Azioni interne (definizione di tensione o sforzo)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Azioni interne (definizione di tensione o sforzo)"

Transcript

1 18/05/011 ES. Sforzo Una barra di acciaio AISI 304 a sezione tonda, di diametro pari a 10 mm, deve sorreggere una massa di t. Qual è lo sforzo a cui è soggetta la barra? Cosa accade se vengono aggiunti 1000 kg? E se vengono applicate 6 t? Azioni interne (definizione di tensione o sforzo) F 1 F s S s F s F S Unità di misura della tensione: [N/mm ] 1 [N/mm ] = 1 [MPa] 1

2 18/05/011 Ricavo il valore della sezione resistente dal diametro: A = p*d /4 = p*(10 mm) /4 = = 78.5 mm Per poter calcolare lo sforzo (s = F/A) devo prima calcolare la forza peso a partire dalla massa F = m*g = t * 9.81 m/s = = 000 kg * 9.81 m/s = 1960 kg*m/s = 1960 N Quindi lo sforzo è pari a s = F/A = 1960 N/78.5 mm = = 50 N/mm = 50 MPa Devo confrontare il valore dello sforzo applicato con la tensione di snervamento e quella di rottura del materiale

3 18/05/011 ff t t Deformazione plastica uniforme Deformazione plastica localizzata f y Snervamento Deformazione elastica Definizione di tensione di snervamento s Fig. 1 s Fig. s Fig. 3 R sn R sn,max R sn,min Rsn,0, e e 0.% e Snervamento discontinuo Snervamento continuo 3

4 sforzo MPa sforzo MPa 18/05/011 Determinazione del carico di snervamento CrMoV Ti 6Al4V API 5L X100 Rs 0, = 300 MPa S35JR AISI 304 Al 5154 H deformazione Determinazione del carico di rottura CrMoV4 Ti 6Al4V X100 inox 18-8 S 35JR Al 5154 H34 Ti 6Al4V 51CrMoV4 Rm = 660 MPa API 5L X100 AISI S35JR Al 5154 H deformazione 4

5 18/05/011 Lo sforzo applicato è inferiore al carico di snervamento del materiale s<r s : 50 MPa < 300 MPa Questo significa che la barra opera in campo elastico, ove le deformazioni sono reversibili: applicando il carico la barra si allungherà, ma rimuovendolo tornerà alle condizioni iniziali Se si aggiungono 1000 kg si ha che s = F/A = (m*g)/a = = (( )kg*9.81 m/s ) /78.5 mm = 375 MPa In questo caso lo sforzo applicato è superiore al carico di snervamento ma inferiore a quello di rottura R s < s < R m Questo significa che la barra opera in campo di deformazione plastica uniforme: il materiale ha superato il limite elastico e parte della deformazione che ha subito è irreversibile; rimuovendo il carico la lunghezza della barra non torna nelle condizioni iniziali 5

6 18/05/011 Deformazione elastica e deformazione plastica s s Limite elastico reversibile irreversibile e e p e e e Nel caso in cui si applicano 6 t si ha che s = F/A = (m*g)/a = = (6000 kg*9.81 m/s ) /78.5 mm = 750 MPa In questo caso lo sforzo applicato è superiore al carico di rottura (660 MPa) s > R m Il carico di rottura è il massimo sforzo sopportabile dal materiale: questo significa che applicando 6 t la barra si allungherà sino a rompersi 6

7 18/05/011 ES. deformazione e legame elastico s-e Una barra di acciaio AISI 304 a sezione rettangolare x6 mm e lunghezza iniziale di 5 m si allunga per effetto di un peso applicato sino a 5.00 m. Quanto vale la deformazione? Qual è il valore del peso applicato? Definizione di deformazione F L/ L e n L L e t l l l/ F l/ L/ l l Le deformazioni sono grandezze adimensionali 7

8 18/05/011 Applicando la definizione di deformazione si ottiene che: e = (l-l 0 )/l 0 = ( ) mm/ 5000 mm = Per poter calcolare il peso applicato devo conoscere lo sforzo Posso ricavare il valore dello sforzo dalla deformazione utilizzando la legge di Hooke (s = E*e) ma ATTENZIONE: la legge di Hooke è valida solo in campo elastico! Quindi devo ipotizzare che la barra lavori in campo elastico e verificare questa ipotesi controllando che s < R s 8

9 sforzo MPa 18/05/011 s = E*e = MPa* = 78.4 MPa Lo sforzo sulla barra è effettivamente inferiore al carico di snervamento (300 MPa), quindi l ipotesi che questa operasse in campo elastico è valida IN CASO CONTRARIO non è possibile determinare lo sforzo (quindi il peso applicato) utilizzando la legge di Hooke, ma è necessario ricorrere al grafico s-e, se disponibile X100 steel AISI 18-8 (AISI304) S 35JR Al 5154 H34 Ti 6Al4V 51CrMoV4 E GPa , ,33 0,8 0,33 0,31 0,31 0,33 Esempio: e = => s = 450 MPa CrMoV Ti 6Al4V API 5L X100 s = 450 MPa S35JR AISI 304 Al 5154 H deformazione 9

10 18/05/011 Noto lo sforzo, in base alla definizione dello sforzo stesso, si può ricavare che s = F/A => F = s*a = s*(b*h) = = 78.4 MPa*(*6) mm = = N corrispondente ad una massa di m = F/g = N/9.81 m/s = 96 kg ES. Sistema di monitoraggio del campanile Un sistema interno di monitoraggio dell inclinazione di un campanile è realizzato mediante uno filo appeso alla sommità e teso con un peso di 10 kg. Il filo è in AISI 304 di 0,8 mm di diametro. Si pone il problema di aumentare il peso a 60 kg. Verificare l accettabilità della modifica e, se minore, il massimo peso consentito. Calcolare per questo peso la lunghezza del filo in assenza di carico. Calcolate la massima portata per la rottura 10

11 18/05/011 ES. Sistema di monitoraggio del campanile 70 m Dati iniziali: Peso 10 kg Diametro filo 0.8 mm Materiale: AISI 304 È ammissibile un peso di 60 kg? Se non ammissibile qual è il massimo peso consentito? Valutare lunghezza del filo senza carico Calcolo della massima portata per la rottura 10 kg Devo verificare che: s < Rs Peso (massa) -> sollecitazione (sforzo) Peso (massa) -> forza F = m*g = 60 kg * 9.81 m/s = = kg*m/s = N 11

12 18/05/011 Ricavo il valore della sezione resistente dal diametro: A = p*d /4 = p*(0.8 mm) /4 = = mm s = F/A = N / mm = = 1170 N/mm = 1170 MPa Verifica s = 1170 MPa < Rs Dal grafico osservo che Rs per l acciaio AISI 304 è pari a circa 300 MPa (tracciando retta parallela al tratto elastico passante per e = 0. % = 0.00) Un peso di 60 kg non è ammissibile 1

13 18/05/011 Calcolo del massimo peso consentito: F = s*a => Fmax = Rs*a = = 300 MPa * mm = N Peso max = F/g = N / 9.81 m/s = 15.4 kg Calcolo della lunghezza in assenza di carico: Utilizzo la legge di Hooke per ricavare e s 10 kg*9.81 m/s /0.503 mm = 195 MPa s = E*e => e = s/e = 195 MPa / 196 GPa = 195 / = 9.95*10-4 X100 steel AISI 18-8 (AISI304) S 35JR Al 5154 H34 Ti 6Al4V 51CrMoV4 E GPa , ,33 0,8 0,33 0,31 0,31 0,33 13

14 18/05/011 Dalla definizione di deformazione: e = (l-l 0 )/l 0 => l 0 *e = l-l 0 => l 0 = l/(1+e) = 70 m / ( *10-4 ) = = m Massima portata per la rottura: Devo considerare non più Rs ma Rm Dal grafico individuo Rm = 660 MPa F = s*a = 660 MPa * mm = 33 N =>Massa = F/g = 33 N /9.81 m/s = 33.8 kg 14

15 18/05/011 Es. Barra di ancoraggio In un cantiere, è richiesto il collaudo di una barra di ancoraggio in 51CrMoV4 di 10 m di lunghezza (L) e diametro () 1 cm. La verifica è effettuata in campo mediante l applicazione di pesi crescenti ad una delle estremità della barra. L altra estremità è appoggiata ad una trave rigida di grande sezione, inserita in un foro. Calcolare la massa in chilogrammi necessaria per raggiungere lo snervamento della barra e il corrispondente allungamento (espresso in millimetri). Calcolare la massa necessaria per la rottura della barra. Dopo la rottura, la parte superiore si sfila ed è proiettata verso l alto. Stimare la massima altezza raggiunta nel caso in cui la rottura avvenga nel punto centrale della barra. (Suggerimento: al momento della rottura, la velocità delle due parti deve soddisfare i principi della conservazione della quantità di moto e dell energia). Es. Barra di ancoraggio Materiale: 51CrMoV4 lunghezza L = 10 m diametro = 1 cm L? Massa che determina lo snervamento e allungamento corrispondente? Massa che determina la rottura? Altezza raggiunta dalla metà della barra proiettata verso l alto alla rottura 15

16 18/05/011 È innanzitutto necessario determinare il valore del carico di snervamento del materiale utilizzato (51CrMoV4) Si può ricavare il valore dell area dal diametro A = p*d /4 = p * (10 mm) /4 = 78.5 mm Dalla definizione di sforzo, si ricava che s= F/A => F = s*a = 100 MPa * 78.5 mm = = 9400 N Noto il valore dello forza, si può ricavare quello della massa: M = F/g = 9400 N / 9.81 m/s = 960 kg Per calcolare l allungamento è prima necessario determinare il valore della deformazione in corrispondenza dello snervamento. 16

17 18/05/011 La deformazione può essere calcolata con la legge di Hooke ed è pari a s = E*e => e = s/e = 100 MPa/10000 Mpa = = 5.7*10-3 In base alla definizione di deformazione si può calcolare il valore dell allungamento e = l/l 0 => l = e*l 0 = 5.7*10-3 *10000 mm = = 57 mm La massa che determina la rottura della barra di ancoraggio è quella in grado di esercitare uno sforzo pari a quello massimo tollerabile dal materiale, ovvero il carico di rottura R m 17

18 sforzo MPa 18/05/011 Determinazione del carico di rottura Rm = MPa CrMoV4 Ti 6Al4V X100 inox 18-8 S 35JR Al 5154 H34 Ti 6Al4V 51CrMoV API 5L X100 Al 5154 H34 AISI 304 S35JR deformazione In modo analogo a quanto visto precedentemente si può calcolare il valore della forza alla rottura s = F/A => F = s*a = 1500 MPa*78.5 mm = = N Nota la forza, il valore della massa è dato da F = m*g => m = F/g = N / 9.81 m/s = = 1003 kg (circa 1 t) 18

19 18/05/011 Energia F dl = F*dl ma dl = l 0 *e ed F = s*a quindi F dl s Al0 de Al s L 0 de e il lavoro per unità di volume è pari a L s de Vol dl L Lavoro effettuato per allungare la barra da l a l+dl L area sottesa alla curva rappresenta il lavoro effettuato per rompere la barra Energia elastica e energia per la deformazione plastica s Energia elastica Energia plastica e L energia elastica (per unità di volume) è pari a L d E d Vol s e e e E e s e s E L area sottesa alla curva di trazione rappresenta l energia per unità di volume necessaria rompere il provino 19

20 18/05/011 Energia elastica Il reticolo atomico assorbe energia deformandosi e la cede quando torna alla condizione iniziale di equilibrio Per il principio di conservazione della quantità di moto, nell ipotesi che la barra si rompa in corrispondenza della metà, si ha che: (m tot /)*v 1 + (m tot /)*v = m tot *v e poiché la barra prima di rompersi è ferma si ottiene che v 1 = -v Nell istante della rottura l energia elastica accumulata nella barra viene ceduta e si trasforma in energia cinetica, resta invariata l energia potenziale. 0

21 18/05/011 quindi, per il principio di conservazione dell energia (e tenendo conto di quanto ricavato per le velocità): E elastica K K 1 s Vol mtot v E si ricava che 6 s rottura N / m v 36.9m / s E kg/ m N / m pari a circa 133 km/h 1 s 1 1 Vol m E tot v m tot v sempre per il principio di conservazione dell energia, è possibile scrivere che mtot vi mtot g hi mtot v f poiché la velocità finale è nulla si ricava h = v i /g = = (36.9 m/s) / (*9.81 m/s ) = = 69.4 m 1 m tot g h f 1

22 18/05/011 Esercizio Il collaudo di una barra di ancoraggio in cantiere prevede l applicazione di un carico di trazione di 70kN. La barra ha sezione tonda liscia di diametro nominale pari a 16mm e lunghezza iniziale 5m. Essa è realizzata con un acciaio laminato a caldo di tipo B450C avente quindi una tensione di snervamento, una tensione di rottura ed un modulo di elasticità longitudinale nominali rispettivamente pari a: f y = 450N/mm, f t = 540N/mm ed E = 10000N/mm. Calcolare la lunghezza della barra sollecitata. Qual è la lunghezza della barra se il carico viene rimosso? Perché?

23 18/05/011 È necessario innanzitutto verificare che il materiale utilizzato sia compatibile con lo stato di sollecitazione imposto Si deve ricorrere alla definizione dello sforzo, che è calcolabile con il rapporto tra la forza (carico) agente sulla sezione resistente e l area di questa. La sezione resistente è la minima sezione in direzione ortogonale alla direzione di applicazione della sollecitazione, può essere in questo caso ricavata a partire dal diametro nominale. Dal carico e dalla sezione è possibile calcolare la tensione D A p 4 16 p 4 01mm s F A 70000N 348N/ mm 01mm 3

24 18/05/011 La tensione applicata è inferiore a quella di snervamento (450N/mm ) del materiale. È allora possibile ricavare il valore della deformazione dalla legge σ=e. ε, valida in campo elastico: e s E 348N/mm 10000N/mm Dalla definizione di deformazione è possibile calcolare la lunghezza finale l si ricava che: l -l 0 e l l0 1 e mm 5008mm l0 Dopo la rimozione del carico la barra torna alla lunghezza iniziale (5000mm), poiché è stata sollecitata in condizioni elastiche, ovvero in campo di deformazione reversibile. 4

25 18/05/011 Esercizio Si devono collaudare in cantiere tre barre di ancoraggio realizzate con un acciaio laminato a caldo di tipo B450C, caratterizzato da un valore di tensione di snervamento f y di 450N/mm, della tensione di rottura f t di 540N/mm, e da un modulo di rigidità E pari a 10000N/mm. Le barre non presentano nervature, hanno sezione tonda di diametro pari a 8mm e sono lunghe m. Si decide di effettuare il collaudo applicando pesi crescenti alla base delle barre, opportunamente vincolate all estremità opposta. Supponendo che alla prima barra si applichino 000kg, alla seconda 500kg ed alla terza 3000kg, descrivere cosa accade alle barre, calcolandone se possibile la lunghezza finale sotto carico. 5

26 18/05/011 s s s Le tre barre, del tutto identiche, presentano la medesima sezione resistente, ma per effetto di differenti carichi applicati sono soggette a stati di sollecitazione differenti. P A m g A D 8 A p p 50.3mm kg9.81m/ s 50.3mm N/ mm s f y P A m g A 500kg9.81m/ s 50.3mm 487.9N/ mm f y s ft P A m g A 3000kg9.81m/s 50.3mm N/ mm s f t 6

27 18/05/011 Nel primo caso il valore della tensione applicata è inferiore alla tensione di snervamento. La barra opera quindi in campo elastico s 390.3N/mm e E 10000N/mm e mm 003.7mm ll0 Nel secondo caso la tensione assume un valore compreso tra la tensione di snervamento e quella di rottura, si trova dunque in campo plastico. La barra subisce un allungamento non calcolabile con la legge di Hooke (valida solo in campo elastico). 7

28 18/05/011 Nel terzo caso la tensione risulta maggiore della tensione di rottura. La barra si allungherà sino a rompersi, manifestando il fenomeno della strizione. Nel terzo caso la tensione risulta maggiore della tensione di rottura. La barra si allungherà sino a rompersi, manifestando il fenomeno della strizione. 8

29 18/05/011 Esercizio Si debbano eseguire delle prove di trazione su barre d armatura pervenute in cantiere. Il laboratorio prove materiali provvede al riconoscimento del produttore ed al rilevo dei dati relativi alla pesatura ed alla lunghezza del campione. I risultati ottenuti sono (densità dell acciaio = 7.85kg/dm 3 ): lunghezza del campione: 600mm massa del campione:.5kg Il laboratorio procede infine all esecuzione della prova di trazione ed alla stesura del certificato di prova. Ipotizzando che le barre siano di acciaio tipo B450C, con f y = 450N/mm e f t = 540N/mm calcolare la forza da applicare alla barra per portarla allo snervamento ed alla rottura. Quale ulteriore prova deve eseguire il laboratorio prove materiali per dichiarare la conformità del materiale? 9

30 18/05/011 L esercizio richiede essenzialmente il calcolo della forza da applicare per portare allo snervamento la barra Per passare dallo sforzo assegnato (f y = 450N/mm e f t = 540N/mm ) alla forza da applicare è necessario conoscere il diametro nominale della barra Definizione di barra equipesante: densità = massa/volume 7.85kg dm 3.5kg p D 4 6dm Diametro nominale pari a 6mm 30

31 18/05/011 Calcolo ora la forza allo snervamento F snervament o 450N/mm mm 38.9kN e alla rottura F rottura 540N/mm mm 86.7kN Il laboratorio prove esegue inoltre la prova di piegatura a 90 e successivo raddrizzamento. La prova di piegatura a 90 si esegue a temperatura ambiente (circa 0 C) piegando la barra d armatura a

32 18/05/011 Diametro del mandrino per prove di piegamento a 90 e successivo raddrizzamento senza cricche φ <1 mm 1 φ 16 mm per 16< φ 5 mm per 5< φ 50 mm 4 φ 5 φ 8 φ 10 φ TEMA D ESAME 07 FEBBRAIO 011 Nel laboratorio della Facoltà di Ingegneria di Bergamo si devono eseguire prove di trazione su provini di due diversi materiali: una lega di alluminio 6061 T4 e un acciaio da costruzione tipo S35JR. I provini, estratti da profilati, hanno spessore di 5 mm, larghezza pari a 40 mm e sono lunghi 500 mm. I risultati delle prove di trazione sono riportati in tabella. 3

33 18/05/011 TEMA D ESAME 07 FEBBRAIO 011 Calcolare le grandezze utili per tracciare i diagrammi di trazione dei due materiali. Tracciare sul medesimo grafico entrambe le curve di trazione e indicare le principali differenze riscontrate, nell ipotesi che la deformazione alla tensione di rottura sia pari al 1%. RISOLUZIONE L esercizio richiede semplicemente il calcolo delle grandezze caratteristiche utili per tracciare la curva di trazione del materiale. Per il calcolo delle grandezze è possibile ricorrere alle ben note formule, ricordando che: 33

34 18/05/011 Tabella Alluminio S35JR E MPa MPa F snervamento 9 kn 47 kn f y 145 MPa 35 MPa F rottura 48. kn 7 kn f t 41 MPa 360 MPa ε snervamento 0.1 % 0.11 % ε rottura % 5 % l iniziale 500 mm 500 mm l finale 610 mm 65 mm Diagrammi di trazione Per quanto riguarda i diagrammi di trazione: I due materiali hanno moduli di elasticità diversi, quindi la pendenza della curva di trazione dell alluminio 6061 T4 sarà, nel tratto iniziale, minore rispetto all acciaio S35JR La tensione di snervamento e di rottura dell acciaio S35JR sono maggiori di quelle dell alluminio 6061 T4 La deformazione a rottura dell acciaio S35JR è maggiore di quella dell alluminio 6061 T4 34

35 18/05/011 APPELLO DI ESAME 01 SETTEMBRE 010 Due laboratori prove materiali (A e B) ricevono ciascuno tre spezzoni di barra in acciaio B450C (fy = 450 N/mm, ft 540 N/mm ed E = N/mm ) provenienti dallo stesso lotto di produzione aventi diametro nominale rispettivamente pari a mm e 16 mm. Le barre consegnate, di lunghezza pari ad 1.5m, vengono tagliate fino ad ottenere spezzoni lunghi 60 cm. I provini sono collocati all interno delle ganasce della macchina di trazione e si avvia la prova. I due laboratori concordano di arrestare la prova, lasciando il provino all interno della macchina con forza applicata pari a 100 kn. 35

36 18/05/011 APPELLO DI ESAME 01 SETTEMBRE 010 Si confrontino le condizioni nell istante di arresto della macchina di trazione delle barre provate nei due laboratori, compilando opportunamente la tabella riportata. Motivare opportunamente le risposte indicando le formule utilizzate e tracciando sullo stesso diagramma le curve caratteristiche forza/spostamento per i casi A e B. Ovviamente i valori di deformazione, allungamento e lunghezza finale non possono essere calcolati per la barra da 16 mm, poiché opera in campo plastico e quindi non è più valida la Legge di Hooke. Per calcolare la deformazione e, di conseguenza, l allungamento e la lunghezza finale della barra sarebbe necessario avere il diagramma sforzo/deformazione del materiale. 36

37 18/05/011 Laboratorio A Laboratorio B Forza (kn) Area (mm ) Tensione (N/mm ) Deformazione (%) Allungamento (mm) L finale della barra (mm) Modulo di elasticità (MPa)

38 18/05/011 Curva di trazione Esercizio Una barra d'acciaio (E = 10000MPa) e una di alluminio (E = 70000MPa) vengono sollecitate a trazione. Entrambe le barre hanno diametro pari a 4mm e lunghezza iniziale di 80cm. In un certo istante, durante la prova, la lunghezza misurata risulta essere pari a 80.15cm. L'acciaio in questione è del tipo B450C, con f y = 450N/mm e f t = 540N/mm, mentre l alluminio è del tipo 6061-T6, con f y = 76N/mm e f t = 310N/mm. Calcolare il valore del carico cui sono sottoposte le barre e la lunghezza della barra dopo la rimozione dello stesso. Motivare opportunamente la risposta tracciando sullo stesso diagramma le caratteristiche sforzo/deformazione dei due materiali e commentare. 38

39 18/05/011 e L esercizio richiede semplicemente il calcolo della forza resistente misurata nel momento in cui le due barre sono lunghe 80,15cm cm 80 cm allu minio L L0 eacciaio 10 s acciaio MPa MPa s allu minio MPa 131.5MPa Essendo i valori di sforzo calcolati per ogni materiale minori delle rispettive tensioni di snervamento, è possibile affermare che le due barre operano in campo elastico. A = mm F acc MPa 45.39mm 178.1kN F all 131.5MPa 45.39mm 59.3kN 39

40 18/05/011 Le barre operano in campo elastico, quindi, alla rimozione del carico, entrambe ritornano alla lunghezza iniziale di 80cm. Esercizio Una barra d armatura in acciaio tipo B450C (diametro nominale pari a 16mm) viene sottoposta in laboratorio alla prova di trazione. Il tecnico, prima di collocare la barra all interno delle ganasce della macchina di trazione, traccia su di essa una serie di tacche equidistanziate di 1cm, al fine di poter stimare l allungamento della stessa. Al termine dell operazione di tracciatura, posiziona la barra nella macchina per dare inizio alla prova di trazione. In un certo istante, durante l esecuzione della prova, l operatore decide di misurare l allungamento della barra e prende la misura di 11 tacche tracciate inizialmente. Determinare gli allungamenti misurati dall operatore negli istanti in cui la macchina di trazione misura una forza pari a 30, 60 e 90kN. Considerando che la misurazione viene effettuata con un calibro sensibile al decimo di millimetro, commentare le misure ottenute. È possibile stimare la lunghezza misurata dall operatore quando la macchina registra una forza pari a 100kN? Perchè? 40

41 18/05/011 L esercizio richiede in sostanza, il calcolo dell allungamento istantaneo di una barra d armatura sottoposta a 3 livelli di sollecitazione diversi. la valutazione della deformazione a partire dalla sollecitazione, è possibile solamente qualora si operi in campo elastico utilizzando la legge di Hooke Per verificare l applicabilità della formula, calcoliamo le sollecitazioni relative alle forze misurate progressivamente dalla macchina di trazione (30, 60 e 90kN): p 16mm 149. p 16mm 98.4 s N N/mm s N N/mm p 16mm s N N/mm 41

42 18/05/011 Le tre forze considerate producono sollecitazioni inferiori alla tensione di snervamento nominale, pari a 450N/mm, per l acciaio B450C. L operatore decide di utilizzare come lunghezza iniziale 11 tacche equidistanziate di 1cm, quindi: l 0 1cm10 10 cm La deformazione misurata nei tre casi, considerando il modulo di elasticità dell acciaio pari a 00GPa, sarà: e -4 1 s1 E 149.N mm 00000N mm e -3 s E 98.4N mm 00000N mm e -3 3 s3 E 447.6N mm 00000N mm.410 4

43 18/05/011 Dalle deformazioni è possibile calcolare agevolmente gli allungamenti, mediante la formula che deriva dal concetto di deformazione: -4 - L1 L0 e1 100mm mm 0.1mm -3-1 L L0 e 100mm mm 0.1mm -3-1 L3 L0 e3 100mm mm 0.mm Visti i risultati approssimati al decimo di millimetro, è possibile affermare che l operatore non avrà difficoltà a stimare gli allungamenti. La sensibilità dello strumento non gli consentirà di distinguere la differenza tra le prime due misure. 43

44 18/05/011 Se la forza misurata dalla macchina fosse pari a 100kN, saremmo sicuramente in campo plastico (considerando che per la forza di 90kN era stata calcolata una sollecitazione pari a 447.6N/mm, molto prossima al valore nominale di snervamento) e di conseguenza non è possibile determinare la deformazione istantanea, se non a partire dal grafico di trazione. Esercizio Due barre d acciaio tonde (f y = 450N/mm, f t = 540N/mm, E = 10000N/mm ), vengono sottoposte a trazione in due diversi laboratori. Al laboratorio 1 viene inviata una barra lunga 1.5m per permettere il riconoscimento del marchio del produttore (codice di laminazione). La barra viene successivamente tagliata e la sua lunghezza risulta pari a 60cm. L operatore provvede alla pesatura della barra e rileva un peso pari a 3.79kg. Il laboratorio esegue le stesse operazioni effettuate nel laboratorio 1 e rileva un peso pari a 1.kg. Supponendo che i laboratori 1 e abbiano a disposizione una macchina di trazione da 600kN, quale sarà la forza registrata al 50% della tensione di snervamento per le due barre e quale la deformazione istantanea? Descrivere graficamente le situazioni tracciando delle curve indicative sforzo-deformazione e forza-spostamento. 44

45 18/05/011 Per entrambi i laboratori Per risalire al valore del diametro della barra, si fa riferimento al calcolo della barra liscia equipesante: acciaio kg.85 dm 7 3 m V V pd 4 l d 4 m pl Laboratorio n.1 Il diametro nominale risulta pari a 3mm, la sezione: p 3mm mm 45

46 18/05/011 Calcolando la forza di trazione necessaria a raggiungere la metà dello snervamento nominale si ottiene: s F A F tensione A 450 N/mm mm 181kN snerv, nom La deformazione istantanea, quindi in campo elastico è semplicemente calcolabile sfruttando la legge di Hooke: 450 N mm 10000N mm Laboratorio n. Il diametro nominale risulta pari a 18mm La sezione resistente sarà, quindi, pari a mm Calcolando la forza di trazione necessaria a raggiungere la metà dello snervamento nominale si ottiene: s F A F tensione A 450 N/mm 54.77mm 57kN snerv, nom 46

47 18/05/011 La deformazione istantanea, quindi in campo elastico è semplicemente calcolabile sfruttando la legge di Hooke 450 N mm 10000N mm Il valore della deformazione istantanea, ovviamente, non cambia per le barre in quanto operano entrambe in campo elastico e la deformazione dipende esclusivamente dalla tensione e dal modulo di elasticità Laboratori 1 e. Curve sforzo-deformazione per entrambe le barre (coincidono, sono lo stesso materiale!) 47

48 18/05/011 Laboratori 1 e. Curve forza-spostamento (grafici indicativi) 48

18/06/2009. F =σ S F 1 F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa]

18/06/2009. F =σ S F 1 F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa] ES. Sforzo Azioni interne (definizione di tensione o sforzo) Una barra di acciaio AISI 34 a sezione tonda, di diametro pari a 1 mm, deve sorreggere una massa di t. Qual è lo sforzo a cui è soggetta la

Dettagli

Azioni interne (definizione di tensione o sforzo)

Azioni interne (definizione di tensione o sforzo) ES. Sforzo Una barra di acciaio AISI 304 a sezione tonda, di diametro pari a 10 mm, deve sorreggere una massa di 2 t. Qual è lo sforzo a cui è soggetta la barra? Cosa accade se vengono aggiunti 1000 kg?

Dettagli

Lezione. Progetto di Strutture

Lezione. Progetto di Strutture Lezione Progetto di Strutture 1 Acciaio 2 Acciaio Controlli Tre forme di controllo sono obbligatorie : IN STABILIMENTO DI PRODUZIONE.. da eseguirsi sui lotti di produzione NEI CENTRI DI TRASFORMAZIONE

Dettagli

Proprietà elastiche dei corpi

Proprietà elastiche dei corpi Proprietà elastiche dei corpi I corpi solidi di norma hanno una forma ed un volume non facilmente modificabili, da qui deriva la nozioni di corpo rigido come corpo ideale non deformabile. In realtà tutti

Dettagli

STUDIO DELLE PROPRIETÀ MECCANICHE E DI ADERENZA DI BARRE IN ROTOLO RIBOBINATE DA C.A.

STUDIO DELLE PROPRIETÀ MECCANICHE E DI ADERENZA DI BARRE IN ROTOLO RIBOBINATE DA C.A. Contratto di Ricerca tra FERALPI SIDERURGICA S.p.A. e CONSORZIO CIS-E STUDIO DELLE PROPRIETÀ MECCANICHE E DI ADERENZA DI BARRE IN ROTOLO RIBOBINATE DA C.A. Relazione finale Prof. Ing. Carlo Poggi Prof.

Dettagli

Documento #: Doc_a8_(9_b).doc

Documento #: Doc_a8_(9_b).doc 10.10.8 Esempi di progetti e verifiche di generiche sezioni inflesse o presso-tensoinflesse in conglomerato armato (rettangolari piene, circolari piene e circolari cave) Si riportano, di seguito, alcuni

Dettagli

SAFERALPS. Prg n 6782-103 28-02-2012

SAFERALPS. Prg n 6782-103 28-02-2012 SAFERALPS Prg n 6782-103 28-02-2012 Study of the characteristics of the "via ferrata Analysis of the installation and maintenance techniques Similarities and differences in the Alps P1-Universität Salzburg

Dettagli

TENSIONE INTERNA E DEFORMAZIONE PROVA DI TRAZIONE E NOMATIVA DIAGRAMMA SFORZO-DEFORMAZIONE DEFORMAZIONI REALI, ELASTICITA, TENACITA

TENSIONE INTERNA E DEFORMAZIONE PROVA DI TRAZIONE E NOMATIVA DIAGRAMMA SFORZO-DEFORMAZIONE DEFORMAZIONI REALI, ELASTICITA, TENACITA PROVA DI TRAZIONE (UNI EN ISO 6892-1) 1 INDICE TENSIONE INTERNA E DEFORMAZIONE PROVA DI TRAZIONE E NOMATIVA DIAGRAMMA SFORZO-DEFORMAZIONE RISULTATI DELLA PROVA DEFORMAZIONI REALI, ELASTICITA, TENACITA

Dettagli

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep Proprietà meccaniche Prove meccaniche prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep Prova di trazione provini di dimensione standard deformazione

Dettagli

Tecnologia dei Materiali e Chimica Applicata

Tecnologia dei Materiali e Chimica Applicata Franco Medici Giorgio Tosato Tecnologia dei Materiali e Chimica Applicata Complementi ed esercizi Copright MMIX ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo,

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA

UNIVERSITA DEGLI STUDI DI BRESCIA UNIVERSITA DEGLI STUDI DI BRESCIA ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario) SEZIONE B - Prima

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Progetto strutturale di una trave rovescia Alle travi di fondazioni

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

DIMENSIONAMENTO DI UN PILASTRO

DIMENSIONAMENTO DI UN PILASTRO DIMENSIONAMENTO DI UN PILASTRO Si dimensioni un pilastro nelle tre diverse tecnologie: legno, acciaio e cemento armato. Osservando una generica pianta di carpenteria, il pilastro centrale sarà quello maggiormente

Dettagli

Istituto Tecnico per Geometri Corso di Costruzioni Edili

Istituto Tecnico per Geometri Corso di Costruzioni Edili Istituto Tecnico per Geometri Corso di Costruzioni Edili Prof. Giacomo Sacco LEZIONI SUL CEMENTO ARMATO Sforzo normale, Flessione e taglio CONCETTI FONDAMENTALI Il calcestruzzo ha una bassa resistenza

Dettagli

Progetto delle armature longitudinali del solaio

Progetto delle armature longitudinali del solaio prof. Renato Giannini Progetto delle armature longitudinali del solaio (arch. Lorena Sguerri) orrezioni del diagramma di momento flettente Prescrizioni di normativa specifiche per il solaio Progetto delle

Dettagli

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche CEMENTO ARMATO METODO AGLI STATI LIMITE Il calcestruzzo cementizio, o cemento armato come normalmente viene definito in modo improprio, è un materiale artificiale eterogeneo costituito da conglomerato

Dettagli

Dimensionamento delle strutture

Dimensionamento delle strutture Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle

Dettagli

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo

Dettagli

--- durezza --- trazione -- resilienza

--- durezza --- trazione -- resilienza Proprietà meccaniche Necessità di conoscere il comportamento meccanico di un certo componente di una certa forma in una certa applicazione prove di laboratorio analisi del comportamento del componente

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

Trasportatori a nastro

Trasportatori a nastro Trasportatori a nastro Realizzano un trasporto di tipo continuo, in orizzontale o in pendenza, di materiali alla rinfusa e di carichi concentrati leggeri. incastellatura di sostegno Trasporti interni 1

Dettagli

ANALISI STRUTTURALE DELLA TRAVE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN)

ANALISI STRUTTURALE DELLA TRAVE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN) ANALISI STRUTTURALE DELLA TRAE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN) SALA C SALA A SALA B Ing. FRANCESCO POTENZA Ing. UBERTO DI SABATINO 1 1. PREESSA La presente relazione illustra i risultati

Dettagli

PROPRIETÀ DEI MATERIALI

PROPRIETÀ DEI MATERIALI ESERCITAZIONE 1 PROPRIETÀ DEI MATERIALI SONO LE GRANDEZZE IL CUI VALORE DESCRIVE IL COMPORTAMENTO DEL MATERIALE IN PRESENZA DELLE DIVERSE SOLLECITAZIONI E CONDIZIONI DI SERVIZIO COSTITUISCONO L ELEMENTO

Dettagli

Modelli di dimensionamento

Modelli di dimensionamento Introduzione alla Norma SIA 266 Modelli di dimensionamento Franco Prada Studio d ing. Giani e Prada Lugano Testo di: Joseph Schwartz HTA Luzern Documentazione a pagina 19 Norma SIA 266 - Costruzioni di

Dettagli

STRUTTURE IN CEMENTO ARMATO - V

STRUTTURE IN CEMENTO ARMATO - V Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì STRUTTURE IN CEMENTO ARMATO - V AGGIORNAMENTO 22/09/2012 DOMINIO DI RESISTENZA Prendiamo in considerazione la trave rettangolare

Dettagli

Capitolo 4 CALCOLO DELLE SEZIONI

Capitolo 4 CALCOLO DELLE SEZIONI Capitolo 4B - Stati limite ultimi 51 Capitolo 4 CALCOLO DELLE SEZIONI 4.1 Trazione Il comportamento sotto carico crescente di un pezzo di acciaio è ricavabile dalla prova a trazione effettuata con apposite

Dettagli

INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8

INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8 2/6 INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8 5 CALCOLO DELLE SOLLECITAZIONI TRAVE... 9 6 CALCOLO DELLE SOLLECITAZIONI

Dettagli

ESAME DI STATO 2009/10 INDIRIZZO MECCANICA TEMA DI : MECCANICA APPLICATA E MACCHINE A FLUIDO

ESAME DI STATO 2009/10 INDIRIZZO MECCANICA TEMA DI : MECCANICA APPLICATA E MACCHINE A FLUIDO ESAME DI STATO 2009/10 INDIRIZZO MECCANICA TEMA DI : MECCANICA APPLICATA E MACCHINE A FLUIDO Lo studio delle frizioni coniche si effettua distinguendo il caso in cui le manovre di innesto e disinnesto

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

INDICE. 1. Premesse pag. 2. 2. Regime normativo pag. 3

INDICE. 1. Premesse pag. 2. 2. Regime normativo pag. 3 INDICE 1. Premesse pag. 2 2. Regime normativo pag. 3 3. Plinto di fondazione torre faro pag. 4 3.1 Sollecitazione massime di calcolo pag. 4 3.2 Determinazione massimi sforzi sui pali pag. 4 3.3 Dimensionamento

Dettagli

MISURAZIONE DELLE PROPRIETA TECNOLOGICHE I.T.S.T J.F. KENNEDY - PN

MISURAZIONE DELLE PROPRIETA TECNOLOGICHE I.T.S.T J.F. KENNEDY - PN MISURAZIONE DELLE PROPRIETA TECNOLOGICHE I.T.S.T J.F. KENNEDY - PN Le proprietà tecnologiche dei materiali indagano la loro risposta alla lavorabilità ovvero forniscono indicazioni sulla risposta dei materiali

Dettagli

1 IL MATERIALE E LA SUA COMMERCIALIZZAZIONE

1 IL MATERIALE E LA SUA COMMERCIALIZZAZIONE Il Manuale della Presagomatura 3 1 IL MATERIALE E LA SUA COMMERCIALIZZAZIONE 1.1 Acciai da cemento armato ordinario L acciaio per cemento armato, introdotto sul mercato nazionale in barre, è ottenuto per

Dettagli

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo. Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento

Dettagli

SCHEDA 69: TELAIO POSTERIORE ABBATTIBILE PIEGATO PER TRATTORI A CINGOLI CON MASSA MAGGIORE DI 1500 kg E FINO A 3000 kg

SCHEDA 69: TELAIO POSTERIORE ABBATTIBILE PIEGATO PER TRATTORI A CINGOLI CON MASSA MAGGIORE DI 1500 kg E FINO A 3000 kg SCHEDA 69: TELAIO POSTERIORE ABBATTIBILE PIEGATO PER TRATTORI A CINGOLI CON MASSA MAGGIORE DI 1500 kg E FINO A 3000 kg SPECIFICHE DEL TELAIO DI PROTEZIONE. : il testo compreso fra i precedenti simboli

Dettagli

PLASTIC TESTING SCHEDA TECNICA. Visualizzazione dei risultati. Programmi disponibili. Dati ottenibili. Controllo. Posizionamento preliminare

PLASTIC TESTING SCHEDA TECNICA. Visualizzazione dei risultati. Programmi disponibili. Dati ottenibili. Controllo. Posizionamento preliminare DINAMOMETRI ELETTRONICI SERIE TCS SCHEDA TECNICA Strumenti da banco completamente governati da Personal Computer per prove di trazione, compressione, flessione su una vasta gamma di materiali: tessili,

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA A.A. 204/5 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Energia potenziale Problema 26 Una molla ha una costante elastica k uguale a 440 N/m. Di quanto

Dettagli

SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI

SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI 1.1 DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI travi secondarie

Dettagli

S u S e S u S e S u S e 65 29.5 325 114 280 96 60 30 238 109 295 99 82 45 130 67 120 48 64 48 207 87 180 84 101 51 205 96 213 75. T ti i dirit riserva

S u S e S u S e S u S e 65 29.5 325 114 280 96 60 30 238 109 295 99 82 45 130 67 120 48 64 48 207 87 180 84 101 51 205 96 213 75. T ti i dirit riserva Esercizi aggiuntivi capitolo 3 2-4 Si classificano, in tabella, i valori del logaritmo in base dieci di 55 osservazioni sperimentali dei cicli al guasto rilevati durante prove di fatica a livelli di sollecitazione

Dettagli

Lo studio del campo di tensione e di deformazione esistente in una qualsiasi struttura, in conseguenza dell applicazione di sollecitazioni esterne, è

Lo studio del campo di tensione e di deformazione esistente in una qualsiasi struttura, in conseguenza dell applicazione di sollecitazioni esterne, è Lo studio del campo di tensione e di deformazione esistente in una qualsiasi struttura, in conseguenza dell applicazione di sollecitazioni esterne, è di fondamentale importanza per poterne definire il

Dettagli

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3)

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3) Domande su: taglio, flessione composta e collegamenti. Indica se ciascuna delle seguenti affermazioni è vera o falsa (per ciascuna domanda punti 2) (1) L adozione di un gioco foro-bullone elevato semplifica

Dettagli

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente: Sono illustrati con la presente i risultati dei calcoli che riguardano il progetto della scala in c.a da realizzarsi nel rifugio Cima Bossola in località Marciana NORMATIVA DI RIFERIMENTO La normativa

Dettagli

Le piastre Precompresse

Le piastre Precompresse Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Le piastre Precompresse Dott. Marco VONA Scuola di Ingegneria, Università di Basilicata marco.vona@unibas.it http://www.unibas.it/utenti/vona/ PIASTRE

Dettagli

CALCOLO TEORICO DELLE CONNESSIONI

CALCOLO TEORICO DELLE CONNESSIONI CALCOLO TEORICO DELLE CONNESSIONI Relatore: INDICE: Connettori metallici a gambo cilindrico alle tensioni ammissibili Approccio di calcolo agli stati limite - Teoria di Johansen - Formule proposte dalle

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Le unioni. modulo D L acciaio. Unioni con chiodi

Le unioni. modulo D L acciaio. Unioni con chiodi 1 Le unioni Le unioni hanno la funzione di collegare i vari elementi strutturali per formare la struttura, oppure, se questa è di grandi dimensioni, di realizzare in officina i componenti principali che

Dettagli

Via Emilia Ovest, 21/A 42048 Rubiera (R.E.) Tel. 0522/629909; fax. 626229 e.mail: pfollo@tin.it - P.IVA 01207970359 C.F.

Via Emilia Ovest, 21/A 42048 Rubiera (R.E.) Tel. 0522/629909; fax. 626229 e.mail: pfollo@tin.it - P.IVA 01207970359 C.F. Via Emilia Ovest, 1/A 4048 Rubiera (R.E.) Tel. 05/69909; fax. 669 e.mail: pfollo@tin.it - P.IVA 0107970359 C.F. FLLPLA48L06I496U MONTANTE PER ANCORAGGIO DISPOSITIVI INDIVIDUALI CONTRO LA CADUTA DAI TETTI,

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

LA PROVA DI TRAZIONE

LA PROVA DI TRAZIONE LA PROVA DI TRAZIONE Laboratorio di Metallurgia AA 2007-2008 INTRODUZIONE Le proprietà meccaniche di un materiale rappresentano la resistenza che questo ha nei confronti delle sollecitazioni che operano

Dettagli

www.rodacciai.it PROVA DI TRAZIONE L 0 = 5.65 S 0 PROVE MECCANICHE

www.rodacciai.it PROVA DI TRAZIONE L 0 = 5.65 S 0 PROVE MECCANICHE PROVA DI TRAZIONE La prova, eseguita a temperatura ambiente o più raramente a temperature superiori o inferiori, consiste nel sottoporre una provetta a rottura per mezzo di uno sforzo di trazione generato

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di

Dettagli

ESERCITAZIONI. MATERIALI PER L EDILIZIA Prof. L. Coppola. Coffetti Denny

ESERCITAZIONI. MATERIALI PER L EDILIZIA Prof. L. Coppola. Coffetti Denny MATERIALI PER L EDILIZIA Prof. L. Coppola ESERCITAZIONI Coffetti Denny PhD Candidate Dipartimento di Ingegneria e Scienze Applicate Università degli Studi di Bergamo ESERCIZIO 1 IL COLLAUDO DI UNA BARRA

Dettagli

PRINCIPALI PROVE SUI MATERIALI INDICE

PRINCIPALI PROVE SUI MATERIALI INDICE PRINCIPALI PROVE SUI MATERIALI Per disporre di dati reali che consentono di classificare le proprietà di vari materiali, occorre eseguire sui materiali delle prove specifiche in laboratori molto attrezzati.

Dettagli

CALCOLO DEL NUOVO PONTE

CALCOLO DEL NUOVO PONTE CALCOLO DEL NUOVO PONTE CARATTERISTICHE DEI MATERIALI I materiali utilizzati sono: - Calcestruzzo Rck450 = 2500 Kg/m 3 Resistenza di esercizio a flessione: f cd = 0,44*45 = 19,8 N/mm 2 = 198 Kg/cm 2 -

Dettagli

Associazione ISI Ingegneria Sismica Italiana

Associazione ISI Ingegneria Sismica Italiana Associazione ISI Ingegneria Sismica Italiana Strada Statale Valsesia, 20-13035 Lenta (VC), Tel. (+39) 331 2696084 segreteria@ingegneriasismicaitaliana.it www.ingegneriasismicaitaliana.it Connessioni dissipative

Dettagli

PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012

PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012 Cognome e nome PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012 Si ricorda al candidato di rispondere alle domande di Idraulica, Scienza delle costruzioni e Tecnica delle

Dettagli

ESERCIZI SVOLTI. 2 Il calcestruzzo armato 2.4 La flessione composta

ESERCIZI SVOLTI. 2 Il calcestruzzo armato 2.4 La flessione composta ESERCIZI SVOLTI Costruire la frontiera del dominio di resistenza della sezione rettangolare di mm con armatura simmetrica A s,tot + 6, copriferro mm, impiegando calcestruzzo classe C /. Resistenza di calcolo

Dettagli

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra: 1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al

Dettagli

Calcola l allungamento che subisce un tirante di acciaio lungo l=2,5m (a sez.circolare) con φ =20mm sottoposto ad un carico (in trazione) F=40.000N.

Calcola l allungamento che subisce un tirante di acciaio lungo l=2,5m (a sez.circolare) con φ =20mm sottoposto ad un carico (in trazione) F=40.000N. Edutecnica.it Azioni interne esercizi risolti 1 razione Esercizio no.1 soluzione a pag.7 Determina il diametro di un tirante (a sezione circolare in acciaio Fe0 da sottoporre ad una forza F10.000N di lunghezza

Dettagli

Ente Nazionale Meccanizzazione Agricola SERVIZIO DI ACCERTAMENTO DELLE CARATTERISTICHE FUNZIONALI E DELLA SICUREZZA DELLE MACCHINE AGRICOLE

Ente Nazionale Meccanizzazione Agricola SERVIZIO DI ACCERTAMENTO DELLE CARATTERISTICHE FUNZIONALI E DELLA SICUREZZA DELLE MACCHINE AGRICOLE Ente Nazionale Meccanizzazione Agricola SERVIZIO DI ACCERTAMENTO DELLE CARATTERISTICHE FUNZIONALI E DELLA SICUREZZA DELLE MACCHINE AGRICOLE CERTIFICATO n 41-002 PNEUMATICI PER TRATTORI AGRICOLI: RADIAL

Dettagli

INTERVENTO DI RIPARAZIONE PALAZZO DEL GOVERNATORE CENTO (FE) RELAZIONE SUI MATERIALI

INTERVENTO DI RIPARAZIONE PALAZZO DEL GOVERNATORE CENTO (FE) RELAZIONE SUI MATERIALI INDICE 1.... 2 1.1. Materiali strutture esistenti... 2 1.1.1. Muratura... 2 1.2. Materiali strutture di nuova realizzazione... 3 1.2.1. Muratura di nuova realizzazione... 3 1.2.2. Calcestruzzo... 3 1.2.3.

Dettagli

(IMP) FOGNATURA. e poiché in base alla seconda relazione di Bazin: dato che: si ha che: nel caso di pendenza i = 1% = 0,01 si riduce a:

(IMP) FOGNATURA. e poiché in base alla seconda relazione di Bazin: dato che: si ha che: nel caso di pendenza i = 1% = 0,01 si riduce a: (IMP) FOGNATURA Il tubo PE a.d. è particolarmente indicato per la realizzazione di impianti di scarico in edifici civili ed industriali, oppure in terreni particolarmente instabili dove altri materiali

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio. Carichi unitari delle sezioni e verifica di massima Una volta definito lo spessore, si possono calcolare i carichi unitari (k/m ) Solaio del piano tipo Solaio di copertura Solaio torrino scala Sbalzo piano

Dettagli

Misure di deformazione

Misure di deformazione Dipartimento di Ingegneria Aerospaziale Tecnica e Sperimentazione Aerospaziale 3 anno, N.O. AA 005-006 Docente: Gian Luca Ghiringhelli Misure di deformazione Autori: Fogante Andrea 67393... Gobbi Lorenzo

Dettagli

LE ARMATURE PER IL CALCESTRUZZO ARMATO NORME DI RIFERIMENTO PER I CENTRI DI TRASFORMAZIONE

LE ARMATURE PER IL CALCESTRUZZO ARMATO NORME DI RIFERIMENTO PER I CENTRI DI TRASFORMAZIONE LE ARMATURE PER IL CALCESTRUZZO ARMATO NORME DI RIFERIMENTO PER I CENTRI DI TRASFORMAZIONE Verona, 27 Novembre 2009 Ing. Emilio Fadda 1 NORME TECNICHE PER LE COSTRUZIONI: D.M. 14.01.2008 La circolare ministeriale

Dettagli

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013 Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013 Quesito 1 Due cubi A e B costruiti con lo stesso legno vengono trascinati sullo stesso pavimento.

Dettagli

La misura delle proprietà è effettuata mediante prove, condotte nel rispetto di norme precisate dalle unificazioni

La misura delle proprietà è effettuata mediante prove, condotte nel rispetto di norme precisate dalle unificazioni PROVE MECCANICHE Le prove meccaniche si eseguono allo scopo di misurare le proprietà meccaniche dei materiali, ossia quelle che caratterizzano il comportamento di un materiale sotto l azione di forze esterne.

Dettagli

Ancoraggio delle barre d armatura nel calcestruzzo

Ancoraggio delle barre d armatura nel calcestruzzo Monografia A Ancoraggio delle barre d armatura nel calcestruzzo A.1 Introduzione 1 A.2 Aderenza 2 A.3 Lunghezza di ancoraggio 4 A.4 Parametri che influenzano l aderenza 5 A.5 Progettazione secondo la normativa

Dettagli

SOMMARIO. Connettore a piolo con testa applicato a freddo mediante chiodi e viti autofilettanti.

SOMMARIO. Connettore a piolo con testa applicato a freddo mediante chiodi e viti autofilettanti. 2 SOMMARIO Connettore a piolo con testa applicato a freddo mediante chiodi e viti autofilettanti. 1. INTRODUZIONE 2. DESCRIZIONE CONNETTORI 3. PROVE DEI CONNETTORI FISSATI TRAMITE CHIODI 3.1. Descrizione

Dettagli

APPELLO DI ESAME DI MATERIALI STRUTTURALI PER L EDILIZIA - 09 SETTEMBRE 2013 Prof. Luigi Coppola

APPELLO DI ESAME DI MATERIALI STRUTTURALI PER L EDILIZIA - 09 SETTEMBRE 2013 Prof. Luigi Coppola APPELLO DI ESAME DI MATERIALI STRUTTURALI PER L EDILIZIA - 09 SETTEMBRE 2013 Prof. Luigi Coppola ESERCIZIO N 1 (5 9 CREDITI) Due laboratori prove materiali, denominati A e B, ricevono tre spezzoni di barra

Dettagli

Fornitura di tubi in materiale composito per armatura di micropali. Controlli e collaudo

Fornitura di tubi in materiale composito per armatura di micropali. Controlli e collaudo Fornitura di tubi in materiale composito per armatura di micropali Controlli e collaudo Le armature di nostra fornitura sono costituite da tubi di diametro 200 mm e spessore 10 mm in resina poliestere

Dettagli

F 1. F =σ S F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa]

F 1. F =σ S F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa] ES. Sforzo Una barra di acciaio AISI 304 a sezione tonda, di diametro pari a 10 mm, deve sorreggere una massa di 2 t. Qual è lo sforzo a cui è soggetta la barra? Cosa accade se vengono aggiunti 1000 kg?

Dettagli

CARATTERISTICHE DEGLI ACCIAI ACCIAI PER IMPIEGHI STRUTTURALI: CARATTERISTICHE, NORMALIZZAZIONE, CORROSIONE

CARATTERISTICHE DEGLI ACCIAI ACCIAI PER IMPIEGHI STRUTTURALI: CARATTERISTICHE, NORMALIZZAZIONE, CORROSIONE STRUTTURE METALLICHE Quaderno IV Strutture metallice CARATTERISTICHE DEGLI ACCIAI ACCIAI PER IMPIEGHI STRUTTURALI: CARATTERISTICHE, NORMALIZZAZIONE, CORROSIONE 1 Caratteristicemeccanice Tipiequalità Trattamenti

Dettagli

PRINCIPALI APPLICAZIONI DI MATERIALE FIBRO-RINFORZATO IN CARBONIO

PRINCIPALI APPLICAZIONI DI MATERIALE FIBRO-RINFORZATO IN CARBONIO pull PRINCIPALI APPLICAZIONI DI MATERIALE FIBRO-RINFORZATO IN CARBONIO - Sistema IDES-Wrap con Tessuto UNI-direzionale IDES-Wrap C-UNI/220 IDES-Wrap C-UNI/320 IDES-Wrap C-UNI/420 - Sistema IDES-Wrap con

Dettagli

Flessione orizzontale

Flessione orizzontale Flessione orizzontale Presso-flessione fuori piano Presso-flessione fuori piano Funzione dei rinforzi FRP nel piano trasmissione di sforzi di trazione all interno di singoli elementi strutturali o tra

Dettagli

TEC S.r.l. GIUNTI DI DILATAZIONE SERIE TEC VP. Giunti di dilatazione stradale. Descrizione. Normativa di riferimento

TEC S.r.l. GIUNTI DI DILATAZIONE SERIE TEC VP. Giunti di dilatazione stradale. Descrizione. Normativa di riferimento TEC S.r.l. GIUNTI DI DILATAZIONE SERIE TEC VP Descrizione I giunti di dilatazione stradale della serie TEC VP assolvono alla funzione di coprigiunto filopavimento e sono progettati per rispondere alle

Dettagli

RAPPORTO DI PROVA. Prove di trazione su barre in vetroresina (VTR)

RAPPORTO DI PROVA. Prove di trazione su barre in vetroresina (VTR) TEL 081/7683336 FAX 081/7683332 Data domanda 07/04/2011 Data prova 18/04/2011 Data rapporto 19/05/2011 RAPPORTO DI PROVA Prove di trazione su barre in vetroresina (VTR) RICHIEDENTE Committente: NODAVIA

Dettagli

WORKSHOP ALIG "MATERIALI DA COSTRUZIONE : MANUALE PER LA DIREZIONE DEI LAVORI" 9.00-9.30 registrazione dei partecipanti

WORKSHOP ALIG MATERIALI DA COSTRUZIONE : MANUALE PER LA DIREZIONE DEI LAVORI 9.00-9.30 registrazione dei partecipanti ASSOCIAZIONE LABORATORI DI INGEGNERIA E GEOTECNICA Viale della Grande Muraglia, n. 233 00144 ROMA Tel 06-5201136 fax 06-5220.1391 e-mail: ali@laboratoriali.it - www.laboratoriali.it Riconoscimento della

Dettagli

Dimensioni Altezza del telaio di protezione dai supporti: Larghezza del telaio di protezione:

Dimensioni Altezza del telaio di protezione dai supporti: Larghezza del telaio di protezione: Scheda 23: TELAIO ANTERIORE ABBATTIBILE SALDATO PER MOTOAGRICOLE CON STRUTTURA PORTANTE DI TIPO ARTICOLATO O RIGIDO CON POSTO DI GUIDA ARRETRATO CON MASSA MAGGIORE DI 2000 kg E FINO A 3500 kg SPECIFICHE

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

Lamiere grecate semplici in acciaio. Domenico Leone

Lamiere grecate semplici in acciaio. Domenico Leone Lamiere grecate semplici in acciaio Domenico Leone Lamiere grecate semplici in acciaio Parte 1 Domenico Leone Il prof. Domenico Leone vanta un esperienza più che trentennale nel campo della progettazione

Dettagli

Prove meccaniche di laboratorio (Distillazione verticale)

Prove meccaniche di laboratorio (Distillazione verticale) OBIETTIVI: 1 Prove meccaniche di laboratorio (Distillazione verticale) sapere descrivere le esecuzioni delle prove; conoscere le caratteristiche dimensionali dei provini unificati; sapere calcolare le

Dettagli

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013 Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola

Dettagli

Pali di fondazione. modulo B Le fondazioni. La portata dei pali

Pali di fondazione. modulo B Le fondazioni. La portata dei pali 1 Pali di fondazione La portata dei pali Nel caso dei pali di punta soggetti a sforzi assiali, cioè realizzati in terreni incoerenti e infissi in terreno profondo compatto, il carico ammissibile P su ogni

Dettagli

DO - 03-134 i / Versioni 1.1 / 15.5.07 TECNICA PER ARMATURE. artec500

DO - 03-134 i / Versioni 1.1 / 15.5.07 TECNICA PER ARMATURE. artec500 TECNICA PER ARMATURE artec500 artec 500 di questa rete ci si può fidare Gancio e doppi ferri di bordo sono le caratteristiche tipiche del programma di reti standard artec che, dal 1983 viene costantemente

Dettagli

Schede tecniche e linee guida per l installazione

Schede tecniche e linee guida per l installazione 49 Intumex RS50 - Collare tagliafuoco Generalità Intumex RS50 è un collare tagliafuoco per tubazioni in plastica realizzato in acciaio inossidabile verniciato a polvere, che utilizza il laminato intumescente

Dettagli

- attraverso la qualificazione del Servizio Tecnico Centrale, con la procedura indicata nelle NTC stesse.

- attraverso la qualificazione del Servizio Tecnico Centrale, con la procedura indicata nelle NTC stesse. C11.3 ACCIAIO C11.3.1 PRESCRIZIONI COMUNI A TUTTE LE TIPOLOGIE DI ACCIAIO C11.3.1.1 Controlli Le NTC prevedono che il controllo sugli acciai da costruzione sia obbligatorio e si effettui, con modalità

Dettagli

QUALITÀ ED AFFIDABILITÀ

QUALITÀ ED AFFIDABILITÀ QUALITÀ ED AFFIDABILITÀ Ogni prodotto BREBE viene realizzato in conformità alle normative vigenti in materia di prevenzione dalle cadute dall alto rispettando in oltre tutti i più alti standard di qualità.

Dettagli

TUBI DI POLIETILENE ALTA DENSITA PE 100 SCHEDA TECNICA

TUBI DI POLIETILENE ALTA DENSITA PE 100 SCHEDA TECNICA TUBI DI POLIETILENE ALTA DENSITA PE 100 SCHEDA TECNICA Tubi Unidelta di polietilene alta densità PE 100 per fluidi in pressione I tubi Unidelta di polietilene alta densità PE 100, realizzati con materia

Dettagli

IL CONTROLLO D ACCETTAZIONE ED IL COLLAUDO IN CORSO D OPERA DELLE PREVISTO DAL D.M. 14.01.2008. Lecco, 2 dicembre 2011

IL CONTROLLO D ACCETTAZIONE ED IL COLLAUDO IN CORSO D OPERA DELLE PREVISTO DAL D.M. 14.01.2008. Lecco, 2 dicembre 2011 IL CONTROLLO D ACCETTAZIONE ED IL COLLAUDO IN CORSO D OPERA DELLE STRUTTURE IN C.A. E IN ACCIAIO COME PREVISTO DAL D.M. 14.01.2008 2 IL CONTROLLO D ACCETTAZIONE ED IL COLLAUDO STATICO IN CORSO D OPERA

Dettagli

σ a σ R σ S σ N σ LF Tensione alterna La Curva di Wöhler N Numero di cicli log N Fatica oligociclica

σ a σ R σ S σ N σ LF Tensione alterna La Curva di Wöhler N Numero di cicli log N Fatica oligociclica Fatica oligociclica a Tensione alterna R S N Zona di progettazione a tempo (fatica ad alto numero di cicli) LF La Curva di Wöhler Vita infinita 10 4 N Numero di cicli 10 7 10 8 log N 1 a Fatica oligociclica

Dettagli

BOZZA. Esempio di nodo rigido e di nodo cerniera in una struttura in acciaio

BOZZA. Esempio di nodo rigido e di nodo cerniera in una struttura in acciaio Lezione n. 25 Le strutture in acciaio Introduzione al calcolo di strutture in acciaio Prova di trazione monoassiale Classificazione degli acciai da carpenteria Introduzione Le strutture in acciaio nascono

Dettagli

Lezione. Progetto di Strutture

Lezione. Progetto di Strutture Lezione Progetto di Strutture Impostazione della carpenteria Impostazione della carpenteria Definizione dell orditura dei solai e della posizione di travi e pilastri ( La struttura deve essere in grado

Dettagli

Combinazione dei carichi

Combinazione dei carichi Combinazione dei carichi Un passo fondamentale del progetto di un opera civile è sicuramente l analisi delle forze agenti su essa che sono necessarie per l individuazione delle corrette sollecitazioni

Dettagli

SETTI O PARETI IN C.A.

SETTI O PARETI IN C.A. SETTI O PARETI IN C.A. Parete Pareti accoppiate SETTI O PARETI IN C.A. Na 20% Fh i i h i Na/M tot >=0.2 SETTI O PARETI IN C.A. IL FATTORE DI STRUTTURA VERIFICHE SETTI O PARETI IN C.A. SOLLECITAZIONI -FLESSIONE

Dettagli

ISTRUZIONE OPERATIVA:

ISTRUZIONE OPERATIVA: Pagina 1 di 5 da INDICE: 1) Scopo 2) Campo di applicazione 3) Norma di riferimento 4) Definizioni e simboli 5) Responsabilità 6) Apparecchiature 7) Modalità esecutive 8) Esposizione dei risultati 1. Scopo

Dettagli

I pali rastremati senza saldatura sono prodotti mediante trafilatura a caldo e trovano applicazione nella trazione ferroviaria, filotranviaria e nell

I pali rastremati senza saldatura sono prodotti mediante trafilatura a caldo e trovano applicazione nella trazione ferroviaria, filotranviaria e nell Pali rastremati Pali rastremati per linee di contatto Pali rastremati per gambe portali I pali rastremati senza saldatura sono prodotti mediante trafilatura a caldo e trovano applicazione nella trazione

Dettagli

SOLETTA SU LAMIERA GRECATA

SOLETTA SU LAMIERA GRECATA SOLETTA SU LAMIERA GRECATA (Revisione 3-01-006) Fig. 1 I solai composti in acciaio-calcestruzzo sono costituiti da una lamiera grecata di acciaio su cui viene eseguito un getto di calcestruzzo normale

Dettagli