componenti termici Proprietà elementari dei componenti meccanici Proprietà

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 4 Fisica dei fluidi Stati della materia 2 Condizione di riposo di un liquido 3 La pressione idrostatica. 4 Principio di Pascal. 5 Esercizio 7 Variazione di pressione con la profondità..

Dettagli

PERDITE DI CARICO CONTINUE

PERDITE DI CARICO CONTINUE PERDITE DI CARICO CONTINUE La dissipazione di energia dovuta all'attrito interno ed esterno dipende da: velocità del liquido [m/s] dal tipo di liquido e dalle pareti della vena fluida, secondo un coefficiente

Dettagli

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale 4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di un compressore assiale. Con riferimento alla

Dettagli

Prof. Ernesto Trinaistich

Prof. Ernesto Trinaistich Prof. Ernesto Trinaistich 0 STATICA DEI LIQUIDI I liquidi, incomprimibili, in quiete si trovano in condizioni di equilibrio statico. La legge di Stevin afferma che la pressione idrostatica di un liquido

Dettagli

a) Calcolare il modulo di F.

a) Calcolare il modulo di F. 1. (1-2-2011, 3-10-2011, 23-7-2013) Un getto d acqua che cade da un rubinetto si restringe verso il basso. Se l area di una sezione del flusso di acqua è A 1 =1.2 cm 2 e diventa A 2 = 0.35 cm 2 45 mm più

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Meccanica dei fluidi Si definiscono fluidi I sistemi che si deformano continuamente sotto l'azione di una forza tangenziale, tendente a far scorrere uno strato del sistema sull'altro, indipendentemente

Dettagli

Fondamenti di idraulica stramazzi e idrometria

Fondamenti di idraulica stramazzi e idrometria Corso di Laurea in Tecnologie Forestali e Ambientali Idrologia e Sistemazioni Idraulico-Forestali Fondamenti di idraulica stramazzi e idrometria Giancarlo Dalla Fontana Università di Padova A.A. 2013/2014

Dettagli

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013 Esperienza 1/3: viscosità Università di Parma della glicerina a.a. 2012/2013 Laboratorio di Fisica 1 A. Baraldi, M. Riccò Coefficiente di viscosità La viscosità è quella grandezza fisica che ci permette

Dettagli

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore Meccanica dei luidi stati di aggregazione della materia: solidi liquidi gas fluidi assumono la forma del contenitore Caratteristiche di un fluido LUIDO sostanza senza forma propria (assume la forma del

Dettagli

Argomenti di IV media. visti con un approccio globale. per analogie

Argomenti di IV media. visti con un approccio globale. per analogie Argomenti di IV media visti con un approccio globale per analogie Indice 1 Introduzione all idraulica 1.1 Volume d acqua e pressione (dislivello) 1.1.1 Alcune proprietà del volume dell acqua (equazione

Dettagli

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica PER ESERCITARSI Parte 2 Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica ESERCIZIO n.1 Due forze uguali ed opposte sono applicate ad un oggetto lungo rette di azione tra loro

Dettagli

MODULO 3. La pressione

MODULO 3. La pressione MODULO 3 La pressione La pressione L obiettivo del modulo è comprendere gli effetti delle forze che dipendono dalla superficie su cui esse vengono applicate. Il grado di concentrazione di una forza sulla

Dettagli

Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI

Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI 1. Un secchio colmo d'acqua pesa complessivamente 2 kg. Se è pesato mentre è sotto un rubinetto con una portata di 0.5 litri/s ed è raggiunto

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

Forze di adesione. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Forze di adesione. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Forze di adesione Vicino alle pareti di un recipente sono attive interazioni tra le molecole del recipiente e quelle del liquido (adesione) oltre a quelle tra le molecole del liquido (coesione) Se le forze

Dettagli

PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI)

PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI) 1 PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI) Qui di seguito viene riportata la risoluzione dei problemi presentati nel file Unità omonimo (enunciati). Si raccomanda di prestare molta attenzione ai ragionamenti

Dettagli

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI 1) Che cos è la pressione? Qual è la sua unità di misura nel S.I.? 2) Da che cosa dipende la pressione esercitata da un oggetto di massa m poggiato su di una superficie? 3) Che cos è un fluido? 4) Come

Dettagli

La meccanica dei fluidi

La meccanica dei fluidi La meccanica dei fluidi Un video: clic Un altro video: clic Le prime misure della pressione (I) II liquidi e i gas, a differenza dei solidi, non resistono a sforzi di taglio. Il modo in cui la sostanza

Dettagli

FISICA-TECNICA Statica e dinamica dei fluidi

FISICA-TECNICA Statica e dinamica dei fluidi FISICA-TECNICA Statica e dinamica dei fluidi Katia Gallucci I gas, insieme ai liquidi sono sostanze capaci di scorrere o di fluire e vengono compresi nella categoria detta dei FLUIDI. Per esempio, il gas

Dettagli

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU............ Tempo a disposizione (tre esercizi) 2 ore e 30 1 esercizio (esonero) 1 ora

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

Fisica applicata Lezione 7

Fisica applicata Lezione 7 Fisica applicata Lezione 7 Maurizio Tomasi maurizio.tomasi@unimi.it Dipartimento di Fisica Università degli studi di Milano 14 Novembre 2016 Parte I Fluidostatica (conclusione) Il tubo di Torricelli Un

Dettagli

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Perdite di carico nelle condotte in pressione Materia: Idraulica agraria (6 CFU)

Dettagli

GIUSTIFICAZIONE TEORICA DELLA FORMULA DI PETRY MEDIANTE L ANALISI DIMENSIONALE

GIUSTIFICAZIONE TEORICA DELLA FORMULA DI PETRY MEDIANTE L ANALISI DIMENSIONALE M. G. BUSATO GIUSTIFICAZIONE TEORICA DELLA FORMULA DI PETRY MEDIANTE L ANALISI DIMENSIONALE NOTA TECNICA MGBSTUDIO.NET SOMMARIO La formula di Petry è una formula semiempirica che consente di stimare,

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

la Riccia Donatella (232315) - Ricciotti Stefania (232401) 23/04/2014 alle ore 9:30-12:30

la Riccia Donatella (232315) - Ricciotti Stefania (232401) 23/04/2014 alle ore 9:30-12:30 la Riccia Donatella (232315) - Ricciotti Stefania (232401) 23/04/2014 alle ore 9:30-12:30 IDRAULICA Branchia della scienza che studia il moto di fluidi incomprimibili a densità costante, come l'acqua,

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Studio delle oscillazioni di un pendolo fisico

Studio delle oscillazioni di un pendolo fisico Studio delle oscillazioni di un pendolo fisico Materiale occorrente: pendolo con collare (barra metallica), supporto per il pendolo, orologio, righello. Richiami di teoria Un pendolo fisico è costituito

Dettagli