Artefatti intelligenti: Aritmetica Maria G. Bartolini Bussi Università di Modena e Reggio Emilia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Artefatti intelligenti: Aritmetica Maria G. Bartolini Bussi Università di Modena e Reggio Emilia"

Transcript

1 Artefatti intelligenti: Aritmetica Maria G. Bartolini Bussi Università di Modena e Reggio Emilia

2

3 Seconda Primaria

4

5

6 Seconda Primaria

7

8 Quinta Primaria

9 Seconda Primaria

10 Quinta Primaria

11 Quinta Primaria

12 Prima Secondaria / Quinta Primaria

13

14 Un antico manoscritto

15 Artefatti intelligenti Questo non è intelligente! Perché?

16 Artefatti intelligenti Questo è intelligente! Perché?

17 Artefatti intelligenti

18 Artefatti intelligenti Questo è intelligente! Ma è difficile: ha una componente di convenzionalità molto impegnativa (valore posizionale)

19 Artefatti intelligenti Questo è intelligente! Ma è difficile: non si presta a esercizi veloci di conteggio oltre il 9

20 Artefatti intelligenti prima dell abaco Dall inizio della scuola primaria Dall inizio della scuola primaria alla secondaria di primo grado

21 Artefatti intelligenti prima dell abaco Dall inizio della scuola primaria

22 Il libro PARTE 1 L insegnamentoapprendimento della matematica attraverso diverse culture: Italia e Cina 1. Un quadro di riferimento per sostenere le buone pratiche degli insegnanti 2. La Cina 3. Approfondimenti

23 I temi PROCESSI Contare Rappresentare i numeri (notazione posizionale) Risolvere problemi aritmetici Avviare al pensiero algebrico

24 I temi PROCESSI Contare Rappresentare i numeri (notazione posizionale) ARTEFATTI Cannucce (non solo) Risolvere problemi aritmetici Avviare al pensiero algebrico Problemi con variazione

25 I temi PROCESSI Contare Rappresentare i numeri (notazione posizionale) Risolvere problemi aritmetici Avviare al pensiero algebrico PROVE INVALSI di II e V primaria Risultato importante della ricerca internazionale

26 Il libro PARTE 1 L insegnamentoapprendimento della matematica attraverso diverse culture: Italia e Cina 1. Un quadro di riferimento per sostenere le buone pratiche degli insegnanti 2. La Cina 3. Approfondimenti

27 Cannucce

28 Perché questi temi: INVALSI (e Indicazioni) AMBITO PREVALENTE Numeri SCOPO DELLA DOMANDA Verificare il possesso di strategie di conteggio. PROCESSO PREVALENTE Conoscere e utilizzare algoritmi e procedure. Indicazioni nazionali Contare oggetti o eventi, a voce e mentalmente, in senso progressivo e regressivo e per salti di due, tre, RISULTATI DEL CAMPIONE Mancata risposta: 1,3 Errata: 42,6 Corretta: 56,1

29 Cannucce per contare fino dai tre anni

30 Cannucce per rappresentare i numeri in base dieci dalla prima elementare

31 Da un libro cinese Inizio prima elementare

32 Da un libro cinese 36-28

33 Da un libro cinese 36-28

34 36 28? 36-28= 12? problema Valore posizionale

35 problema 36 28? bambino Slego un fascetto e prendo i bastoncini che mi servono Valore posizionale cultura 36-28= 8.. con il prestito di una decina

36 36 28? Legar problema bambino e slegar e Valore posizionale cultura Comporre Scomporre 36-28= 8.. con il prestito di una decina

37 problema C è un potenziale semiotico nelle cannucce il doppio legame tra una consegna (alla portata dei bambini) e Valore posizionale quel particolare elemento del sapere da insegnare

38 problema Dove agisce l insegnante? bambino Segni, testi situati Valore posizionale cultura Segni, testi matematici

39 UN QUADRO METODOLOGICO MEDIAZIONE SEMIOTICA

40

41 UN QUADRO METODOLOGICO IL CICLO DIDATTICO

42

43

44

45

46 IN ITALIA Conti A. (1920), Aritmetica per la prima classe elementare, Firenze, Bemporad e Figlio.

47 IN ITALIA 1929 Anni 50

48 Modello delle scatole trasparenti Ho tre decine e quattordici unità. Che numero è? Scuola estiva seconde 48

49 Modello delle scatole trasparenti Ho tre decine e quattordici unità. Che numero è? Scuola estiva seconde 49

50 Modello delle scatole trasparenti 3 decine e 14 unità Scuola estiva seconde 50

51 Modello delle scatole trasparenti Lego i fascetti che posso e li metto nella scatola Scuola estiva seconde 51

52 Modello delle scatole trasparenti Scuola estiva seconde 52

53 Modello delle scatole trasparenti 4 decine e 4 unità Scuola estiva seconde 53

54 Artefatti intelligenti prima dell abaco Dall inizio della scuola primaria alla secondaria di primo grado

55 Il libro Libro in preparazione Pascalina Michela Maschietto

56 Che cos è la Pascalina? Zero+1 Quercetti da un idea di F. Arzarello

57 Nota storica: la pascalina. invenzione che consente di eseguire ogni genere di operazione aritmetica, in modo nuovo e comodo.. Questa macchina semplifica ed elimina nelle sue operazioni tutto quanto è superfluo, il più incompetente troverà tanti vantaggi quanto il più esperto. Senza trattenere o prendere a prestito nulla, la macchina fa da sola quanto l operatore desidera, senza che lui se ne debba in alcun modo preoccupare.

58 Nota storica: la pascalina Dal film Blaise Pascal di Roberto Rossellini (1972)

59 Nota storica: la pascalina William Schickard 1623

60 Nota storica: la pascalina Klein (1924) così commenta il senso delle macchine da calcolo ed in particolare della Brunsviga.

61 Nota storica: la pascalina Mi sia permesso riassumere osservando che il principio teorico della macchina è molto elementare e rappresenta semplicemente una realizzazione tecnica delle regole che si usano sempre nel calcolo numerico [ ]. (Felix Klein)

62 Nota storica: la pascalina Nell esistenza di una tale macchina vediamo una incontestabile conferma che solo le regole dell operazione, e non il significato dei numeri, sono importanti nel calcolo; perché la macchina può seguire solo queste; è costruita per fare esattamente questo; non potrebbe cogliere intuitivamente il significato dei numeri. (Felix Klein)

63 Nota storica: la pascalina Non riterremo dunque accidentale che un uomo come Leibniz, pensatore astratto di primo livello, e uomo di grande talento pratico, sia stato, al tempo stesso, sia il padre della pura matematica formale che l inventore di una macchina calcolatrice. (Felix Klein)

64 Che cos è la Pascalina?

65 Analisi del potenziale semiotico Alcuni significati matematici: Rappresentazione polinomiale dei numeri in base dieci. Algoritmi di addizione e sottrazione in base dieci. Collegamento tra aspetti semantici ed aspetti sintattici.

66 Primo esempio (classi prima e seconda elementare) (Mara Boni) 66

67 Analisi del potenziale semiotico Alcuni significati matematici: Rappresentazione polinomiale dei numeri in base dieci. Algoritmi di addizione e sottrazione in base dieci. Collegamento tra aspetti semantici ed aspetti sintattici.

68 Conta usando la pascalina Rappresentazione polinomiale dei numeri. Collegamento tra aspetti semantici e sintattici Prima elementare: Mara Boni

69 Conta usando la pascalina Rappresentazione polinomiale dei numeri. Collegamento tra aspetti semantici e sintattici Prima elementare: Mara Boni

70 La filastrocca di Alice

71 La filastrocca di Alice Da zero si va avanti di uno e si fa zero più uno. Dall uno si va avanti di uno e si fa uno più uno. Dal due si va avanti di uno e si fa due più uno. Dal tre si va avanti di uno e si fa tre più uno. Dal quattro si va avanti di uno e si fa quattro più uno. Dal cinque si va avanti di uno e si fa cinque più uno. Dal sei si va avanti di uno e si fa sei più uno. Dal sette si va avanti di uno e si fa sette più uno. Dall otto si va avanti di uno e si fa otto più uno. Dal nove si va avanti di uno e si fa nove più uno. 71

72 La filastrocca di Alice VOCE: Dieci. INSEGNANTE: Dieci. Abbiamo il dieci. Avete visto? Dopo il nove siamo andati avanti di uno e si è formato il dieci. Sai andare avanti ancora un po? Dai! ALICE: Dal dieci si va avanti di uno e si fa dieci più uno e con l uno si mette un altro uno e diventa undici. Poi vai avanti di uno e diventa.. INSEGNANTE: Scusate, sempre con la ruotina di destraeh, la ruotina gialla di destra, sempre la ruotina gialla Alice muove. Alice, Marta, sempre sta muovendo la ruota di destra, Alice muove qui, correttamente qui, non lì, Marta, qui. Ecco qui, avete visto?, sempre qui va avanti di uno, vero Alice? ALICE 72

73 La Pascalina Apre, fino dalla prima elementare, a nuove avventure (addizioni-sottrazioni con numeri fino a 3 cifre; addizioni e sottrazioni per iterazione dell operatore +1 o -1 e per decomposizione del numero in unità, decine, centinaia, ecc.) Suggerisce la realizzazione di procedure facilmente automatizzabili Per i bambini di livello alto Per i bambini che le inventano con difficoltà spontaneamente che le possono imitare 73

74 Dentro lo schema La risposta di Alice, colta al volo dall insegnante e proposta a tutti come modello da imitare, mette a disposizione di tutti il collegamento tra Artefatto (le ruote, andare avanti, girare, i gesti, diventa, l uno che si mette con un altro uno, diventa ) Matematica (i numerali nell ordine standard, l operatore +1,..).

75 Dentro lo schema La risposta di Alice, colta al volo dall insegnante e proposta come modello da imitare, mette a disposizione di tutti il collegamento tra Aspetti sintattici (la conta realizzata in modo automatico) Aspetti semantici (il numero degli scatti necessari)

76 Qualche mese dopo (seconda elementare) Prova individuale con una pascalina a testa: Costruisci il numero 23 e spiega con parole e disegni come hai fatto (partendo da zero).

77 Qualche mese dopo (seconda elementare)

78 Qualche mese dopo (seconda elementare)

79 Qualche mese dopo (seconda elementare)

80 Qualche mese dopo (seconda elementare)

81 Una nuova consegna (di natura semiotica) Spiega come hai fatto. Puoi aiutarti con queste parole (o numeri). Avanti di 1 Rumoretto Che numero è? Scrivilo in parole. Clic clac / zzz / tru tri /tic tac Vado di 1 Vado avanti di 1 +1

82 Restituisce agli allievi e dà valore ai segni da loro prodotti. In molti protocolli gli allievi disegnano mani, evocando gesti. Sono segni-artefatto che evocano l esperienza concreta (situata). Dovranno essere trasformati in segni matematici. Una nuova consegna (di natura semiotica)

83 Secondo esempio (classe quarta elementare) (Franca Ferri) 83

84 Analisi del potenziale semiotico Alcuni significati matematici: Rappresentazione polinomiale dei numeri in base dieci. Algoritmi di addizione e sottrazione in base dieci. Collegamento tra aspetti semantici ed aspetti sintattici.

85 Algoritmi di addizione in base dieci Quarta elementare: Franca Ferri

86 La consegna (individuale) Scrivi le istruzioni d uso della Pascalina per l operazione di addizione (caso particolare suggerito: )

87 Christian: Due protocolli Ho scritto il primo addendo, 28, poi ho aggiunto il secondo, ruotando in senso orario la rotella delle unità quattro volte e la rotella delle decine una sola volta. Il risultato è 42. Orlando: Ho scritto il numero 28, poi ho girato in senso orario 14 volte la ruota in basso a destra, quella delle unità. Il risultato è 42.

88 Algoritmi di addizione in base dieci

89 INTENZIONE DELL INSEGNANTE Algoritmi di addizione in base dieci Testi (segni) matematici

90 Una nuova consegna Guarda che cosa hanno scritto Christian e Orlando per calcolare sulla pascalina: Prova a scrivere le espressioni matematiche che rappresentano i due diversi procedimenti.

91 Una nuova consegna Guarda che cosa hanno scritto Christian e Orlando per calcolare sulla pascalina: Prova a scrivere le espressioni matematiche che rappresentano i due diversi procedimenti.

92 Globalmente Usano solo i segni matematici (7/23) Usano segni matematici e linguaggio iconico (2/23) Usano segni matematici e linguaggio verbale (10/23) Usano segni matematici, linguaggio verbale e linguaggio iconico (4/23)

93 Solo segni matematici (M. Y. N.) Christian = ( ) + (4 + 8) = = = = 42 Orlando = (20 + 8) + ( ) = = 20 + ( ) = = = = 42

94 Segni matematici e linguaggio iconico

95 Segni matematici e linguaggio verbale Le due operazioni sono le stesse, solo che cambia come le svolgono. Christian: da + 4 u = 42 Orlando: = 42 (L. F.)

96 Segni matematici, linguaggio verbale ed iconico (L. A.)

97 Terzo esempio (classe prima media) (Rossella Garuti) 97

98 Analisi del potenziale semiotico Alcuni significati matematici: Rappresentazione polinomiale dei numeri in base dieci. Algoritmi di addizione e sottrazione in base dieci. Collegamento tra aspetti semantici ed aspetti sintattici.

99 Potenzialità della pascalina (esempio di macchina matematica) È un artefatto polisemico. L introduzione in classe non determina in modo automatico il modo in cui è usato e concettualizzato dagli allievi. Crea potenzialmente - le condizioni per generare la produzione di voci diverse (la polifonia di Bachtin) per una discussione matematica. 99

100 Le prime consegne Disegna e descrivi come è fatta la Pascalina senza farla girare. Descrivi come funziona.

101 Le prime consegne Disegna e descrivi come è fatta la Pascalina senza farla girare.

102 Le prime consegne Descrivi come funziona. Quando la ruota in basso a destra arriva a 9 fa muovere la ruota arancione che a sua volta muove la seconda ruota gialla. Le ruote arancioni si muovono quando una gialla arriva a 9. Le ruote dentate gialle si possono muovere sia in senso orario che antiorario. Secondo me le ruote arancioni servono a far muovere le ruote gialle

103 Problemi autoposti Come fare per far muovere tutte e cinque le ruote insieme? Con qualsiasi numero che finisce per 00 facendo un clic dell ultima ruota a destra in senso antiorario si muovono tutte e cinque le ruote Con tutti i numeri che finiscono per 99, facendo un clic dell ultima ruota a destra in senso orario si muovono tutte e cinque le ruote

104 Altri problemi Eseguire una moltiplicazione Eseguire una divisione Eseguire un addizione girando la ruota delle unità solo in verso orario Eseguire un addizione minimizzando il numero degli scatti (dei passi): es Eseguire una sottrazione mnimizzando il numero degli scatti (dei passi): es Congetturare che cosa può avvenire

105 Il gioco voci-eco

106

107

108 Altri riferimenti storici Pascal.htm

109 Alcuni riferimenti Tesi di dottorato di Rossella Garuti: regionale.html Volume del progetto Regionale: tto-regionale-emilia-romagna/risultati-delprogetto/libro-progettoregionale/documento html

110 Prestito Pascaline Laboratorio di Macchine Matematiche presso il Liceo Aldo Moro di Reggio Emilia rio-macchine-matematiche/

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Percorso formativo laboratoriale DIDATTICA DELLA MATEMATICA

Percorso formativo laboratoriale DIDATTICA DELLA MATEMATICA Percorso formativo laboratoriale DIDATTICA DELLA MATEMATICA Un approccio inclusivo per Disturbi Specifici e Difficoltà di Apprendimento Anna Maria Antonucci AIRIPA Puglia Lo sviluppo dell intelligenza

Dettagli

IL NUMERO NATURALE E LE SUE PROPRIETA : LORO VARIANZA E

IL NUMERO NATURALE E LE SUE PROPRIETA : LORO VARIANZA E IL NUMERO NATURALE E LE SUE PROPRIETA : LORO VARIANZA E INVARIANZA RISPETTO ALLA RAPPRESENTAZIONE * ROSA IADEROSA ** & NICOLINA A. MALARA *** Si espongono i risultati di un percorso didattico sperimentato

Dettagli

Introduzione del numero zero

Introduzione del numero zero Introduzione del numero zero E arrivato il momento di introdurre lo zero L'insegnante inizierà un discorso, sulla quantità degli oggetti in classe, formulando delle domande mirate al confronto dello zero

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

La Matematica con il Contafacile Impariamo giocando

La Matematica con il Contafacile Impariamo giocando La Matematica con il Contafacile Impariamo giocando SCUOLA.. A cura dell insegnante Liliana Del Papa e della prof.ssa Maria Pia Saitta classe 1 ª Care colleghe, questo quaderno nasce dal desiderio di condividere

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49 INDICE Unità 0 LINGUAGGI MATEMATICI, 1 Il libro prosegue nel CD Il linguaggio degli insiemi, 2 1 GLI INSIEMI E LA LORO RAPPRESENTAZIONE, 2 Gli insiemi, 2 Insieme vuoto, finito e infinito, 3 La rappresentazione

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Lo sviluppo delle abilità logico-matematiche. nei bambini in età prescolare

Lo sviluppo delle abilità logico-matematiche. nei bambini in età prescolare Istituto di Riabilitazione ANGELO CUSTODE PARLARE E CONTARE ALLA SCUOLA DELL INFANZIA Lo sviluppo delle abilità logico-matematiche nei bambini in età prescolare Dott.ssa Liana Belloni Dott.ssa Claudia

Dettagli

Lo sviluppo del linguaggio l idea di lettura e scrittura e il numero nella scuola dell infanzia Marialuisa Antoniotti Claudio Turello

Lo sviluppo del linguaggio l idea di lettura e scrittura e il numero nella scuola dell infanzia Marialuisa Antoniotti Claudio Turello Lo sviluppo del linguaggio l idea di lettura e scrittura e il numero nella scuola dell infanzia Marialuisa Antoniotti Claudio Lo sviluppo delle abilità numeriche La psicologia genetica (Piaget 1896-1980)

Dettagli

PROGETTO EM.MA PRESIDIO

PROGETTO EM.MA PRESIDIO PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i

Dettagli

Facoltà di Scienze della Formazione Cdl Scienze della Formazione Primaria Indirizzo Scuola Primaria

Facoltà di Scienze della Formazione Cdl Scienze della Formazione Primaria Indirizzo Scuola Primaria Facoltà di Scienze della Formazione Cdl Scienze della Formazione Primaria Indirizzo Scuola Primaria Laurent Lafforgue: il calcolo mentale e quello in colonna devono essere introdotti molto presto su numeri

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo:

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo: ALGORITMI 1 a Parte di Ippolito Perlasca Algoritmo: Insieme di regole che forniscono una sequenza di operazioni atte a risolvere un particolare problema (De Mauro) Procedimento che consente di ottenere

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009 Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

L INCONTRO CON LA MATEMATICA IN CLASSE PRIMA

L INCONTRO CON LA MATEMATICA IN CLASSE PRIMA Relazione Finale in Matematica e Didattica della Matematica L INCONTRO CON LA MATEMATICA IN CLASSE PRIMA Relatore Professoressa Ana María Millán Gasca Correlatore Dottoressa Viviana Rossanese Laureanda

Dettagli

L infinito nell aritmetica. Edward Nelson Dipartimento di matematica Università di Princeton

L infinito nell aritmetica. Edward Nelson Dipartimento di matematica Università di Princeton L infinito nell aritmetica Edward Nelson Dipartimento di matematica Università di Princeton Poi lo condusse fuori e gli disse: . E soggiunse:

Dettagli

Frazioni e numeri razionali

Frazioni e numeri razionali Frazioni e numeri razionali I numeri naturali sono i primi numeri che hai incontrato, quando hai cominciato a contare con le dita. Ma vuoi eseguire tutte le sottrazioni. E allora hai bisogno dei numeri

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

Indovinelli Algebrici

Indovinelli Algebrici OpenLab - Università degli Studi di Firenze - Alcuni semplici problemi 1. L EURO MANCANTE Tre amici vanno a cena in un ristorante. Mangiano le stesse portate e il conto è, in tutto, 25 Euro. Ciascuno di

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Progetto Laboratori Lauree Scientifiche

Progetto Laboratori Lauree Scientifiche Progetto Laboratori Lauree Scientifiche Laboratorio sui logaritmi Il regolo calcolatore Bozza di progetto Il regolo calcolatore è una delle piú antiche ed utilizzate applicazioni dei logaritmi. Consiste

Dettagli

Esperienze con l elettricità e il magnetismo

Esperienze con l elettricità e il magnetismo Esperienze con l elettricità e il magnetismo Laboratorio di scienze Le esperienze di questo laboratorio ti permettono di acquisire maggiore familiarità con l elettricità e il magnetismo e di sperimentare

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

ITALIANO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA

ITALIANO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA ITALIANO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA L allievo partecipa a scambi comunicativi (conversazione, discussione di classe o di gruppo) con compagni e insegnanti

Dettagli

La guerra delle posizioni

La guerra delle posizioni www.maestrantonella.it La guerra delle posizioni Gioco di carte per il consolidamento del valore posizionale delle cifre e per il confronto di numeri con l uso dei simboli convenzionali > e < Da 2 a 4

Dettagli

Il mondo in cui viviamo

Il mondo in cui viviamo Il mondo in cui viviamo Il modo in cui lo vediamo/ conosciamo Dalle esperienze alle idee Dalle idee alla comunicazione delle idee Quando sono curioso di una cosa, matematica o no, io le faccio delle domande.

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Valutare gli apprendimenti degli alunni stranieri

Valutare gli apprendimenti degli alunni stranieri MPI - USP di Padova Comune di Padova Settore Servizi Scolastici Centro D.A.R.I. Una scuola per tutti Percorso di formazione per docenti Valutare gli apprendimenti degli alunni stranieri I parte a cura

Dettagli

la rilevazione degli apprendimenti INVALSI

la rilevazione degli apprendimenti INVALSI I quadri di riferimento: Matematica Il Quadro di Riferimento (QdR) per le prove di valutazione dell'invalsi di matematica presenta le idee chiave che guidano la progettazione delle prove, per quanto riguarda:

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

ITALIANO - ASCOLTARE E PARLARE

ITALIANO - ASCOLTARE E PARLARE O B I E T T I V I M I N I M I P E R L A S C U O L A P R I M A R I A E S E C O N D A R I A D I P R I M O G R A D O ITALIANO - ASCOLTARE E PARLARE Ascoltare e comprendere semplici consegne operative Comprendere

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

IL VALORE POSIZIONALE

IL VALORE POSIZIONALE SCHEDA N. 1 IL VALORE POSIZIONALE 1. Scomponi ogni numero, seguendo l esempio. Esempio: 1=00000+0000+000+0+0+ =... 1 =... 9 1 =... 0 =... 0 09 =... 0 =.... Componi ogni numero, seguendo l esempio. Esempio:

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

La fattoria delle quattro operazioni

La fattoria delle quattro operazioni IMPULSIVITÀ E AUTOCONTROLLO La fattoria delle quattro operazioni Introduzione La formazione dei bambini nella scuola di base si serve di numerosi apprendimenti curricolari che vengono proposti allo scopo

Dettagli

Ri...valutando: azione e ricerca per il miglioramento

Ri...valutando: azione e ricerca per il miglioramento Il team di ricerca Mario Ambel (Responsabile) Anna Curci Emiliano Grimaldi Annamaria Palmieri 1. Progetto finalizzato alla elaborazione e validazione di un modellostandard - adattabile con opportune attenzioni

Dettagli

E possibile costruire una mentalità matematica?

E possibile costruire una mentalità matematica? E possibile costruire una mentalità matematica? Prof. F. A. Costabile 1. Introduzione La matematica è più di una tecnica. Apprendere la matematica significa conquistare l attitudine ad un comportamento

Dettagli

Dalle scatole alle figure piane. Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015

Dalle scatole alle figure piane. Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015 Dalle scatole alle figure piane Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015 Dalle Indicazioni nazionali per il curricolo Le conoscenze matematiche contribuiscono alla formazione

Dettagli

Andrea Gorini. Scrivere, leggere... e far di conto

Andrea Gorini. Scrivere, leggere... e far di conto Andrea Gorini Scrivere, leggere... e far di conto 1. Solo far di conto? Vorrei aprire il mio contributo con un brano tratto da un commento ai risultati delle prove Invalsi svolte in seconda superiore nell

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori"

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori" slide a cura di Salvatore Orlando & Marta Simeoni " Architettura degli Elaboratori 1 Interi unsigned in base 2" Si utilizza un

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 3 ISC Esercizi per il recupero del debito formativo: Disegnare il diagramma e scrivere la matrice delle transizioni di stato degli automi a stati finiti che rappresentano

Dettagli

CAPIRE LE F R A Z I O N I

CAPIRE LE F R A Z I O N I CAPIRE LE F R A Z I O N I di Ennio Monachesi SITO www.monachesi.it F R A Z I O N I Parte di un intero Di 5/5 (intero) prendo 2 quinti Numero razionale 2/5 = 2 : 5 = 0, 4 Operatore Rapporto Intero 5/5 =

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

STRUMENTI DI ANALISI E DI INTERPRETAZIONE DEI PROBLEMI: LE TECNICHE DI PROBLEM SOLVING

STRUMENTI DI ANALISI E DI INTERPRETAZIONE DEI PROBLEMI: LE TECNICHE DI PROBLEM SOLVING STRUMENTI DI ANALISI E DI INTERPRETAZIONE DEI PROBLEMI: LE TECNICHE DI PROBLEM SOLVING Gianna Maria Agnelli Psicologa Clinica e Psicoterapeuta Clinica del Lavoro "Luigi Devoto Fondazione IRCCS Ospedale

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07 GRUPPO ANNI 3 Novembre- maggio Documentazione a cura di Quaglietta Marica Per sviluppare Pensiero creativo e divergente Per divenire

Dettagli

I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua:

I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua: I NUMERI NATURALI Per cominciare impariamo a leggere alcni nmeri natrali e dopo prova a scriverli nella ta linga: NUMERI ITALIANO LA TUA LINGUA 1 UNO 2 DUE 3 TRE 4 QUATTRO 5 CINQUE 6 SEI 7 SETTE 8 OTTO

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009

Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009 Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009 Il buon nome - Chiavi di risposta e classificazione degli item Item Risposta corretta Ambito di valutazione Processi

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

ma quanto è antico quest osso?

ma quanto è antico quest osso? ATTIVITÀ: ma quanto è antico quest osso? LIVELLO SCOLARE: primo biennio della scuola secondaria di secondo grado PREREQUISITI: lettura e costruzione di grafici, concetti di base di statistica modello atomico,

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

IL PENSIERO MATEMATICO

IL PENSIERO MATEMATICO Claudio Bernardi Lodovico Cateni Roberto ortini Silvio Maracchia Giovanni Olivieri erruccio Rohr IL PENSIERO MATEMATICO OLUME 1 Algebra Statistica Geometria IL PENSIERO MATEMATICO cindice ALGEBRA UNITÀ

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO QUESTIONARIO SUGLI STILI DI APPRENDIMENTO Le seguenti affermazioni descrivono alcune abitudini di studio e modi di imparare. Decidi in quale misura ogni affermazione si applica nel tuo caso: metti una

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

L : L/2 = 1 : ½ = 2 : 1

L : L/2 = 1 : ½ = 2 : 1 LA SCALA PITAGORICA (e altre scale) 1 IL MONOCORDO I Greci, già circa 500 anni prima dell inizio dell era cristiana, utilizzavano un semplice strumento: il monocordo. Nel monocordo, un ponticello mobile

Dettagli

Per conoscere i numeri fare una lunga salita.

Per conoscere i numeri fare una lunga salita. 1 I l v iaggio ve rs o la conosce n z a Il tempio dei numeri scritti Siamo affascinati dal potere dei numeri e inseguiamo il loro possesso, ma affrontare direttamente la questione del numero è il punto

Dettagli

QUALE MATEMATICA NELLA SCUOLA DELL INFANZIA. Scuola dell Infanzia Don Milani Anni 2006/2007/2008 Ins. Barbara Scarpelli

QUALE MATEMATICA NELLA SCUOLA DELL INFANZIA. Scuola dell Infanzia Don Milani Anni 2006/2007/2008 Ins. Barbara Scarpelli QUALE MATEMATICA NELLA SCUOLA DELL INFANZIA Scuola dell Infanzia Don Milani Anni 2006/2007/2008 Ins. Barbara Scarpelli ESPERIENZE MATEMATICHE A PARTIRE DA TRE ANNI QUALI COMPETENZE? L avventura della matematica

Dettagli

D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile)

D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile) D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile) D1. COSA SONO LE ALTRE ATTIVITÀ FORMATIVE? D2. COME SI OTTENGONO

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Guida agli strumenti etwinning

Guida agli strumenti etwinning Guida agli strumenti etwinning Registrarsi in etwinning Prima tappa: Dati di chi effettua la registrazione Seconda tappa: Preferenze di gemellaggio Terza tappa: Dati della scuola Quarta tappa: Profilo

Dettagli

Appunti di Matematica

Appunti di Matematica Silvio Reato Appunti di Matematica Settembre 200 Le quattro operazioni fondamentali Le quattro operazioni fondamentali Addizione Dati due numeri a e b (detti addendi), si ottiene sempre un termine s detto

Dettagli

GENNAIO 2011. download www.maecla.it. Esperienza didattica nella scuola primaria a cura di Giuseppe Amato ( alias Davide Tamatoni )

GENNAIO 2011. download www.maecla.it. Esperienza didattica nella scuola primaria a cura di Giuseppe Amato ( alias Davide Tamatoni ) Esperienza didattica nella scuola primaria a cura di Giuseppe Amato ( alias Davide Tamatoni ) I NUMERI NEGATIVI Lezione tratta da http://www.maecla.it/bibliotecamatematica/af_file/damore_oliva_numeri/mat_fant_classe4.pdf

Dettagli

Abstract Data Type (ADT)

Abstract Data Type (ADT) Abstract Data Type Pag. 1/10 Abstract Data Type (ADT) Iniziamo la nostra trattazione presentando una nozione che ci accompagnerà lungo l intero corso di Laboratorio Algoritmi e Strutture Dati: il Tipo

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Arcangela Mastromarco

Arcangela Mastromarco Autore: Con la collaborazione di: Arcangela Mastromarco Lidia Scarabelli 1 Unità 1 Questa è la mia famiglia. Io mi chiamo Meijiao. Faccio la IV elementare. La mattina mi alzo alle 7.00, mi vesto e faccio

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

DAL PROBLEMA AL PROGRAMMA

DAL PROBLEMA AL PROGRAMMA 1. I PROBLEMI E LA LORO SOLUZIONE DAL PROBLEMA AL PROGRAMMA L'uomo, per affrontare gli innumerevoli problemi postigli dallo sviluppo della civiltà, si è avvalso della scienza e della tecnica, i cui destini

Dettagli