7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange"

Transcript

1 4 7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange Sia f (,,, n ) una funzione delle n variabili,,, n, supponiamo che esse non siano indipendenti, cioè che siano legate da p < n equazioni: ϕ(,,, n ) ϕ (,,, n ) ϕ p (,,, n ) (7..) Si supponga che f, ϕ, ϕ,, ϕ n siano definite in un campo A dello spazio R n e che, in detto campo, esistano dei punti P(,,, n ) che siano soluzioni del sistema (7..). Questi punti costituiscono un insieme B A. Considerando solo la restrizione della f(,,, n ) all insieme B A, si dice che il punto Q (,,, n ) B è un punto di massimo (minimo) relativo vincolato per la f(,,, n ) se esiste un intorno I di Q B nel quale risulta: f(,,, n ) f(,,, n ) [f(,,, n ) f(,,, n )] per tutti i punti di I appartenenti a B. Se le disuguaglianze valgono per tutti i punti di B, il punto Q si dirà di massimo (minimo) assoluto vincolato. Sussiste il seguente: TEOREMA Siano f, ϕ, ϕ,, ϕ n continue insieme alle loro derivate prime in ogni punto di un campo A, e la matrice jacobiana: ϕ ϕ ϕ n ϕ ϕ ϕ (7..) n ϕp ϕp ϕp n abbia caratteristica p in ogni punto di A. In queste ipotesi se il massimo o il minimo relativo della f(,,, n ) nell insieme B, costituito dai punti soluzioni del sistema, è assunto in un punto Q interno ad A, esistono p costanti,,, p tali che la funzione: f + ϕ, ϕ,, p ϕ p abbia nel punto Q derivate parziali prime tutte nulle. Queste p costanti,,, p vengono fornite, avendo supposto la caratteristica della matrice jacobiana uguale a p in ogni punto di B, dal sistema: f p + ϕ + ϕ ϕ + p f ϕ + + ϕ ϕ p + p f p + ϕ + ϕ ϕ + p n n n n (7..)

2 Questo sistema in p incognite, con il sistema (7..), in n incognite, formano un sistema in n + p incognite che risolve completamente il problema. Se l insieme B è un compatto, per il teorema di Weierstrass, in esso la f(,,, n ) è certamente dotata di massimo e di minimo assoluto Massimi e minimi vincolati di funzioni di due variabili Quanto detto nel paragrafo precedente, per le funzioni di due variabili sottoposte ad un unico vincolo, si traduce in un procedimento di estrema semplicità. L ipotesi è che sia la funzione f(,) che il vincolo ϕ(,), nel comune dominio di esistenza, siano continue e derivabili sino al secondo ordine. Si definisce la seguente funzione detta funzione di Lagrange: L(,,) f(,) + ϕ(,) Il coefficiente è detto moltiplicatore di Lagrange. Nei punti del piano appartenenti al vincolo ϕ(,), la funzione L(,,) coincide con la f(,). Si trasforma così un problema di massimo o di minimo vincolato in due variabili in un problema di massimo o di minimo non vincolato in tre variabili. Della funzione L(,,) si ricercano i punti stazionari risolvendo il sistema: ( )+ ( ) ( )+ ( ) L f, ϕ, L f, ϕ, L ϕ (, ) Per la determinazione della natura dei punti stazionari, si ricorre al determinante hessiano relativo alla L(,,): L,, L,, L,, H(,, L (,, ) L (,, ) L (,, ) L,, L,, L,, ( ) ( ) ( ) ( ) ( ) ( ) e si può dimostrare che se P (,, ) è un punto stazionario per la funzione di Lagrange, allora in tale punto si ha: un minimo vincolato se H(,, ) < ; un massimo vincolato se H(,, ) >. Si osservi solo che le condizioni di massimo e di minimo stabilite dallo studio del segno dell hessiano associato alla L(,,) sono diverse da quelle riferite allo studio del segno dell hessiano associato alla f(,). 7.6 Particolarizzazione del metodo di Lagrange per le funzioni di tre variabili Per le funzioni di tre variabili sottoposte ad un unico vincolo, il procedimento, rispetto a quello esposto nel precedente paragrafo, si presenta appena un po più complesso. Siano, come al solito, la funzione f(,,z) ed il vincolo ϕ(,,z), nel comune dominio di esistenza, continue e derivabili sino al secondo ordine. 7. Massimi e minimi assoluti, relativi, vincolati

3 6 Definita la funzione lagrangiana: L(,,z,) f (,,z) + ϕ(,,z) e detti H (,,z,) e H 4 (,,z,) i seguenti determinanti: L L L L L ϕ H (,, z, L L L L L ϕ L L L ϕ ϕ L L L L z L L Lz L H4 (,, z, Lz Lz Lzz Lz L L L L z L L Lz ϕ L L Lz ϕ Lz Lz Lzz ϕz ϕ ϕ ϕ z si potrebbe dimostrare che, se il punto P (,,z, ) è un punto stazionario per la funzione di Lagrange, la funzione f(,,z), nel punto P (,,z ) ha: un minimo vincolato se H (P ) < e H 4 (P ) < ; un massimo vincolato se H (P ) > e H 4 (P ) <. Ovviamente, la ricerca dei punti stazionari della funzione lagrangiana viene effettuata tramite la risoluzione del sistema: L L Lz L f (,, z)+ ϕ ( z,, ) f (,, z)+ ϕ (,, z) fz (,, z)+ ϕz ( z,, ) ϕ ( z,, ) 7.7 Esercizi su massimi e minimi vincolati di funzioni di due o tre variabili Esercizio n Determinare gli eventuali punti di massimo e di minimo relativo della funzione: z f(,) sottoposta al vincolo lineare: ϕ(,) + Essendo il vincolo lineare, la ricerca dei punti di massimo e di minimo vincolato risulta estremamente semplice. Dall equazione del vincolo si esplicita una variabile in funzione dell altra e, sostituendola nell espressione della funzione data, si ottiene una funzione in una sola variabile. Dunque, se i punti ricercati esistono, vanno individuati tra le soluzioni del sistema: z + + z z

4 A questo punto si deve studiare la funzione ottenuta z , cioè: 7 dz d dz 8< d I risultati dicono che il punto è un punto di massimo relativo per la funzione ottenuta dal sistema. 4 Sostituendo il valore 4 nell espressione del vincolo si ottiene. In conclusione, la funzione data, sotto il vincolo assegnato, presenta nel punto, 4 un massimo relativo vincolato. Esercizio n Determinare gli eventuali punti di massimo e di minimo relativo della funzione: z f(,) + sottoposta al vincolo non lineare rappresentato dalla funzione: ϕ(,) Per la ricerca dei valori massimo e minimo della funzione si consideri il generico piano parallelo al piano coordinato caratterizzato dall equazione z k. Questo piano intercetta sulla superficie della funzione assegnata z + una curva γ che, nel caso in esame è una retta, data dal seguente sistema: z + z k + k L espressione ottenuta rappresenta la proiezione sul piano della suddetta curva γ. Quest ultima, in corrispondenza dei punti di massimo e minimo, è tangente alla curva che rappresenta la funzione sottoposta al vincolo assegnato. Ne segue che anche le proiezioni di γ, + k, sul piano, sono tangenti alla proiezione sul piano della curva che rappresenta la funzione vincolata, la quale coincide con la curva che rappresenta il vincolo. I punti di tangenza sono, pertanto, dati dal seguente sistema: ( ) k + k 4k + k + k Imponendo, poi, la condizione di tangenza (discriminante nullo dell equazione di secondo grado) si ha: k + 8k + k 4 k 4+ Sostituendo i valori di k e k nelle equazioni della funzione e del vincolo, si determinano, così, i punti di massimo e di minimo vincolati. 7. Massimi e minimi assoluti, relativi, vincolati

5 8 Esercizio n Determinare gli eventuali punti di massimo e di minimo della funzione: z f(,) + sottoposta al vincolo non lineare rappresentato dalla funzione: ϕ(,) + 5 Si consideri la funzione di Lagrange associata: ( ) ( )+ ( ) + + ( + 5) L,, f, ϕ, Se ne determinino le derivate parziali prime: ( ) + 5 ϕ, I punti stazionari della L(,,) sono dati dalle soluzioni del sistema: L (,, L (,, L (,, ( + ) e + e e e ± 5 ± ± 4 In definitiva, i punti stazionari della funzione di Lagrange sono: P 5,, P 5 P ;,, ;,, ;,, P 4 Le derivate parziali seconde della funzione L(,,) sono: ed il determinante hessiano vale: L L L (,, (,, (,, (,, ) (,, ) ( + ) (,, L L L L (,, L (,, L (,, ( ) L (,, ) L (,, ) L,, H(,, L (,, ) L (,, ) L (,, ) ( + ) 8 ( + )+ L,, L,, L,, ( ) ( ) ( )

6 Per ogni punto stazionario si ha quindi, per la L(,,): 9 H 5,, 8 < punto di minimo relativo H,, < punto di minimo relativo H 98 > punto di massimo relativo H 98 > punto di massimo relativo In conclusione, può dirsi che la f(,) ha in ciascuno dei punti: ( 5,) e (5,) un minimo vincolato;,, e un massimo vincolato. Esercizio n Determinare i punti di massimo e di minimo assoluto della funzione: z f(,,z) sottoposta al vincolo non lineare rappresentato dalla funzione: ϕ(,) + Si consideri la funzione lagrangiana associata: L(,,) f(,) + ϕ(,) ( + ) se ne determinino le derivate parziali prime: ( ) ϕ, + I punti stazionari sono dati dalle soluzioni del sistema: L (,, L (,, L (,, ( ± e 4 e ± + ± 7. Massimi e minimi assoluti, relativi, vincolati

7 pertanto, i punti critici della L(,,) sono: P,, ; P,, ; P,, ; P Le derivate parziali seconde della funzione L(,,) sono: ( ) (,, ) 4 L,, 6 L,, 8 L (,, L L L (,, L L (,, ( ) + ( ) (,, ) 8 (,, ) 8 + (,, (,, L Il determinante hessiano è espresso da: ( ) L (,, ) L (,, ) L,, H(,, L (,, ) L (,, ) L (,, ) L,, L,, L,, e nei quattro punti critici vale: ( ) ( ) ( ) H 7,, < H,, 9 6 > 8 8 H (,, ) 8 H (,, ) 8 Questi risultati dicono che il punto (,) è un punto di minimo relativo vincolato per la f(,); il punto (,) è un punto di massimo relativo vincolato per la f(,). Per i punti (,) e (, ) nulla può dirsi. Per avere, quindi maggiori informazioni, bisogna approfondire l indagine studiando localmente la funzione sottoposta al vincolo dato, ovverosia bisogna studiare la restrizione della funzione assegnata all insieme di punti costituenti il vincolo. Si ricavi, ad esempio, dall espressione del vincolo e la si sostituisca nell espressione della funzione: si ha: z f(,) + 4( ) 4 dz dz dz 9 ; 8; 8 d d d da cui è facile, invocando le conoscenze sulle funzioni di una variabile reale, riconoscere che il punto: ( ±) per la funzione z(), è un punto di flesso. Quindi, tali sono, pertanto anche, i punti (,) e (, ) per la f(,).

8 Esercizio n Determinare i punti di massimo e di minimo assoluto della funzione: z f(,) sen + sen sotto la condizione: ϕ(,) cos cos + Si consideri la funzione lagrangiana associata: L(,,) f(,) + ϕ(,) sen + sen + (cos cos + ) se ne determinino le derivate parziali prime: cos sen cos sen (, ) c ϕ os cos + I punti stazionari sono dati dalle soluzioni del sistema: L (,, L (,, L (,, cos sen cos + sen cos cos cos sen cos sen cos cos Si osservi che non può essere soluzione del sistema perché ciò implicherebbe, per le prime due equazioni, cos e cos e, di conseguenza, non sarebbe soddisfatta la terza, quindi, cos e cos. Assodato ciò, è lecito proseguire, effettuando i seguenti passaggi: cos sen cos sen cos cos tan tan tan tan ± + tan + tan + + tan tan tan tan tan tan tan e tan ± + π π + nπ + nπ π π + mπ e + mπ con m, n Z 7. Massimi e minimi assoluti, relativi, vincolati

9 Avendo eseguito un elevamento al quadrato, bisogna verificare che effettivamente le soluzioni trovate soddisfino il sistema di partenza. Si trova, così, che solo le terne fornite dal secondo insieme determinato, soddisfacendo la terza equazione cos cos, sono soluzioni del sistema: π + nπ π + m m n Z π con, Le derivate parziali seconde della funzione L(,,) sono: L (,, sen cos L (,, L (,, sen L,, L,, sen + cos L (,, sen ( ) ( ) L (,, sen L,, sen L,, Il determinante hessiano è espresso da: ( ) ( ) ( ) sen cos sen H(,, ( sen + cos ) sen sen ( sen cos )+ sen sen + cos sen sen ( ) e nei punti critici vale: π π H n m + π π +,, > Si può, in forza di questo risultato, concludere che i punti: π π + π π n ; + m per la funzione assegnata, sono dei punti di massimo relativo vincolato. Esercizio n Determinare i punti di massimo e di minimo assoluto della funzione: sotto le condizioni: z f(,) + + z e + z 5 La funzione è definita in tutto lo spazio euclideo, cioè A R. Ha senso, quindi, l imposizione delle condizioni citate. Il vincolo è costituito dall intersezione tra la superficie sferica di centro (,,) e raggio r 5 ed il piano + z, per cui è una circonferenza. Esso è un compatto e, per il teorema di Weierstrass, la funzione è in esso dotata di massimo e di minimo assoluto.

10 Posto: ϕ si consideri la funzione lagrangiana associata: 5, z ϕ e, z ( ) + + ( ) + L,, f, ϕ, ϕ, ( ) ( )+ ( )+ ( ) z z + ( + ) se ne determinino le derivate parziali prime: z z l z + z I punti critici sono dati dalle soluzioni del sistema: + + z z + z z z z z ± ± ± + z si hanno, perciò, per la L(,,z,, ) due punti critici: P P,,,, e,,,, A questo punto, è assolutamente banale stabilire che per la funzione z f(,,z), il punto: avente ascissa è il punto di minimo cercato; avente ascissa è il punto di massimo cercato. Esercizio n Determinare i punti di massimo e di minimo assoluto della funzione: z f(,) e + e sotto la condizione: + La funzione data è definita in tutto il piano cartesiano, cioè A R. Ha senso, quindi, l imposizione della condizione citata. Posto ϕ(,) +, si consideri la funzione lagrangiana associata: L(,,) f(,) + ϕ(,) e + e + ( + ) 7. Massimi e minimi assoluti, relativi, vincolati

11 4 Le derivate parziali prime sono: + + e e + I punti critici della funzione lagrangiana sono dati dalle soluzioni del sistema: e + e + + e e e + + e + e quindi, costituite dall unico punto (,, e). Le derivate parziali seconde sono: Il determinante hessiano è espresso da: L e L L L L e L L L L e H(,, e ( e + e )< Si può, in forza di questo risultato, concludere che il punto (,) è un punto di minimo relativo vincolato. Esercizio n Assegnata la funzione: u f(,,z) + + z se ne determinino i punti di massimo e di minimo relativo sotto la condizione: + + z La funzione f(,,z) è definita in tutto lo spazio euclideo, cioè A R. Ha, quindi, senso l imposizione della assegnata condizione, la quale è costituita dai punti appartenenti alla superficie della sfera avente raggio r e centro nell origine (,,). Posto ϕ(,,z) + + z, si consideri la funzione lagrangiana associata: ( ) ( )+ ( ) ( + + z ) Lz,,, f z,, ϕ z,, z e se ne determinino le derivate parziali prime: z z z ϕ,, + + z ( )

12 I punti stazionari della L(,,z,) sono dati dalle soluzioni del sistema: 5 L (,, z, L (,, z, Lz (,, z, L (,, z, z + + z z 4 z ± costituite dai due punti P,,, e P,,, Le derivate parziali seconde della funzione L(,,) sono: (,,, (,,, z (,,, (,,, (,, z, L ( z,,, Lz ( z,,, L ( z,,, z (,,, z (,,, z z(,,, z (,,, (,, z, L (,, z, L (,, z, z L z,,, L z L z L z L z L L z L z L z L z z L ( ) ed i determinanti H (,,z,) ed H 4 (,,z,) sono espressi, rispettivamente, da: z. L L ϕ H (,, z, L L ϕ ϕ ϕ 8 + ( ) L L L ϕ z L L Lz ϕ H4 (,, z, L L L ϕ z z zz ϕ ϕ ϕ z + + z z z ( ) 6 che, nei punti stazionari P,,, e P,,, 8 H( P) 8 ( + )8 + < H4( P) 6 ( + )< 8 H( P) 8 ( + )8 + > H4( P) 6 ( + )<, valgono: il che permette di concludere che, per la f(,,z), il punto,, è un punto di minimo vincolato, e il punto,,, invece, di massimo vincolato. 7. Massimi e minimi assoluti, relativi, vincolati

13 6 Esercizio n Assegnata la funzione: u f(,,z) ln + ln + zlnz se ne determinino i punti di massimo e di minimo relativo sotto la condizione: + + z 9 Affinché la funzione f(,,z) abbia senso deve verificarsi > ; > ; z >, cioè il campo di definizione è A (,, z) : >, >, z >. Ha, quindi, senso la condizione imposta. { } È facile convincersi che tale vincolo è costituito dai punti appartenenti al triangolo disposto nello spazio ed avente i vertici nei punti A(9,,); B(,9,); C(,,9). Quanto esposto, a maggior chiarimento, è illustrato nella seguente figura. z (,,9) (,9,) (9,,) Posto ϕ(,,z) + + z 9, si consideri la funzione lagrangiana associata: ( ) ( )+ ( ) + + z+ ( + + z 9) Lz,,, f z,, ϕ z,, ln ln zln e se ne determinino le derivate parziali prime: ln ln lnz z ϕ (, z, ) + + z 9 I punti stazionari della L(,,z,) sono dati dalle soluzioni del sistema: L (,, z, ln + + L (,, z, ln + + Lz (,, z, lnz + + L (,, z, + + z 9 costituite dall unico punto P(,,, ln). e e z e e z ln

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

Esercizi su estremi vincolati e assoluti

Esercizi su estremi vincolati e assoluti Esercizi su estremi vincolati e assoluti Esercizio 1. di sul quadrato Determinare i punti di minimo e di massimo (e i relativi valori di minimo e massimo) assoluto f(x, y) = x cos(πy) Q = [0, 1] [0, 1].

Dettagli

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31 Analisi Matematica 2 Ottimizzazione in due variabili Ottimizzazione in due variabili 1 / 31 Ottimizzazione. Figure: Massimi e minimi relativi (o locali), Massimi e minimi assoluti (o globali) Ottimizzazione

Dettagli

FUNZIONI REALI DI DUE VARIABILI REALI

FUNZIONI REALI DI DUE VARIABILI REALI FUNZIONI REALI DI DUE VARIABILI REALI DEFINIZIONE VARIABILI Una funione f, associa ad ogni una coppia ordinata di numeri reali,, appartenente ad un sottoinsieme S del piano, uno e un solo numero reale.

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria Esercitazioni per la preparazione della prova scritta di Matematica Dott Franco Obersnel Lezione 8: estremi vincolati Esercizio 1 Scomporre il numero 411 nella

Dettagli

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2 0.1 FUNZIONI DI DUE VARIABILI REALI Sia A R 2. Una applicazione f : A R si chiama funzione reale di due variabili reali ESEMPI: 1. La funzione affine di due variabili reali: 2. f(x, y) = ax + by + c f(x,

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014 Prove scritte dell esame di Analisi Matematica II a.a. 3/4 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 9 giugno 4. (8 punti) Risolvere il problema

Dettagli

= 2x 2λx = 0 = 2y 2λy = 0

= 2x 2λx = 0 = 2y 2λy = 0 ESERCIZI SULLA OTTIMIZZAZIONE VINCOLATA ESERCIZIO Determinare i punti di massimo e minimo di f x, y = x y soggetta al vincolo x + y = Il vincolo è chiuso e limitato (circonferenza di raggio ) e la funzione

Dettagli

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 7 Problema 1 Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria 001-00 In un piano, riferito a un sistema di assi cartesiani

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Ottimizzazione vincolata

Ottimizzazione vincolata Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Sia f una funzione differenziabile, definita su un aperto A di R N. Se K è un sottoinsieme chiuso e limitato di A, per il teorema di Weierstrass f assume massimo e minimo su

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle: Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 204-205 (dott.ssa Vita Leonessa) Esercizi proposti n. 3: Funzioni a due variabili. Riconoscere

Dettagli

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima)

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima) Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 2013-2014 (dott.ssa Vita Leonessa) Esercizi svolti: Ricerca di massimi e minimi di funzioni a

Dettagli

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 4 giugno 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. 202-203 PROVA SCRITTA DI GEOMETRIA DEL 8-02-3 Compito A Corso del Prof. Manlio BORDONI Esercizio. Sia W il sottospazio vettoriale di R 4 generato dai vettori

Dettagli

COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A

COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A Esercizio 1 Determinare il dominio della seguente funzione: COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D Fila A (a) f (, ln( + 4 Esercizio Calcolare le derivate parziali delle

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame COGNOME NOME Matr. Firma dello studente A Analisi Matematica (Corso di Laurea in Informatica) Simulazione compito Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2 Analisi Matematica II Corso di Ingegneria Gestionale Compito del 15--18 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±.

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±. Esercizi Misti iniziali. Data la funzione se ne studino massimi, minimi, flessi, iti a ±. 2. Provare che Più variabili F x) = 3. Calcolare, se esistono, i seguenti iti a) b) c) d) x,y),) x 2 + y 2 2 x,y),)

Dettagli

12 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

12 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 1 dicembre 005 - Soluzione esame di geometria - Ing. gestionale - a.a. 005-006 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione ESERCIZIO SVOLTO N 1 Determinare e rappresentare graficamente il dominio della funzione f(x, y) = y 2 x 2 Trovare gli eventuali punti stazionari e gli estremi di f Il dominio della funzione è dato da dom

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

Un esempio: Il letto di un fiume è posto lungo la parabola di equazione

Un esempio: Il letto di un fiume è posto lungo la parabola di equazione Massimi e Minimi Vincolati La precedente sezione si è chiusa con due interessanti problemi (facoltativi), riconducibili alla ricerca del minimo assoluto per funzioni definite in tutto riguardanti gli estremi

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Esercizio 8: Siano dati l equazione della parabola e i due punti e.

Esercizio 8: Siano dati l equazione della parabola e i due punti e. Esercizio 8: Siano dati l equazione della parabola e i due punti e. tracciare dal punto A le tangenti r ed s alla parabola ottenendo i punti di contatto P e Q; tracciare dal punto B le tangenti t ed u

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Esame di Analisi Matematica 2 18/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 18/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 2 8/7/203 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 202/203 A Cognome in STAMPATELLO):... Nome in STAMPATELLO):... CFU:... Esercizio. Sia f : R 2 R una funzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva 00 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio f () si divide per si

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 4/7/013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 01/013 A Cognome (in STAMPATELLO):... Nome (in STAMPATELLO):... CFU:... Esercizio 1. Sia f : R R una funzione

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

5 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

5 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 5 febbraio 015 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 014-15 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

ISTITUZIONI DI MATEMATICHE II

ISTITUZIONI DI MATEMATICHE II ISTITUZIONI DI MATEMATIHE II SEONDO ESONERO Esercizio 1. Data la funzione f(x, y) = (x + y )(1 y) i) se ne studi il segno. ii) Si trovino i punti critici di f e se ne studi le natura. iii) Sia D = {(x,

Dettagli

Sezione Quinta Scelta ottima

Sezione Quinta Scelta ottima 4 Capitolo - La teoria del consumo Sezione Quinta Scelta ottima Esercizio n.. Determinare la scelta ottima del consumatore data la funzione di utilità: [.] U dove e sono rispettivamente la quantità del

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Terzo appello 8 Settembre 4 Compito B Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es.:

Dettagli

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono. Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di

Dettagli

,, con 2. S oppure se x

,, con 2. S oppure se x Deinizioni preliminari Alcuni elementi sull ottimizzazione di unzioni in due variabili Si deinisce intorno di raggio centro in r un punto S con e si indica con I r R / S R il cerchio di raggio r e r con

Dettagli

Sia y = f(x) definita in un intervallo I. x 0 è punto di massimo assoluto. x 0 è punto di minimo assoluto. x 0 è punto di massimo relativo o locale se

Sia y = f(x) definita in un intervallo I. x 0 è punto di massimo assoluto. x 0 è punto di minimo assoluto. x 0 è punto di massimo relativo o locale se PUNTI ESTREMANTI E PUNTI STAZIONARI. MASSIMI E MINIMI ASSOLUTI E RELATIVI. TEOREMI DI FERMAT, ROLLE E LAGRANGE. CONDIZIONI NECESSARIE E SUFFICIENTI PER MASSIMI E MINIMI RELATIVI. PROBLEMI DI MASSIMO E

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

g(x, y) = b y = h 1 (x), x I 1 oppure x = h 2 (y), y I 2 riconducendosi alla ricerca degli estremanti di una funzione in una sola variabile:

g(x, y) = b y = h 1 (x), x I 1 oppure x = h 2 (y), y I 2 riconducendosi alla ricerca degli estremanti di una funzione in una sola variabile: Estremi vincolati Un problema di ottimizzazione vincolata consiste nella ricerca degli estremanti di una funzione in presenza di un vincolo, cioè limitatamente ad un certo sottoinsieme del dominio di f:

Dettagli

15 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

15 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente Esercizi su Funzioni di più variabili. - Parte II Derivate parziali, derivate direzionali, piano tangente 1. Data la funzione f(x, y, z) = e x2 y 3 sin(x + z) calcolarne il gradiente e la derivata direzionale

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (0/09/200) Università di Verona - Laurea in Biotecnologie - A.A. 2009/0 Matematica e Statistica Prova d Esame di MATEMATICA (0/09/200) Università di Verona - Laurea

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo.

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo http://www.dimi.uniud.it/biomat/ Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 19.9.2016 Si svolgano i seguenti esercizi facendo attenzione a giustificare

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (26/06/203) Università di Verona - Laurea in Biotecnologie - A.A. 202/3 Matematica e Statistica Prova di MATEMATICA (26/06/203) Università di Verona - Laurea in Biotecnologie

Dettagli

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Problemi Problema 1) Indichiamo con x > 0 il numero di minuti di conversazione effettuati in un mese. 1) Le espressioni cercate per f(x) e g(x) sono

Problemi Problema 1) Indichiamo con x > 0 il numero di minuti di conversazione effettuati in un mese. 1) Le espressioni cercate per f(x) e g(x) sono Problemi Problema 1) Indichiamo con > 0 il numero di minuti di conversazione effettuati in un mese. 1) Le espressioni cercate per f() e g() sono f() = +, f() g() = = + 1. Poiché g () = < 0, otteniamo che

Dettagli

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Facsimile di prova d esame Esempio di svolgimento

Facsimile di prova d esame Esempio di svolgimento Geometria analitica 18 marzo 009 Facsimile di prova d esame Esempio di svolgimento 1 Nello spazio, riferito a coordinate cartesiane ortogonali e monometriche x,y,z, è assegnata la retta r di equazioni

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 2 settembre 2008 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 2 settembre 2008 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti 2 settembre 28 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

L algebra lineare nello studio delle coniche

L algebra lineare nello studio delle coniche L algebra lineare nello studio delle coniche È possibile utilizzare le tecniche dell algebra lineare per studiare e classificare le coniche. Data l equazione generale di una conica, si considera la sua

Dettagli

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 a.a 2005/06 Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 Funzioni di due variabili a cura di Roberto Pagliarini Vediamo prima di tutto degli esercizi sugli insiemi

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Analisi II, a.a Soluzioni 3

Analisi II, a.a Soluzioni 3 Analisi II, a.a. 2017-2018 Soluzioni 3 1) Consideriamo la funzione F : R 2 R 2 definita come F (x, y) = (x 2 + y 2, x 2 y 2 ). (i) Calcolare la matrice Jacobiana DF e determinare in quali punti F è localmente

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m =

y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m = DERIVATA DI UNA FUNZIONE IN UN PUNTO SIGNIFICATO GEOMETRICO. EQUAZIONE DELLA RETTA TANGENTE AL GRAFICO NEL PUNTO DI TANGENZA. REGOLE DI DERIVAZIONE. CONTINUITA E DERIVABILITA PUNTI DI NON DERIVABILITA

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (05/09/202) Università di Verona - Laurea in Biotecnologie - A.A. 20/2 Matematica e Statistica Prova di MATEMATICA (05/09/202) Università di Verona - Laurea in Biotecnologie

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei problemi Il dominio della generica funzione è:! a a) Scriviamo l espressione della funzione in forma di equazione raccogliendo separatamente i termini contenenti il parametro a e quelli

Dettagli

Derivate delle funzioni di una variabile.

Derivate delle funzioni di una variabile. Derivate delle funzioni di una variabile. Il concetto di derivata di una funzione di una variabile è uno dei più fecondi della matematica ed è quello su cui si basa il calcolo differenziale. I problemi

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (3/09/011) Università di Verona - Laurea in Biotecnologie - A.A. 010/11 1 Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O, P-Z)

Dettagli

17 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

17 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 20/07/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del 30-0-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. 9- Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. 9/ Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Funzioni a più variabili Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche. () Funzioni

Dettagli