COMUNE DI FALERNA Provincia di Catanzaro

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COMUNE DI FALERNA Provincia di Catanzaro"

Transcript

1 COMUNE DI FALERNA Provincia di Catanzaro Progetti Integrati di Sviluppo Locale del POR Calabria FERS Provincia di Catanzaro-PISL "Pisl Costa degli Ulivi". Tipologia : Sistemi Turistici. "Riqualificazione e valorizzazione del Water-Front di Falerna Marina " PROGETTO ESECUTIVO PROGETTISTI E DIR.LAVORI ARCH. EMILIO BARLETTA ELABORATO REV- 00 Relazione di calcolo soletta tratto 5-9 TAV N 7 SCALA Giugno 013

2 RELAZIONE DI CALCOLO MURO ESISTENTE Normative di riferimento: NTC008 - Norme tecniche per le costruzioni - D.M. 14 Gennaio 008. CIRCOLARE febbraio 009, n Istruzioni per l'applicazione delle 'Nuove norme tecniche per le costruzioni' di cui al decreto ministeriale 14 gennaio 008. (GU n. 47 del Suppl. Ordinario n.7). Calcolo della spinta attiva con Coulomb

3 Il calcolo della spinta attiva con il metodo di Coulomb è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura nell'ipotesi di parete ruvida. Per terreno omogeneo ed asciutto il diagramma delle pressioni si presenta lineare con distribuzione: La spinta St è applicata ad 1/3 H di valore P t = K a γ t z St = 1 γ t H K a Avendo indicato con: K a sen ( β φ) = sin( δ + φ) sin( φ ε) sen β sen(β + δ) 1 + sen( β + δ) sen( β ε) Valori limite di K A : δ < (β φ ε) secondo Muller-Breslau γ t Peso unità di volume del terreno; β Inclinazione della parete interna rispetto al piano orizzontale passante per il piede; φ Angolo di resistenza al taglio del terreno; δ Angolo di attrito terra-muro; ε Inclinazione del piano campagna rispetto al piano orizzontale, positiva se antioraria; H Altezza della parete. Calcolo della spinta attiva con Rankine Se ε = δ = 0 e β = 90 (muro con parete verticale liscia e terrapieno con superficie orizzontale) la spinta St si semplifica nella forma: S t = γ H ( 1 sin φ) ( 1+ sin φ) = γ H φ tan 45 che coincide con l equazione di Rankine per il calcolo della spinta attiva del terreno con terrapieno orizzontale. In effetti Rankine adottò essenzialmente le stesse ipotesi fatte da Coulomb, ad eccezione del fatto che trascurò l attrito terra-muro e la presenza di coesione. Nella sua formulazione generale l espressione di Ka di Rankine si presenta come segue: cos ε Ka = cos ε cos ε + cos cos ε cos ε cos φ φ Calcolo della spinta attiva con Mononobe & Okabe Il calcolo della spinta attiva con il metodo di Mononobe & Okabe riguarda la valutazione della spinta in condizioni sismiche con il metodo pseudo-statico. Esso è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura in una configurazione fittizia di calcolo nella quale l angolo ε, di inclinazione del piano campagna rispetto al piano orizzontale, e l angolo β, di inclinazione della parete interna rispetto al piano orizzontale passante per il piede, vengono aumentati di una quantità θ tale che: tg θ = k h /(1±k v ) 3

4 con k h coefficiente sismico orizzontale e k v verticale. Calcolo coefficienti sismici Le NTC 008 calcolano i coefficienti Kh e Kv in dipendenza di vari fattori: K h = β m (a max /g) K v =±0,5 Kh β m coefficiente di riduzione dell accelerazione massima attesa al sito; per i muri che non siano in grado di subire spostamenti relativi rispetto al terreno il coefficiente β m assume valore unitario. Per i muri liberi di traslare o ruotare intorno al piede, si può assumere che l incremento di spinta dovuto al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si assume che tale incremento sia applicato a metà altezza del muro. a max accelerazione orizzontale massima attesa al sito; g accelerazione di gravità. Tutti i fattori presenti nelle precedenti formule dipendono dall accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio. a max = S a g = S S S T a g S coefficiente comprendente l effetto di amplificazione stratigrafica Ss e di amplificazione topografica S T. a g accelerazione orizzontale massima attesa su sito di riferimento rigido. Questi valori sono calcolati come funzione del punto in cui si trova il sito oggetto di analisi. Il parametro di entrata per il calcolo è il tempo di ritorno dell evento sismico che è valutato come segue: T R =-V R /ln(1-pvr) Con V R vita di riferimento della costruzione e PVR probabilità di superamento, nella vita di riferimento, associata allo stato limite considerato. La vita di riferimento dipende dalla vita nominale della costruzione e dalla classe d uso della costruzione (in linea con quanto previsto al punto.4.3 delle NTC). In ogni caso V R dovrà essere maggiore o uguale a 35 anni. OPCM 374 I coefficienti sismici orizzontale K h e verticale K v che interessano tutte le masse vengono calcolatati come: k h = S (a g /g)/r k v = 0,5 k h in cui S(a g /g) rappresenta il valore dell accelerazione sismica massima del terreno per le varie categorie di profilo stratigrafico. Suolo di tipo A - S=1; Suolo di tipo B - S=1.5; Suolo di tipo C - S=1.5; Suolo di tipo E - S=1.5; Suolo di tipo D - S=1.35. Al fattore r viene può essere assegnato il valore r = nel caso di opere sufficientemente flessibili (muri liberi a gravità), mentre in tutti gli altri casi viene posto pari a 1 (muri in c.a. resistenti a flessione, muri in c.a. su pali o tirantati, muri di cantinato). D.M. 88 L'applicazione del D.M. 88 e successive modifiche ed integrazioni è consentito mediante l'inserimento del coefficiente sismico orizzontale K h in funzione delle Categorie Sismiche secondo il seguente schema: I Cat. Kh=0.1; II Cat. Kh=0.07; III Cat. Kh=0.04; Eurocodice 8 Per l'applicazione dell'eurocodice 8 (progettazione geotecnica in campo sismico) il coefficiente sismico orizzontale viene così definito: K h = a gr γ I S / (g) a gr : accelerazione di picco di riferimento su suolo rigido affiorante, γ I : fattore di importanza, 4

5 S: soil factor e dipende dal tipo di terreno (da A ad E). a g = a gr γ I è la design ground acceleration on type A ground. Il coefficiente sismico verticale K v è definito in funzione di K h, e vale: K v = ± 0.5 K h Effetto dovuto alla coesione La coesione induce delle pressioni negative costanti pari a: P = c c K a Non essendo possibile stabilire a priori quale sia il decremento indotto nella spinta per effetto della coesione, è stata calcolata un altezza critica Z c come segue: Zc c = γ 1 K A senβ Q sen( β + ε) γ dove Q = Carico agente sul terrapieno; Se Z c <0 è possibile sovrapporre direttamente gli effetti, con decremento pari a: con punto di applicazione pari a H/; S c = P c H Carico uniforme sul terrapieno Un carico Q, uniformemente distribuito sul piano campagna induce delle pressioni costanti pari a: Per integrazione, una spinta pari a S q : P q = K A Q senβ/sen(β+ε) S q = K a senβ Q H sen ( β + ε) Con punto di applicazione ad H/, avendo indicato con K a il coefficiente di spinta attiva secondo Muller-Breslau. Spinta attiva in condizioni sismiche In presenza di sisma la forza di calcolo esercitata dal terrapieno sul muro è data da: dove: H altezza muro k v coefficiente sismico verticale 1 E d = γ + γ peso per unità di volume del terreno K coefficienti di spinta attiva totale (statico + dinamico) E ws spinta idrostatica dell acqua E wd spinta idrodinamica. ( 1± k v ) KH + Ews Ewd 5

6 Per terreni impermeabili la spinta idrodinamica E wd = 0, ma viene effettuata una correzione sulla valutazione dell angolo θ della formula di Mononobe & Okabe così come di seguito: tgϑ = γ γsat γ sat Nei terreni ad elevata permeabilità in condizioni dinamiche continua a valere la correzione di cui sopra, ma la spinta idrodinamica assume la seguente espressione: E wd = 7 1 k w h γ kh 1m k Con H altezza del livello di falda misurato a partire dalla base del muro. w H' v Spinta idrostatica La falda con superficie distante H w dalla base del muro induce delle pressioni idrostatiche normali alla parete che, alla profondità z, sono espresse come segue: P w (z) = γ w z Con risultante pari a: S w = 1/ γ w H² La spinta del terreno immerso si ottiene sostituendo γ t con γ' t (γ' t = γ saturo - γ w ), peso efficace del materiale immerso in acqua. Resistenza passiva Per terreno omogeneo il diagramma delle pressioni risulta lineare del tipo: per integrazione si ottiene la spinta passiva: P t = K p γ t z Sp 1 = γ t H K p Avendo indicato con: K p sen ( φ + β) = sin( δ + φ) sin( φ + ε) sen β sen( β δ) 1 sen ( β δ) sen ( β ε) (Muller-Breslau) con valori limiti di δ pari a: δ< β φ ε L'espressione di K p secondo la formulazione di Rankine assume la seguente forma: cos ε + Kp = cos ε cos cos ε cos ε cos φ φ 6

7 Carico limite di fondazioni superficiali su terreni Vesic Affinché la fondazione di un muro possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale deve essere soddisfatta la seguente disuguaglianza: Vd Rd Dove Vd è il carico di progetto, normale alla base della fondazione, comprendente anche il peso del muro; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell effetto di carichi inclinati o eccentrici. Nella valutazione analitica del carico limite di progetto Rd si devono considerare le situazioni a breve e a lungo termine nei terreni a grana fine. Il carico limite di progetto in condizioni non drenate si calcola come: R/A = ( + π) c u s c i c +q Dove: A = B L area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l area ridotta al cui centro viene applicata la risultante del carico. c u coesione non drenata q pressione litostatica totale sul piano di posa s c Fattore di forma s c = 0, (B /L ) per fondazioni rettangolari i c Fattore correttivo per l inclinazione del carico dovuta ad un carico H. i c H = 1 A c N f a c A f area efficace della fondazione c a aderenza alla base, pari alla coesione o ad una sua frazione. Per le condizioni drenate il carico limite di progetto è calcolato come segue. R/A = c N c s c i c + q N q s q i q + 0,5 γ B N γ s γ i γ Dove: Fattori di forma s q ( B' ) tan φ' = 1+ per forma rettangolare L' ( L' ) s γ = 1 0,4 B'/ s c N N N per forma rettangolare q c γ = e = = π tan φ' φ tan 45 + ( N q 1) cot φ' ( N + 1) tan φ' Nq B' = 1+ per forma rettangolare, quadrata o circolare. N L' c Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a B q 7

8 i q H = 1 V + Af ca H i 1 V A c cot ' γ = + f a φ 1 iq ic = iq N 1 q + B' m = L' 1+ B' L' cot ' φ Sollecitazioni muro Per il calcolo delle sollecitazioni il muro è stato discretizzato in n-tratti in funzione delle sezioni significative e per ogni tratto sono state calcolate le spinte del terreno (valutate secondo un piano di rottura passante per il paramento lato monte), le risultanti delle forze orizzontali e verticali e le forze inerziali. m m+ 1 Calcolo delle spinte per le verifiche globali Le spinte sono state valutate ipotizzando un piano di rottura passante per l'estradosso della mensola di fondazione lato monte, tale piano è stato discretizzato in n-tratti. Convenzione segni Forze verticali Forze orizzontali Coppie Angoli positive se dirette dall'alto verso il basso; positive se dirette da monte verso valle; positive se antiorarie; positivi se antiorari. Dati generali Data 15/09/01 Condizioni ambientali Aggressive Lat./Long. [WGS84] 38,975414/16, Normativa GEO NTC 008 Normativa STR NTC 008 Spinta Mononobe e Okabe [M.O. 199] Dati generali muro Altezza muro 00,0 cm Spessore testa muro 50,0 cm Risega muro lato valle 30,0 cm Risega muro lato monte 0,0 cm Sporgenza mensola a valle 50,0 cm Sporgenza mensola a monte 40,0 cm Svaso mensola a valle 0,0 cm Svaso mensola a valle 0,0 cm Altezza estremità mensola a valle 60,0 cm Altezza estremità mensola a monte 60,0 cm Coefficienti sismici [N.T.C.] ======================================================================== Dati generali Tipo opera: - Opere ordinarie Classe d'uso: Classe II Vita nominale: 50,0 [anni] 8

9 Vita di riferimento: Parametri sismici su sito di riferimento Categoria sottosuolo: Categoria topografica: 50,0 [anni] C T1 S.L. Stato limite TR Tempo ritorno [anni] ag [m/s²] F0 [-] TC* [sec] S.L.O. 30,0 0,61,34 0,9 S.L.D. 50,0 0,79,3 0,31 S.L.V. 475,0,7,44 0,38 S.L.C. 975,0 3,0,46 0,4 Coefficienti sismici orizzontali e verticali Opera: Opere di sostegno S.L. Stato limite amax [m/s²] beta [-] kh [-] kv [sec] S.L.O. 0,915 0,18 0,0168 0,0084 S.L.D. 1,185 0,18 0,018 0,0109 S.L.V. 3,0897 0,31 0,0977 0,0488 S.L.C. 3,761 0,31 0,1189 0,0595 Conglomerati Nr. CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI Classe Calcestruzzo fck,cubi [Kg/cm] Ec [Kg/cm] fck [Kg/cm] fcd [Kg/cm] fctd [Kg/cm] 1 C0/ , ,5 10,5,5 C5/ , ,4 1,1 6,1 3 C8/ , ,7 13,1 8,1 4 C40/ , , 15, 3,6 5 muro in pietra fctm [Kg/cm] Acciai: Nr. Classe acciaio Es [Kg/cm] 1 B450C ,9 7 B450C* ,9 7 3 B450C** ,9 7 4 S35H ,9 7 5 S75H ,9 7 6 S355H ,9 7 fyk [Kg/cm] fyd [Kg/cm] ftk [Kg/cm] ftd [Kg/cm] ep_tk epd_ult ß1*ß iniziale ß1*ß finale 4588,7 3990,1 5506,4 3990, ,5 4588,7 3990,1 5506,4 4588, ,5 4588,7 3990,1 4673,3 4063, ,5 447,3 18,1 3670,9 18,1 0,01 0,01 1 0,5 855, , ,01 0,01 1 0,5 3670,9 3191,7 500,5 3670,9 0,01 0,01 1 0,5 Materiali impiegati realizzazione muro C0/5 B450C Copriferro, Elevazione Copriferro, Fondazione Copriferro, Dente di fondazione 3,0 cm 3,0 cm 3,0 cm Stratigrafia DH Passo minimo Eps Inclinazione dello strato. 9

10 Gamma Peso unità di volume Fi Angolo di resistenza a taglio c Coesione Delta Angolo di attrito terra muro P.F. Presenza di falda (Si/No) Ns DH (cm) Eps ( ) Gamma (Kg/m³) Fi ( ) c (Kg/cm²) Delta ( ) P.F. Litologia Descrizione ,88 6 0,00 4 No sabbia Carichi concentrati Descrizione Posizione x (cm) Posizione y (cm) Fx (kg/m) Fy (kg/m) Mz (kgm/m) scarico puntone 70,0 110,0 0,0 3000,0 0,0 Carichi distribuiti Descrizione Ascissa iniziale (cm) Ascissa finale (cm) Valore iniziale (Kg/cm²) Valore finale (Kg/cm²) Profondità (cm) peso prop. mensola 50,0 110,0 0,15 0,15 0,0 e zavorra peso accidentale 50,0 110,0 0,05 0,05 0,0 FATTORI DI COMBINAZIONE A1+M1+R1 Nr. Azioni Fattore combinazione 1 Peso muro 1,30 Spinta terreno 1,00 3 Peso terreno mensola 1,30 4 Spinta falda 1,00 5 Spinta sismica in x 1,00 6 Spinta sismica in y 1,00 7 peso prop. mensola e zavorra 1,00 8 peso accidentale 1,00 9 scarico puntone 1,00 Nr. Parametro Coefficienti parziali 1 Tangente angolo res. taglio 1 Coesione efficace 1 3 Resistenza non drenata 1 4 Peso unità volume 1 Nr. Verifica Coefficienti resistenze 1 Carico limite 1 Scorrimento 1 3 Partecipazione spinta passiva 1 A+M+R Nr. Azioni Fattore combinazione 1 Peso muro 1,00 Spinta terreno 1,00 3 Peso terreno mensola 1,00 4 Spinta falda 1,00 5 Spinta sismica in x 1,00 6 Spinta sismica in y 1,00 7 peso prop. mensola e zavorra 1,00 8 peso accidentale 1,00 9 scarico puntone 1,00 Nr. Parametro Coefficienti parziali 10

11 1 Tangente angolo res. taglio 1,5 Coesione efficace 1,5 3 Resistenza non drenata 1,4 4 Peso unità volume 1 Nr. Verifica Coefficienti resistenze 1 Carico limite 1 Scorrimento 1 3 Partecipazione spinta passiva 1 EQU+M Nr. Azioni Fattore combinazione 1 Peso muro 0,90 Spinta terreno 1,10 3 Peso terreno mensola 1,00 4 Spinta falda 1,00 5 Spinta sismica in x 1,50 6 Spinta sismica in y 0,00 7 peso prop. mensola e zavorra 1,00 8 peso accidentale 1,00 9 scarico puntone 1,00 Nr. Parametro Coefficienti parziali 1 Tangente angolo res. taglio 1,5 Coesione efficace 1,4 3 Resistenza non drenata 1 4 Peso unità volume 1 Nr. Verifica Coefficienti resistenze 1 Carico limite 1 Scorrimento 1 3 Partecipazione spinta passiva 1 Coefficiente sismico orizzontale Kh 0,0168 Coefficiente sismico verticale Kv 0,0084 CALCOLO SPINTE Discretizzazione terreno A1+M1+R1 [GEO+STR] Qi Quota iniziale strato (cm); Qf Quota finale strato Gamma Peso unità di volume (Kg/m³); Eps Inclinazione dello strato. ( ); Fi Angolo di resistenza a taglio ( ); Delta Angolo attrito terra muro; c Coesione (Kg/cm²); ß Angolo perpendicolare al paramento lato monte ( ); Note Nelle note viene riportata la presenza della falda Qi Qf Gamma Eps Fi Delta c ß Note 60,0 0,0 1855,88 0,0 6,0 4,0 0,0 0,0 0,0 180,0 1855,88 0,0 6,0 4,0 0,0 0,0 180,0 140,0 1855,88 0,0 6,0 4,0 0,0 0,0 140,0 110,0 1855,88 0,0 6,0 4,0 0,0 0,0 110,0 100,0 1855,88 0,0 6,0 4,0 0,0 0,0 100,0 60,0 1855,88 0,0 6,0 4,0 0,0 0,0 11

12 Coefficienti di spinta ed inclinazioni µ Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Kd Coefficiente di spinta dinamica. Dk Coefficiente di incremento dinamico. Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva. Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico. µ Ka Kd Dk Kax Kay Dkx Dky 4,0 0,34 0,35 0,0 0,31 0,14 0,01 0,01 4,0 0,34 0,35 0,0 0,31 0,14 0,01 0,01 4,0 0,34 0,35 0,0 0,31 0,14 0,01 0,01 4,0 0,34 0,35 0,0 0,31 0,14 0,01 0,01 4,0 0,34 0,35 0,0 0,31 0,14 0,01 0,01 4,0 0,34 0,35 0,0 0,31 0,14 0,01 0,01 Spinte risultanti e punto di applicazione Qi Quota inizio strato. Qf Quota inizio strato. Rpx, Rpy Componenti della spinta nella zona j-esima (kg); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm); Qi Qf Rpx Rpy z(rpx) z(rpy) 1 60,0 0,0 36,3 145,5 39,09 39,09 0,0 180,0 415,13 184,83 199,9 199, ,0 140,0 504,03 4,41 159,41 159, ,0 110,0 436,37 194,8 14,71 14, ,0 100,0 156,57 69,71 104,97 104, ,0 60,0 681,83 303,57 79,57 79,57 CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a) Py Px Xp, Yp Peso del muro (kg); Forza inerziale (kg); Coordinate baricentro dei pesi (cm); Quota Px Py Xp Yp 0,0 11,58 689,0 103,5 39,6 180,0 4, ,0 101,9 18,6 140,0 38,66 301,0 100,3 196,9 110,0 50,18 986,75 99,0 180,4 100,0 54,16 34,0 98,6 174,8 60,0 70,98 45,0 96,9 15,3 Sollecitazioni sul muro Quota Fx Fy M H Origine ordinata minima del muro (cm). Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Altezza sezione di calcolo (cm); Quota Fx Fy M H 1

13 0,0 337,81 834,5 13,55 56,0 180,0 765,8 1786,08 14,09 6,0 140,0 184,05 855,49 416,01 68,0 110,0 1731, ,5 738,88 7,5 100,0 189,49 704, ,49 74,0 60,0 591, ,05 131,8 80,0 Armature - Verifiche sezioni (S.L.U.) Afv Area dei ferri lato valle. Afm Area dei ferri lato monte. Nu Sforzo normale ultimo (kg); Mu Momento flettente ultimo (kgm); Vcd Resistenza a taglio conglomerato Vcd (kg); Vwd Resistenza a taglio piegati (kg); Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1). Vsdu Taglio di calcolo (kg); Afv Afm Nu Mu Ver. Vcd Vwd Sic. VT 5Ø1 (5,65) 10Ø1 (11,31) 834,3 373,97 S 17015,05 0,0 50,37 6Ø1 (6,79) 11Ø1 (1,44) 1781,5 8793,09 S 18379,61 0,0 4,0 7Ø1 (7,9) 13Ø1 (14,7) 845, ,4 S 0056,05 0,0 15,6 7Ø1 (7,9) 13Ø1 (14,7) 3737,3 4073,4 S 075,06 0,0 11,97 7Ø1 (7,9) 14Ø1 (15,83) 7039, ,14 S 1468,07 0,0 11,34 8Ø1 (9,05) 15Ø1 (16,96) 834, ,3 S 868,71 0,0 8,83 Piano di rottura passante per (xr1,yr1) = (170,0/0,0) Piano di rottura passante per (xr,yr) = (170,0/60,0) Centro di rotazione (xro,yro) = (0,0/0,0) Discretizzazione terreno VERIFICHE GLOBALI Qi Quota iniziale strato (cm); Qf Quota finale strato Gamma Peso unità di volume (Kg/m³); Eps Inclinazione dello strato. ( ); Fi Angolo di resistenza a taglio ( ); Delta Angolo attrito terra muro; c Coesione (Kg/cm²); ß Angolo perpendicolare al paramento lato monte ( ); Note Nelle note viene riportata la presenza della falda Qi Qf Gamma Eps Fi Delta c ß Note 60,0 0,0 1855,88 0,0 6,0 6,0 0,0 0,0 0,0 180,0 1855,88 0,0 6,0 6,0 0,0 0,0 180,0 140,0 1855,88 0,0 6,0 6,0 0,0 0,0 140,0 100,0 1855,88 0,0 6,0 6,0 0,0 0,0 100,0 60,0 1855,88 0,0 6,0 6,0 0,0 0,0 60,0 0,0 1855,88 0,0 6,0 4,0 0,0 0,0 Coefficienti di spinta ed inclinazioni µ Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Kd Coefficiente di spinta dinamica. Dk Coefficiente di incremento dinamico. 13

14 Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva. Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico. µ Ka Kd Dk Kax Kay Dkx Dky 6,0 0,34 0,35 0,0 0,31 0,15 0,01 0,01 6,0 0,34 0,35 0,0 0,31 0,15 0,01 0,01 6,0 0,34 0,35 0,0 0,31 0,15 0,01 0,01 6,0 0,34 0,35 0,0 0,31 0,15 0,01 0,01 6,0 0,34 0,35 0,0 0,31 0,15 0,01 0,01 4,0 0,34 0,35 0,0 0,31 0,14 0,01 0,01 Spinte risultanti e punto di applicazione Qi Quota inizio strato. Qf Quota inizio strato. Rpx, Rpy Componenti della spinta nella zona j-esima (kg); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm); Qi Qf Rpx Rpy z(rpx) z(rpy) 1 60,0 0,0 37,7 159,36 39,11 39,11 0,0 180,0 414,6 01,96 199,3 199, ,0 140,0 501,97 44,57 159,4 159, ,0 100,0 589,3 87,17 119,51 119, ,0 60,0 676,67 39,77 79,57 79, ,0 0,0 1186,89 557,58 9,16 9, Discretizzazione terreno SPINTE IN FONDAZIONE Qi Quota iniziale strato (cm); Qf Quota finale strato Gamma Peso unità di volume (Kg/m³); Eps Inclinazione dello strato. ( ); Fi Angolo di resistenza a taglio ( ); Delta Angolo attrito terra muro; c Coesione (Kg/cm²); ß Angolo perpendicolare al paramento lato monte ( ); Note Nelle note viene riportata la presenza della falda Qi Qf Gamma Eps Fi Delta c ß Note 60,0 0,0 1855,88 180,0 6,0 4,0 0,0 180,0 Coefficienti di spinta ed inclinazioni µ Angolo di direzione della spinta. Kp Coefficiente di resistenza passiva. Kpx, Kpy Componenti secondo x e y del coefficiente di resistenza passiva. µ Kp Kpx Kpy 04,0 0,76-0,69-0,31 Spinte risultanti e punto di applicazione Qi Quota inizio strato. Qf Quota inizio strato. Rpx, Rpy Componenti della spinta nella zona j-esima (kg); 14

15 Z(Rpx) Z(Rpy) Ordinata punto di applicazione risultante spinta (cm); Ordinata punto di applicazione risultante spinta (cm); Qi Qf Rpx Rpy z(rpx) z(rpy) 1 60,0 0,0-31,9-103, 0,0 0,0 Sollecitazioni total i Fx Fy M Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Fx Fy M Spinta terreno 3696, ,41 971,15 Carichi esterni 0,0 3000,0-100,0 Peso muro 70,98 45,0-3985,9 Peso fondazione 55, ,0-801,04 Sovraccarico 13,44 800,0-1165,06 Terr. fondazione 4, ,1-855,7 Spinte fondazione -31,9-103, -46,38 369, , ,5 Momento stabilizzante ,65 kgm Momento ribaltante 4151,13 kgm Verifica alla traslazione Sommatoria forze orizzontali 3861,78 kg Sommatoria forze verticali 15050,53 kg Coefficiente di attrito 0,49 Adesione 0,0 Kg/cm² Angolo piano di scorrimento -360,0 Forze normali al piano di scorrimento 15050,53 kg Forze parall. al piano di scorrimento 3861,78 kg Resistenza terreno 757,53 kg Coeff. sicurezza traslazione Csd 1,96 Traslazione verificata Csd>1 Verifica al ribaltamento Momento stabilizzante ,65 kgm Momento ribaltante 4151,13 kgm Coeff. sicurezza ribaltamento Csv 3,89 Muro verificato a ribaltamento Csv>1 Carico limite - Metodo di Vesic (1973) Somma forze in direzione x 369,88 kg Somma forze in direzione y (Fy) 14947,33 kg Somma momenti -1198,5 kgm Larghezza fondazione 170,0 cm Lunghezza 100,0 cm Eccentricità su B 4,84 cm Peso unità di volume 1855,88 Kg/m³ Angolo di resistenza al taglio 6,0 Coesione 0,0 Kg/cm² Terreno sulla fondazione 60,0 cm 15

16 Peso terreno sul piano di posa 1855,88 Kg/m³ Nq 11,85 Nc,5 Ng 1,54 Fattori di forma sq 1,3 sc 1,33 sg 0,75 Inclinazione carichi iq 0,68 ic 0,65 ig 0,5 Inclinazione valle gq 1,0 gc 0,0 gg 1,0 Carico limite verticale (Qlim) 30345,16 kg Fattore sicurezza (Csq=Qlim/Fy),03 Carico limite verificato Csq>1 Tensioni sul terreno Ascissa centro sollecitazione 80,16 cm Larghezza della fondazione 170,0 cm x = 0,0 cm Tensione... 1,03 Kg/cm² x = 170,0 cm Tensione... 0,73 Kg/cm² MENSOLA A VALLE Xprogr. Fx Fy M H Ascissa progressiva (cm); Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Altezza sezione (cm); Xprogr. Fx Fy M H 50,0-31,9-4054, -1035,86 60,0 Armature - Verifiche sezioni (S.L.U.) Afi Area dei ferri inferiori. Afs Area dei ferri superiori. Nu Sforzo normale ultimo (kg); Mu Momento flettente ultimo (kgm); Vcd Resistenza a taglio conglomerato Vcd (kg); Vwd Resistenza a taglio piegati (kg); Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1). Vsdu Taglio di calcolo (kg); Afi Afs Nu Mu Ver. Vcd Vwd Sic. VT 11Ø1 (1,44) 6Ø1 (6,79), ,99 S 1797,31 0,0 4,4 MENSOLA A MONTE Xprogr. Ascissa progressiva (cm); 16

17 Fx Fy M H Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Altezza sezione (cm); Xprogr. Fx Fy M H 130,0 1186, ,1-73,68 60,0 Armature - Verifiche sezioni (S.L.U.) Afi Area dei ferri inferiori. Afs Area dei ferri superiori. Nu Sforzo normale ultimo (kg); Mu Momento flettente ultimo (kgm); Vcd Resistenza a taglio conglomerato Vcd (kg); Vwd Resistenza a taglio piegati (kg); Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1). Vsdu Taglio di calcolo (kg); Afi Afs Nu Mu Ver. Vcd Vwd Sic. VT 6Ø1 (6,79) 11Ø1 (1,44) 1185,6 76,56 S 1797,31 0,0 10,03 Coefficiente sismico orizzontale Kh 0,0168 Coefficiente sismico verticale Kv 0,0084 CALCOLO SPINTE Discretizzazione terreno A+M+R [STR] Qi Quota iniziale strato (cm); Qf Quota finale strato Gamma Peso unità di volume (Kg/m³); Eps Inclinazione dello strato. ( ); Fi Angolo di resistenza a taglio ( ); Delta Angolo attrito terra muro; c Coesione (Kg/cm²); ß Angolo perpendicolare al paramento lato monte ( ); Note Nelle note viene riportata la presenza della falda Qi Qf Gamma Eps Fi Delta c ß Note 60,0 0,0 1855,88 0,0 1,3 4,0 0,0 0,0 0,0 180,0 1855,88 0,0 1,3 4,0 0,0 0,0 180,0 140,0 1855,88 0,0 1,3 4,0 0,0 0,0 140,0 110,0 1855,88 0,0 1,3 4,0 0,0 0,0 110,0 100,0 1855,88 0,0 1,3 4,0 0,0 0,0 100,0 60,0 1855,88 0,0 1,3 4,0 0,0 0,0 Coefficienti di spinta ed inclinazioni µ Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Kd Coefficiente di spinta dinamica. Dk Coefficiente di incremento dinamico. Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva. Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico. 17

18 µ Ka Kd Dk Kax Kay Dkx Dky 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 Spinte risultanti e punto di applicazione Qi Quota inizio strato. Qf Quota inizio strato. Rpx, Rpy Componenti della spinta nella zona j-esima (kg); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm); Qi Qf Rpx Rpy z(rpx) z(rpy) 1 60,0 0,0 384,5 171, 39,09 39,09 0,0 180,0 489,65 18,0 199,8 199, ,0 140,0 594,77 64,81 159,41 159, ,0 110,0 515,07 9,3 14,71 14, ,0 100,0 184,83 8,9 104,97 104, ,0 60,0 805,03 358,4 79,56 79,56 CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a) Py Px Xp, Yp Peso del muro (kg); Forza inerziale (kg); Coordinate baricentro dei pesi (cm); Quota Px Py Xp Yp 0,0 8,9 530,0 103,5 39,6 180,0 18,8 110,0 101,9 18,6 140,0 9, ,0 100,3 196,9 110,0 38,6 97,5 99,0 180,4 100,0 41,66 480,0 98,6 174,8 60,0 54,6 350,0 96,9 15,3 Sollecitazioni sul muro Quota Fx Fy M H Origine ordinata minima del muro (cm). Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Altezza sezione di calcolo (cm); Quota Fx Fy M H 0,0 393,4 701, 19,6 56,0 180,0 89, , 180,9 6,0 140,0 1498,67 44,01 5,0 68,0 110,0 0, ,84 91,08 7,5 100,0 10,5 6445, ,95 74,0 60,0 308, ,05 499,48 80,0 Armature - Verifiche sezioni (S.L.U.) Afv Area dei ferri lato valle. 18

19 Afm Area dei ferri lato monte. Nu Sforzo normale ultimo (kg); Mu Momento flettente ultimo (kgm); Vcd Resistenza a taglio conglomerato Vcd (kg); Vwd Resistenza a taglio piegati (kg); Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1). Vsdu Taglio di calcolo (kg); Afv Afm Nu Mu Ver. Vcd Vwd Sic. VT 5Ø1 (5,65) 10Ø1 (11,31) 697,77 340,08 S 17015,05 0,0 43,5 6Ø1 (6,79) 11Ø1 (1,44) 1506, ,56 S 18379,61 0,0 0,58 7Ø1 (7,9) 13Ø1 (14,7) 431, ,45 S 0056,05 0,0 13,38 7Ø1 (7,9) 13Ø1 (14,7) 3187, ,6 S 075,06 0,0 10,5 7Ø1 (7,9) 14Ø1 (15,83) 644, ,15 S 1468,07 0,0 9,71 8Ø1 (9,05) 15Ø1 (16,96) 758, , S 868,71 0,0 7,55 Piano di rottura passante per (xr1,yr1) = (170,0/0,0) Piano di rottura passante per (xr,yr) = (170,0/60,0) Centro di rotazione (xro,yro) = (0,0/0,0) Discretizzazione terreno VERIFICHE GLOBALI Qi Quota iniziale strato (cm); Qf Quota finale strato Gamma Peso unità di volume (Kg/m³); Eps Inclinazione dello strato. ( ); Fi Angolo di resistenza a taglio ( ); Delta Angolo attrito terra muro; c Coesione (Kg/cm²); ß Angolo perpendicolare al paramento lato monte ( ); Note Nelle note viene riportata la presenza della falda Qi Qf Gamma Eps Fi Delta c ß Note 60,0 0,0 1855,88 0,0 1,3 1,3 0,0 0,0 0,0 180,0 1855,88 0,0 1,3 1,3 0,0 0,0 180,0 140,0 1855,88 0,0 1,3 1,3 0,0 0,0 140,0 100,0 1855,88 0,0 1,3 1,3 0,0 0,0 100,0 60,0 1855,88 0,0 1,3 1,3 0,0 0,0 60,0 0,0 1855,88 0,0 1,3 4,0 0,0 0,0 Coefficienti di spinta ed inclinazioni µ Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Kd Coefficiente di spinta dinamica. Dk Coefficiente di incremento dinamico. Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva. Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico. µ Ka Kd Dk Kax Kay Dkx Dky 1,3 0,41 0,4 0,0 0,38 0,15 0,0 0,01 1,3 0,41 0,4 0,0 0,38 0,15 0,0 0,01 1,3 0,41 0,4 0,0 0,38 0,15 0,0 0,01 1,3 0,41 0,4 0,0 0,38 0,15 0,0 0,01 1,3 0,41 0,4 0,0 0,38 0,15 0,0 0,01 19

20 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 Spinte risultanti e punto di applicazione Qi Quota inizio strato. Qf Quota inizio strato. Rpx, Rpy Componenti della spinta nella zona j-esima (kg); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm); Qi Qf Rpx Rpy z(rpx) z(rpy) 1 60,0 0,0 399,89 156,4 39,1 39,1 0,0 180,0 507,6 198,45 199,9 199, ,0 140,0 615,34 40,48 159,4 159, ,0 100,0 73,06 8,5 119,5 119, ,0 60,0 830,79 34,55 79,57 79, ,0 0,0 1434,7 59,37 9,18 9,11 Discretizzazione terreno SPINTE IN FONDAZIONE Qi Quota iniziale strato (cm); Qf Quota finale strato Gamma Peso unità di volume (Kg/m³); Eps Inclinazione dello strato. ( ); Fi Angolo di resistenza a taglio ( ); Delta Angolo attrito terra muro; c Coesione (Kg/cm²); ß Angolo perpendicolare al paramento lato monte ( ); Note Nelle note viene riportata la presenza della falda Qi Qf Gamma Eps Fi Delta c ß Note 60,0 0,0 1855,88 180,0 1,3 4,0 0,0 180,0 Coefficienti di spinta ed inclinazioni µ Angolo di direzione della spinta. Kp Coefficiente di resistenza passiva. Kpx, Kpy Componenti secondo x e y del coefficiente di resistenza passiva. µ Kp Kpx Kpy 04,0 0,64-0,58-0,6 Spinte risultanti e punto di applicazione Qi Quota inizio strato. Qf Quota inizio strato. Rpx, Rpy Componenti della spinta nella zona j-esima (kg); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm); Qi Qf Rpx Rpy z(rpx) z(rpy) 1 60,0 0,0-193,8-86,4 0,0 0,0 Sollecitazioni total i Fx Forza in direzione x (kg); 0

21 Fy M Forza in direzione y (kg); Momento (kgm); Fx Fy M Spinta terreno 4511,4 1794, ,3 Carichi esterni 0,0 3000,0-100,0 Peso muro 54,6 350,0-3066,09 Peso fondazione 4,84 550,0-154,65 Sovraccarico 13,44 800,0-1165,06 Terr. fondazione 4, ,71-187,15 Spinte fondazione -193,8-86,4-38, , ,1-8870,39 Momento stabilizzante ,96 kgm Momento ribaltante 504,57 kgm MENSOLA A VALLE Xprogr. Fx Fy M H Ascissa progressiva (cm); Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Altezza sezione (cm); Xprogr. Fx Fy M H 50,0-193,8-4567,4-1196,38 60,0 Armature - Verifiche sezioni (S.L.U.) Afi Area dei ferri inferiori. Afs Area dei ferri superiori. Nu Sforzo normale ultimo (kg); Mu Momento flettente ultimo (kgm); Vcd Resistenza a taglio conglomerato Vcd (kg); Vwd Resistenza a taglio piegati (kg); Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1). Vsdu Taglio di calcolo (kg); Afi Afs Nu Mu Ver. Vcd Vwd Sic. VT 11Ø1 (1,44) 6Ø1 (6,79) 197, ,47 S 1797,31 0,0 3,93 MENSOLA A MONTE Xprogr. Fx Fy M H Ascissa progressiva (cm); Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Altezza sezione (cm); Xprogr. Fx Fy M H 130,0 1434,7 941,5-985,16 60,0 Armature - Verifiche sezioni (S.L.U.) Afi Area dei ferri inferiori. 1

22 Afs Area dei ferri superiori. Nu Sforzo normale ultimo (kg); Mu Momento flettente ultimo (kgm); Vcd Resistenza a taglio conglomerato Vcd (kg); Vwd Resistenza a taglio piegati (kg); Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1). Vsdu Taglio di calcolo (kg); Afi Afs Nu Mu Ver. Vcd Vwd Sic. VT 6Ø1 (6,79) 11Ø1 (1,44) 1436, ,76 S 1797,31 0,0 6,09 Coefficiente sismico orizzontale Kh 0,0168 Coefficiente sismico verticale Kv 0,0084 CALCOLO SPINTE Discretizzazione terreno EQU+M [GEO+STR] Qi Quota iniziale strato (cm); Qf Quota finale strato Gamma Peso unità di volume (Kg/m³); Eps Inclinazione dello strato. ( ); Fi Angolo di resistenza a taglio ( ); Delta Angolo attrito terra muro; c Coesione (Kg/cm²); ß Angolo perpendicolare al paramento lato monte ( ); Note Nelle note viene riportata la presenza della falda Qi Qf Gamma Eps Fi Delta c ß Note 60,0 0,0 1855,88 0,0 1,3 4,0 0,0 0,0 0,0 180,0 1855,88 0,0 1,3 4,0 0,0 0,0 180,0 140,0 1855,88 0,0 1,3 4,0 0,0 0,0 140,0 110,0 1855,88 0,0 1,3 4,0 0,0 0,0 110,0 100,0 1855,88 0,0 1,3 4,0 0,0 0,0 100,0 60,0 1855,88 0,0 1,3 4,0 0,0 0,0 Coefficienti di spinta ed inclinazioni µ Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Kd Coefficiente di spinta dinamica. Dk Coefficiente di incremento dinamico. Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva. Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico. µ Ka Kd Dk Kax Kay Dkx Dky 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 Spinte risultanti e punto di applicazione Qi Quota inizio strato.

23 Qf Quota inizio strato. Rpx, Rpy Componenti della spinta nella zona j-esima (kg); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm); Qi Qf Rpx Rpy z(rpx) z(rpy) 1 60,0 0,0 406,88 158,6 39,07 38,87 0,0 180,0 50,64 1,4 199,7 199, ,0 140,0 634,41 66,19 159,4 159, ,0 110,0 550,47 34,94 14,71 14, ,0 100,0 197,71 85,04 104,97 104, ,0 60,0 861,94 373,76 79,56 79,5 CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a) Py Px Xp, Yp Peso del muro (kg); Forza inerziale (kg); Coordinate baricentro dei pesi (cm); Quota Px Py Xp Yp 0,0 8,01 477,0 103,5 39,6 180,0 16, ,0 101,9 18,6 140,0 6, ,0 100,3 196,9 110,0 34,74 067,75 99,0 180,4 100,0 37,5 3,0 98,6 174,8 60,0 49,14 95,0 96,9 15,3 Sollecitazioni sul muro Quota Fx Fy M H Origine ordinata minima del muro (cm). Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Altezza sezione di calcolo (cm); Quota Fx Fy M H 0,0 414,89 635,6 7,59 56,0 180,0 944, ,0 07,7 6,0 140,0 1588,7 30,1 580,74 68,0 110,0 147,14 939,9 1014,9 7,5 100,0 347, , ,05 74,0 60,0 31,19 755,94 674,67 80,0 Armature - Verifiche sezioni (S.L.U.) Afv Area dei ferri lato valle. Afm Area dei ferri lato monte. Nu Sforzo normale ultimo (kg); Mu Momento flettente ultimo (kgm); Vcd Resistenza a taglio conglomerato Vcd (kg); Vwd Resistenza a taglio piegati (kg); Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1). Vsdu Taglio di calcolo (kg); Afv Afm Nu Mu Ver. Vcd Vwd Sic. VT 5Ø1 (5,65) 10Ø1 (11,31) 635,61 34,65 S 17015,05 0,0 41,01 6Ø1 (6,79) 11Ø1 (1,44) 1380, ,37 S 18379,61 0,0 19,46 3

24 7Ø1 (7,9) 13Ø1 (14,7) 3, ,75 S 0056,05 0,0 1,6 7Ø1 (7,9) 13Ø1 (14,7) 947, ,58 S 075,06 0,0 9,65 7Ø1 (7,9) 14Ø1 (15,83) 6188, ,54 S 1468,07 0,0 9,14 8Ø1 (9,05) 15Ø1 (16,96) 756, ,14 S 868,71 0,0 7,1 Piano di rottura passante per (xr1,yr1) = (170,0/0,0) Piano di rottura passante per (xr,yr) = (170,0/60,0) Centro di rotazione (xro,yro) = (0,0/0,0) Discretizzazione terreno VERIFICHE GLOBALI Qi Quota iniziale strato (cm); Qf Quota finale strato Gamma Peso unità di volume (Kg/m³); Eps Inclinazione dello strato. ( ); Fi Angolo di resistenza a taglio ( ); Delta Angolo attrito terra muro; c Coesione (Kg/cm²); ß Angolo perpendicolare al paramento lato monte ( ); Note Nelle note viene riportata la presenza della falda Qi Qf Gamma Eps Fi Delta c ß Note 60,0 0,0 1855,88 0,0 1,3 1,3 0,0 0,0 0,0 180,0 1855,88 0,0 1,3 1,3 0,0 0,0 180,0 140,0 1855,88 0,0 1,3 1,3 0,0 0,0 140,0 100,0 1855,88 0,0 1,3 1,3 0,0 0,0 100,0 60,0 1855,88 0,0 1,3 1,3 0,0 0,0 60,0 0,0 1855,88 0,0 1,3 4,0 0,0 0,0 Coefficienti di spinta ed inclinazioni µ Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Kd Coefficiente di spinta dinamica. Dk Coefficiente di incremento dinamico. Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva. Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico. µ Ka Kd Dk Kax Kay Dkx Dky 1,3 0,41 0,4 0,0 0,38 0,15 0,0 0,01 1,3 0,41 0,4 0,0 0,38 0,15 0,0 0,01 1,3 0,41 0,4 0,0 0,38 0,15 0,0 0,01 1,3 0,41 0,4 0,0 0,38 0,15 0,0 0,01 1,3 0,41 0,4 0,0 0,38 0,15 0,0 0,01 4,0 0,4 0,4 0,0 0,37 0,16 0,0 0,01 Spinte risultanti e punto di applicazione Qi Quota inizio strato. Qf Quota inizio strato. Rpx, Rpy Componenti della spinta nella zona j-esima (kg); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm); Qi Qf Rpx Rpy z(rpx) z(rpy) 4

25 1 60,0 0,0 45,9 14,3 39,09 38,87 0,0 180,0 54,54 190,55 199,8 199, ,0 140,0 659,16 38,8 159,41 159, ,0 100,0 775,78 87,05 119,5 119, ,0 60,0 89,39 335,3 79,56 79,5 6 60,0 0,0 1543,5 619,98 9,17 9,0 Discretizzazione terreno SPINTE IN FONDAZIONE Qi Quota iniziale strato (cm); Qf Quota finale strato Gamma Peso unità di volume (Kg/m³); Eps Inclinazione dello strato. ( ); Fi Angolo di resistenza a taglio ( ); Delta Angolo attrito terra muro; c Coesione (Kg/cm²); ß Angolo perpendicolare al paramento lato monte ( ); Note Nelle note viene riportata la presenza della falda Qi Qf Gamma Eps Fi Delta c ß Note 60,0 0,0 1855,88 180,0 1,3 4,0 0,0 180,0 Coefficienti di spinta ed inclinazioni µ Angolo di direzione della spinta. Kp Coefficiente di resistenza passiva. Kpx, Kpy Componenti secondo x e y del coefficiente di resistenza passiva. µ Kp Kpx Kpy 04,0 0,64-0,58-0,6 Spinte risultanti e punto di applicazione Qi Quota inizio strato. Qf Quota inizio strato. Rpx, Rpy Componenti della spinta nella zona j-esima (kg); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm); Qi Qf Rpx Rpy z(rpx) z(rpy) 1 60,0 0,0-193,8-86,4 0,0 0,0 Sollecitazioni total i Fx Fy M Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Fx Fy M Spinta terreno 4839,9 1813,99 153,81 Carichi esterni 0,0 3000,0-100,0 Peso muro 73,71 95,0-7,06 Peso fondazione 57,83 95,0-1933,4 Sovraccarico 0,16 800,0-1147,58 Terr. fondazione 37, ,71-167, Spinte fondazione -193,8-86,4-38,76 5

26 4834,61 13,3-7955, Momento stabilizzante ,9 kgm Momento ribaltante 5440,73 kgm Verifica alla traslazione Sommatoria forze orizzontali 508,41 kg Sommatoria forze verticali 1318,7 kg Coefficiente di attrito 0,49 Adesione 0,0 Kg/cm² Angolo piano di scorrimento -360,0 Forze normali al piano di scorrimento 1318,7 kg Forze parall. al piano di scorrimento 508,41 kg Resistenza terreno 60,03 kg Coeff. sicurezza traslazione Csd 1,3 Traslazione verificata Csd>1 Verifica al ribaltamento Momento stabilizzante ,9 kgm Momento ribaltante 5440,73 kgm Coeff. sicurezza ribaltamento Csv,46 Muro verificato a ribaltamento Csv>1 Carico limite - Metodo di Vesic (1973) Somma forze in direzione x 4834,61 kg Somma forze in direzione y (Fy) 13,3 kg Somma momenti -7955, kgm Larghezza fondazione 170,0 cm Lunghezza 100,0 cm Eccentricità su B 19,97 cm Peso unità di volume 1855,88 Kg/m³ Angolo di resistenza al taglio 1,3 Coesione 0,0 Kg/cm² Terreno sulla fondazione 60,0 cm Peso terreno sul piano di posa 1855,88 Kg/m³ Nq 11,85 Nc,5 Ng 1,54 Fattori di forma sq 1,37 sc 1,41 sg 0,69 Inclinazione carichi iq 0,49 ic 0,44 ig 0,9 Inclinazione valle gq 1,0 gc 0,0 gg 1,0 Carico limite verticale (Qlim) 15480,1 kg Fattore sicurezza (Csq=Qlim/Fy) 1,7 Carico limite verificato Csq>1 Tensioni sul terreno 6

27 Ascissa centro sollecitazione 65,03 cm Larghezza della fondazione 170,0 cm x = 0,0 cm Tensione... 1,3 Kg/cm² x = 170,0 cm Tensione... 0,1 Kg/cm² MENSOLA A VALLE Xprogr. Fx Fy M H Ascissa progressiva (cm); Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Altezza sezione (cm); Xprogr. Fx Fy M H 50,0-193,8-4798,4-166,46 60,0 Armature - Verifiche sezioni (S.L.U.) Afi Area dei ferri inferiori. Afs Area dei ferri superiori. Nu Sforzo normale ultimo (kg); Mu Momento flettente ultimo (kgm); Vcd Resistenza a taglio conglomerato Vcd (kg); Vwd Resistenza a taglio piegati (kg); Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1). Vsdu Taglio di calcolo (kg); Afi Afs Nu Mu Ver. Vcd Vwd Sic. VT 11Ø1 (1,44) 6Ø1 (6,79) 197, ,47 S 1797,31 0,0 3,74 MENSOLA A MONTE Xprogr. Fx Fy M H Ascissa progressiva (cm); Forza in direzione x (kg); Forza in direzione y (kg); Momento (kgm); Altezza sezione (cm); Xprogr. Fx Fy M H 130,0 1543,5 3311,7-1069,79 60,0 Armature - Verifiche sezioni (S.L.U.) Afi Area dei ferri inferiori. Afs Area dei ferri superiori. Nu Sforzo normale ultimo (kg); Mu Momento flettente ultimo (kgm); Vcd Resistenza a taglio conglomerato Vcd (kg); Vwd Resistenza a taglio piegati (kg); Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1). Vsdu Taglio di calcolo (kg); Afi Afs Nu Mu Ver. Vcd Vwd Sic. VT 7

28 6Ø1 (6,79) 11Ø1 (1,44) 1543, ,48 S 1797,31 0,0 5,41 8

29 Indice 1.Dati generali 7.CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI 8 3.Stratigrafia 9 4.Fattori combinazione 9 5.A1+M1+R1 [GEO+STR] (Peso, Baricentro, Inerzia) Armatura elevazione Sollecitazioni totali Verifica alla traslazione Verifica al ribaltamento Carico limite Tensioni sul terreno Armatura in fondazione 16 6.A+M+R [STR] (Peso, Baricentro, Inerzia) Armatura elevazione Sollecitazioni totali Armatura in fondazione 1 7.EQU+M [GEO+STR] (Peso, Baricentro, Inerzia) Armatura elevazione Sollecitazioni totali Verifica alla traslazione Verifica al ribaltamento Carico limite Tensioni sul terreno Armatura in fondazione 8 Indice 9 9

30 R E L A Z I O N E D I C A L C O L O SOLETTA TRATTO 5-9 Sono illustrati con la presente i risultati dei calcoli che riguardano il progetto delle armature, la verifica delle tensioni di lavoro dei materiali e del terreno. NORMATIVA DI RIFERIMENTO I calcoli sono condotti nel pieno rispetto della normativa vigente e, in particolare, la normativa cui viene fatto riferimento nelle fasi di calcolo, verifica e progettazione è costituita dalle Norme Tecniche per le Costruzioni, emanate con il D.M. 14/01/008 pubblicato nel suppl. 30 G.U. 9 del 4/0/008, nonché la Circolare del Ministero Infrastrutture e Trasporti del Febbraio 009, n. 617 Istruzioni per l applicazione delle nuove norme tecniche per le costruzioni. METODI DI CALCOLO I metodi di calcolo adottati per il calcolo sono i seguenti: 1) Per i carichi statici: METODO DELLE DEFORMAZIONI; ) Per i carichi sismici: metodo dell ANALISI MODALE o dell ANALISI SISMICA STATICA EQUIVALENTE. Per lo svolgimento del calcolo si è accettata l'ipotesi che, in corrispondenza dei piani sismici, i solai siano infinitamente rigidi nel loro piano e che le masse ai fini del calcolo delle forze di piano siano concentrate alle loro quote. CALCOLO SPOSTAMENTI E CARATTERISTICHE II calcolo degli spostamenti e delle caratteristiche viene effettuato con il metodo degli elementi finiti (F.E.M.). Possono essere inseriti due tipi di elementi: 1) Elemento monodimensionale asta (beam) che unisce due nodi aventi ciascuno 6 gradi di libertà. Per maggiore precisione di calcolo, viene tenuta in conto anche la deformabilità a taglio e quella assiale di questi elementi. Queste aste, inoltre, non sono considerate flessibili da nodo a nodo ma hanno sulla parte iniziale e finale due tratti infinitamente rigidi formati dalla parte di trave inglobata nello spessore del pilastro; questi tratti rigidi forniscono al nodo una dimensione reale. ) L elemento bidimensionale shell (quad) che unisce quattro nodi nello spazio. Il suo comportamento è duplice, funziona da lastra per i carichi agenti sul suo piano, da piastra per i carichi ortogonali. Assemblate tutte le matrici di rigidezza degli elementi in quella della struttura spaziale, la risoluzione del sistema viene perseguita tramite il metodo di Cholesky. Ai fini della risoluzione della struttura, gli spostamenti X e Y e le rotazioni attorno l'asse verticale Z di tutti i nodi che giacciono su di un impalcato dichiarato rigido sono mutuamente vincolati. RELAZIONE SUI MATERIALI Le caratteristiche meccaniche dei materiali sono descritti nei tabulati riportati nel seguito per ciascuna tipologia di materiale utilizzato. 30

31 ANALISI SISMICA STATICA A MASSE CONCENTRATE L analisi sismica statica è stata svolta imponendo, come da normativa, un sistema di forze orizzontali parallele alle direzioni ipotizzate come ingresso del sisma. Tali forze, applicate in corrispondenza dei nodi, sono calcolate mediante l espressione: dove: F = S T ) W i d ( 1 F i è la forza da applicare al nodo i S d ( T 1 ) è l ordinata dello spettro di risposta di progetto W è il peso sismico complessivo della costruzione L g zi Wi z j W L è un coefficiente pari a 0,85 se l edificio ha meno di tre piani e se g è l accelerazione di gravità W i e W j sono i pesi delle masse sismiche ai nodi i e j z i e z j sono le altezze dei nodi i e j rispetto alle fondazioni j T 1 < Tc, pari ad 1,0 negli altri casi Le forze orizzontali così calcolate vengono ripartite fra gli elementi irrigidenti (pilastri e pareti di taglio). L analisi tiene conto dell'eventuale presenza di piani dichiarati in input infinitamente rigidi assialmente. I valori delle sollecitazioni sismiche sono combinate linearmente (in somma e in differenza) con quelle per carichi statici e con il 30% di quelle del sisma ortogonale per ottenere le sollecitazioni di verifica. Gli angoli delle direzioni di ingresso dei sismi sono valutati rispetto all asse X del sistema di riferimento globale. VERIFICHE Le verifiche, svolte secondo il metodo degli stati limite ultimi e di esercizio, si ottengono inviluppando tutte le condizioni di carico prese in considerazione. In fase di verifica è stato differenziato l elemento trave dall elemento pilastro. Nell elemento trave le armature sono disposte in modo asimmetrico, mentre nei pilastri sono sempre disposte simmetricamente. Per l elemento trave, l armatura si determina suddividendola in cinque conci in cui l armatura si mantiene costante, valutando per tali conci le massime aree di armatura superiore ed inferiore richieste in base ai momenti massimi riscontrati nelle varie combinazioni di carico esaminate. Lo stesso criterio è stato adottato per il calcolo delle staffe. Anche l elemento pilastro viene scomposto in cinque conci in cui l'armatura si mantiene costante. Vengono però riportate le armature massime richieste nella metà superiore (testa) e inferiore (piede). La fondazione su travi rovesce è risolta contemporaneamente alla sovrastruttura tenendo in conto sia la rigidezza flettente che quella torcente, utilizzando per l analisi agli elementi finiti l elemento asta su suolo elastico alla Winkler. Le travate possono incrociarsi con angoli qualsiasi e avere dei disassamenti rispetto ai pilastri su cui si appoggiano. La ripartizione dei carichi, data la natura matriciale del calcolo, tiene automaticamente conto della rigidezza relativa delle varie travate convergenti su ogni nodo. 31

32 Le verifiche per gli elementi bidimensionali (setti) vengono effettuate sovrapponendo lo stato tensionale del comportamento a lastra e di quello a piastra. Vengono calcolate le armature delle due facce dell elemento bidimensionale disponendo i ferri in due direzioni ortogonali. DIMENSIONAMENTO MINIMO DELLE ARMATURE. Per il calcolo delle armature sono stati rispettati i minimi di legge di seguito riportati: TRAVI: 1. Area minima delle staffe pari a 1.5*b mmq/ml, essendo b lo spessore minimo dell anima misurato in mm, con passo non maggiore di 0,8 dell altezza utile e con un minimo di 3 staffe al metro. In prossimità degli appoggi o di carichi concentrati per una lunghezza pari all' altezza utile della sezione, il passo minimo sarà 1 volte il diametro minimo dell'armatura longitudinale.. Armatura longitudinale in zona tesa 0,15% della sezione di calcestruzzo. Alle estremità è disposta una armatura inferiore minima che possa assorbire, allo stato limite ultimo, uno sforzo di trazione uguale al taglio. 3. In zona sismica, nelle zone critiche il passo staffe è non superiore al minimo di: PILASTRI: - un quarto dell'altezza utile della sezione trasversale; mm e 5 mm, rispettivamente per CDA e CDB; - 6 volte e 8 volte il diametro minimo delle barre longitudinali considerate ai fini delle verifiche, rispettivamente per CDA e CDB; - 4 volte il diametro delle armature trasversali. Le zone critiche si estendono, per CDB e CDA, per una lunghezza pari rispettivamente a 1 e 1,5 volte l'altezza della sezione della trave, misurata a partire dalla faccia del nodo trave-pilastro. Nelle zone critiche della trave il rapporto fra l'armatura compressa e quella tesa è maggiore o uguale a 0,5. 1. Armatura longitudinale compresa fra 0,3% e 4% della sezione effettiva e non minore di 0,10*Ned/fyd;. Barre longitudinali con diametro 1 mm; 3. Diametro staffe 6 mm e comunque 1/4 del diametro max delle barre longitudinali, con interasse non maggiore di 30 cm. 4. In zona sismica l armatura longitudinale è almeno pari all 1% della sezione effettiva; il passo delle staffe di contenimento è non superiore alla più piccola delle quantità seguenti: - 1/3 e 1/ del lato minore della sezione trasversale, rispettivamente per CDA e CDB; - 15 mm e 175 mm, rispettivamente per CDA e CDB; - 6 e 8 volte il diametro delle barre longitudinali che collegano, rispettivamente per CDA e CDB. SISTEMI DI RIFERIMENTO 1) SISTEMA GLOBALE DELLA STRUTTURA SPAZIALE Il sistema di riferimento globale è costituito da una terna destra di assi cartesiani ortogonali (O-XYZ) dove l asse Z rappresenta l asse verticale rivolto verso l alto. Le rotazioni sono considerate positive se concordi con gli assi vettori: 3

33 ) SISTEMA LOCALE DELLE ASTE Il sistema di riferimento locale delle aste, inclinate o meno, è costituitoo da una terna destra di assi cartesianii ortogonali che ha l asse Z coincidente con l'asse longitudinale dell asta ed orientamentoo dal nodo iniziale al nodoo finale, gli assi X ed Y sono orientati come nell archivio delle sezioni: 3) SISTEMA LOCALE DELL ELEMENTO SHELL Il sistema di riferimento locale dell elemento shell è costituito da una terna destra di assi cartesiani ortogonali che ha l asse X coincidente con la direzione fra il primo ed il secondo nodo di input, l asse Y giacente nel piano dello shell e l asse Z in direzione dello spessore: UNITÀ DI MISURA Si adottano le seguenti unità di misura: [lunghezze] = m [forze] = kgf / dan [tempo] = sec [temperatura] = C CONVENZIONI SUI SEGNI I carichi agenti sono: 1) Carichi e momenti distribuiti lungo gli assi coordinati; ) Forze e coppie nodali concentrate sui nodi. Le forze distribuite sonoo da ritenersii positive se concordi con il sistema concentrate sono positive se concordi con il sistema di riferimento globale. di riferimento locale dell asta, quellee I gradi di libertà nodali sono gli omologhi agli enti forza, e quindi sono definiti positivi se concordi a questi ultimi. 333

RELAZIONE DI CALCOLO. P t = K a γ t z = 2

RELAZIONE DI CALCOLO. P t = K a γ t z = 2 RELAZIONE DI CALCOLO Normative di riferimento: NTC008 - Norme tecniche per le costruzioni - D.M. 14 Gennaio 008. CIRCOLARE febbraio 009, n. 617 - Istruzioni per l'applicazione delle 'Nuove norme tecniche

Dettagli

COMUNE DI SELARGIUS. Settore Lavori Pubblici PROGETTO ESECUTIVO LAVORI DI ADEGUAMENTO VIA PERETTI E MESSA IN SICUREZZA ACCESSO ALL'OSPEDALE BROTZU

COMUNE DI SELARGIUS. Settore Lavori Pubblici PROGETTO ESECUTIVO LAVORI DI ADEGUAMENTO VIA PERETTI E MESSA IN SICUREZZA ACCESSO ALL'OSPEDALE BROTZU COMUNE DI SELARGIUS Settore Lavori Pubblici PROGETTO ESECUTIVO LAVORI DI ADEGUAMENTO VIA PERETTI E MESSA IN SICUREZZA ACCESSO ALL'OSPEDALE BROTZU ELABORATO F RELAZIONE DI CALCOLO DEI MURI IN CALCESTRUZZO

Dettagli

RELAZIONE DI CALCOLO GABBIONATA

RELAZIONE DI CALCOLO GABBIONATA RELAZIONE DI CALCOLO GABBIONATA Normativa di riferimento NTC008 - Norme tecniche per le costruzioni - D.M. 14 Gennaio 008. CIRCOLARE febbraio 009, n. 617 - Istruzioni per l'applicazione delle 'Nuove norme

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO RELAZIONE DI CALCOLO Normative di riferimento: NTC 2008 - Norme tecniche per le costruzioni - D.M. 14 Gennaio 2008. CIRCOLARE 2 febbraio 2009, n. 617 - Istruzioni per l'applicazione delle 'Nuove norme

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO RELAZIONE DI CALCOLO Il presente studio riguarda la progettazione di un muro di contenimento da realizzare a contenimento del rilevato stradale del Viale della Spina nel tratto antistante compreso tra

Dettagli

RELAZIONE DI CALCOLO INTEGRATIVA

RELAZIONE DI CALCOLO INTEGRATIVA RELAZIONE DI CALCOLO INTEGRATIVA 2 RELAZIONE ILLUSTRATIVA SULLE CARATTERISTICHE DELL INTERVENTO La presente relazione costituisce integrazione alla relazioni inerente la realizzazione di un opera di contenimento

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO RELAZIONE DI CALCOLO Normativa di riferimento -Provvedimenti per le costruzioni con prescrizioni per zone sismiche (Legge 2/2/74, D.. 16/1/96 e D.. 11/3/1988) -Criteri generali per la verifica di sicurezza

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO RELAZIONE DI CALCOLO La presente relazione si riferisce alla realizzazione di un muro di contenimento di altezza pari a cm 120 oltre la fondazione dello spessore di cm 130, e della realizzazione di una

Dettagli

1 18, ,00 24 No Ghiaia con sabbia o ghaia sabbiosa 2 19, ,00 25 Si Ghiaia

1 18, ,00 24 No Ghiaia con sabbia o ghaia sabbiosa 2 19, ,00 25 Si Ghiaia SOMMARIO 1. PREMESSE.... NORMATIVE DI RIFERIMENTO:... 3. SOFTWARE UTILIZZATO... 4. CARATTERIZZAZIONE GEOTECNICA DI PROGETTO... 5. COMBINAZIONI DI CARICO... 6. AZIONE SISMICA DI PROGETTO... 3 7. METODOLOGIA

Dettagli

BLOCCHI DI ANCORAGGIO CONDOTTA RELAZIONE DI CALCOLO STRUTTURALE

BLOCCHI DI ANCORAGGIO CONDOTTA RELAZIONE DI CALCOLO STRUTTURALE BLOCCHI DI ANCORAGGIO CONDOTTA RELAZIONE DI CALCOLO STRUTTURALE BLOCCHI DI ANCORAGGIO CONDOTTA RELAZIONE BLOCCO FINE CONDOTTA DN 900 RELAZIONE DI CALCOLO Normativa di riferimento NTC008 - Norme tecniche

Dettagli

PROGETTO ESECUTIVO INTERVENTI 1A, 7A, 10B: RELAZIONE TECNICA - RELAZIONE GEOTECNICA - RELAZIONE DI CALCOLO - ELABORATO GRAFICO

PROGETTO ESECUTIVO INTERVENTI 1A, 7A, 10B: RELAZIONE TECNICA - RELAZIONE GEOTECNICA - RELAZIONE DI CALCOLO - ELABORATO GRAFICO COMUNE DI LERICI PROGETTO DEGLI DI INTERVENTI DI MITIGAZIONE DEL DISSESTO IDROGEOLOGICO E MIGLIORAMENTO DELLE SUPERFICI BOSCHIVE SUI VERSANTI E NEI COMPLUVI IN CORRISPONDENZA DEL SENO DI MEZZANA PROGETTO

Dettagli

REGIONE ABRUZZO PROVINCIA CHIETI

REGIONE ABRUZZO PROVINCIA CHIETI C:\Users\Elanor\Desktop\VIA VERDE\Testata\Casalbordino-Stemma.png REGIONE ABRUZZO PROVINCIA CHIETI ORTONA- SAN VITO CHIETINO-ROCCA SAN GIOVANNI-FOSSACESIA-TORINO DI SANGRO-CASALBORDINO-VASTO REGIONE ABRUZZO

Dettagli

REGIONE ABRUZZO PROVINCIA CHIETI

REGIONE ABRUZZO PROVINCIA CHIETI C:\Users\Elanor\Desktop\VIA VERDE\Testata\Casalbordino-Stemma.png REGIONE ABRUZZO PROVINCIA CHIETI ORTONA- SAN VITO CHIETINO-ROCCA SAN GIOVANNI-FOSSACESIA-TORINO DI SANGRO-CASALBORDINO-VASTO REGIONE ABRUZZO

Dettagli

= 2 RELAZIONE DI CALCOLO. Normative di riferimento:

= 2 RELAZIONE DI CALCOLO. Normative di riferimento: RELAZIONE DI CALCOLO Normative di riferimento: D.M. 11/3/88; Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le

Dettagli

Progetto esecutivo. Calcoli strutturali. Intervento n. 15 km Calcolo terra armata

Progetto esecutivo. Calcoli strutturali. Intervento n. 15 km Calcolo terra armata Lavori di protezione del corpo stradale e miglioramento delle condizioni di sicurez del 1 e 2 lotto della strada di collegamento tra la S.S. Melfi-Poten e l'abitato di Venosa - Lavori di completamento

Dettagli

PROGETTO ESECUTIVO INTERVENTO 6B: RELAZIONE TECNICA - RELAZIONE GEOTECNICA - RELAZIONE DI CALCOLO

PROGETTO ESECUTIVO INTERVENTO 6B: RELAZIONE TECNICA - RELAZIONE GEOTECNICA - RELAZIONE DI CALCOLO COMUNE DI LERICI PROGETTO DEGLI DI INTERVENTI DI MITIGAZIONE DEL DISSESTO IDROGEOLOGICO E MIGLIORAMENTO DELLE SUPERFICI BOSCHIVE SUI VERSANTI E NEI COMPLUVI IN CORRISPONDENZA DEL SENO DI MEZZANA PROGETTO

Dettagli

Figura 1 Corografia dell area di progetto

Figura 1 Corografia dell area di progetto SOMMARIO 1. PREMESSA... 2 2. OPERE D ARTE MAGGIORI... 4 2.1 Tronco 1... 4 2.2 Tronco 2... 11 2.3 Tronchi 3 e 4... 13 2.4 Tronco 7... 14 3. OPERE D ARTE MINORI... 16 4. OPERE D ARTE DI PROGETTO... 17 1.

Dettagli

RELAZIONE GENERALE DICHIARAZIONE CONGIUNTA COMMITTENTE - PROGETTISTA

RELAZIONE GENERALE DICHIARAZIONE CONGIUNTA COMMITTENTE - PROGETTISTA Relazione Generale Muro a Mensola RELAZIONE GENERALE DICHIARAZIONE CONGIUNTA COMMITTENTE - PROGETTISTA PROGETTO: Lavori per il Completamento della Sistemazione Idraulica del Torrente Salice nel comune

Dettagli

SOMMARIO 1 PREMESSA... 2 2 NORMATIVA APPLICATA... 3 3 MATERIALI IMPIEGATI... 3

SOMMARIO 1 PREMESSA... 2 2 NORMATIVA APPLICATA... 3 3 MATERIALI IMPIEGATI... 3 SOMMARIO 1 PREMESSA... 2 2 NORMATIVA APPLICATA... 3 3 MATERIALI IMPIEGATI... 3 4 ANALISI DEI CARICHI E DEI SOVRACCARICHI PERMANENTI E ACCIDENTALI... 4 5 CALCOLO E VERIFICA TRAVERSA DI CAPTAZIONE (BRIGLIA)

Dettagli

FASCICOLO DEI CALCOLI

FASCICOLO DEI CALCOLI Legge n. 560/1993 DELIBERA G.R.T. N 84 DEL 8/09/006 OPERE DI URBANIZZAZIONE PRIMARIA A SERVIZIO DEL FABBRICATO DI 1 ALLOGGI IN VIA POGGIO BALDI, SAN GIOVANNI D'ASSO (SI) FASCICOLO DEI CALCOLI Siena, Agosto

Dettagli

Prontuario Opere Geotecniche (Norme tecniche per le costruzioni D.M. 14/01/2008)

Prontuario Opere Geotecniche (Norme tecniche per le costruzioni D.M. 14/01/2008) Prontuario Opere Geotecniche (Norme tecniche per le costruzioni D.M. 14/01/2008) Punto 6.2.3_Verifiche statiche: Stati Limite Ultimi (SLU) Stato Limite di resistenza del terreno (GEO) Stato Limite di resistenza

Dettagli

RELAZIONE TECNICA MURO DI SOSTEGNO

RELAZIONE TECNICA MURO DI SOSTEGNO RELAZIONE TECNICA MURO DI SOSTEGNO Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi: Calcolo della spinta del terreno Verifica a ribaltamento Verifica a scorrimento del muro sul

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO RELAZIONE DI CALCOLO Normative di riferimento: NTC 008 - Norme tenihe per le ostruzioni - D.M. 14 Gennaio 008. CIRCOLARE febbraio 009, n. 617 - Istruzioni per l'appliazione delle 'Nuove norme tenihe per

Dettagli

Comune di Montechiaro D Acqui

Comune di Montechiaro D Acqui Aztec Informatica s.r.l. * PAC Relazione di calcolo 1 Comune di Montechiaro D Acqui INTERVENTO n 1) Paratia (berlinese) Normative di riferimento - Legge nr. 1086 del 05/11/1971. Norme per la disciplina

Dettagli

Stralcio dalle NORME TECNICHE PER LE COSTRUZIONI DM PROGETTO DELL ARMATURA METALLICA

Stralcio dalle NORME TECNICHE PER LE COSTRUZIONI DM PROGETTO DELL ARMATURA METALLICA Stralcio dalle NORME TECNICHE PER LE COSTRUZIONI DM 14.01.008 PROGETTO DELL ARMATURA METALLICA CALCOLO DELLE ARMATURE DI FONDAZIONE Azioni di calcolo (kn) Y F ( A1) sfavorevole Wi x Y F Distanze da A in

Dettagli

CANTIERE BASE CBL1 BORZOLI Relazione di calcolo muri di sostegno

CANTIERE BASE CBL1 BORZOLI Relazione di calcolo muri di sostegno COMMITTENTE: RETE FERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO ITALIANE : GRUPPO FERROVIE DELLO STATO ITALIANE GENERAL CONTRACTOR: INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO

Dettagli

COMUNE DI LOIRI PORTO SAN PAOLO PROVINCIA DI SASSARI - ZONA OMOGENEA OLBIA TEMPIO

COMUNE DI LOIRI PORTO SAN PAOLO PROVINCIA DI SASSARI - ZONA OMOGENEA OLBIA TEMPIO COMUNE DI LOIRI PORTO SAN PAOLO PROVINCIA DI SASSARI - ZONA OMOGENEA OLBIA TEMPIO PROGETTO DEFINITIVO - ESECUTIVO VIABILITA' NEL TERRITORIO COMUNALE 1 INTERVENTO - LOC. AZZANI' CIG: Z811D2CDF2 ELABORATO

Dettagli

Relazione geotecnica inerente la realizzazione di un locale spogliatoio

Relazione geotecnica inerente la realizzazione di un locale spogliatoio Relazione geotecnica inerente la realizzazione di un locale spogliatoio Zona di intervento: loc. Leccetti Comune di Volterra Committente: Ing, F. Lombardi Progettista: Ing. F. Lombardi DATA: 4 dicembre

Dettagli

RELAZIONE DI CALCOLO DELLE STRUTTURE

RELAZIONE DI CALCOLO DELLE STRUTTURE Pagina 1 PREMESSA La presente Relazione Tecnica Specialistica riguarda la descrizione ed il calcolo (ove previsto) delle strutture da realizzare con il progetto esecutivo relativo ai lavori di Adeguamento,

Dettagli

ESERCIZI SVOLTI. Verifica allo SLU di ribaltamento (tipo EQU) 9 Spinta delle terre e muri di sostegno 9.3 Il progetto dei muri di sostegno

ESERCIZI SVOLTI. Verifica allo SLU di ribaltamento (tipo EQU) 9 Spinta delle terre e muri di sostegno 9.3 Il progetto dei muri di sostegno ESERCIZI SVOLTI Seguendo le prescrizioni delle N.T.C. 008 effettuare le verifiche agli SLU di ribaltamento, di scorrimento sul piano di posa e di collasso per carico limite dell insieme fondazione-terreno

Dettagli

- VERIFICA MURO CONTRO TERRA Riassunto verifiche Elementi strutturali Terreno Strati... 4

- VERIFICA MURO CONTRO TERRA Riassunto verifiche Elementi strutturali Terreno Strati... 4 - VERIFICA MURO CONTRO TERRA... 2 - Riassunto verifiche... 3 - Elementi strutturali... 3 - Terreno... 4 - Strati... 4 - Normativa e Materiali... 5 - Carichi... 6 - Carichi sul Terreno... 6 - Carichi Nastriformi:...

Dettagli

Informativa sull affidabilità dei codici - Muro di sostegno a gabbioni

Informativa sull affidabilità dei codici - Muro di sostegno a gabbioni Informativa sull affidabilità dei codici - Muro di sostegno a gabbioni D.M. 14.01.008 Norme tecniche per le truzioni paragrafo 10. Il processo di progettazione e sviluppo del software Muro di sostegno

Dettagli

SPETTRO DI RISPOSTA ELASTICO SPETTRO DI PROGETTO

SPETTRO DI RISPOSTA ELASTICO SPETTRO DI PROGETTO SPETTRO DI RISPOSTA ELASTICO SPETTRO DI PROGETTO 135 (Ridis. con modifiche da M. De Stefano, 2009) 136 137 Concetto di duttilità Duttilità = rapporto tra spostamento massimo e spostamento al collasso 138

Dettagli

ESERCIZI DA ESAMI ( ) Spinta delle terre

ESERCIZI DA ESAMI ( ) Spinta delle terre ESERCIZI A ESAMI (1996-23) Spinta delle terre Esercizio 1 Calcolare le pressioni a lungo e a breve termine esercitate dal terreno sul paramento verticale di un muro di sostegno, nell'ipotesi di assenza

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO RELAZIONE DI CALCOLO Verifica di muro di sostegno in cemento armato Proprietà: ditta Bianchi Srl Via Garibaldi 28 Milano (MI) Il progettista delle strutture: Ing. Rossi 1 Dati del muro di sostegno 1 Geometria

Dettagli

ESERCIZIO SVOLTO A. P 2 St

ESERCIZIO SVOLTO A. P 2 St ESERCIZIO SVOLTO A Effettuare le verifiche agli stati limite di ribaltamento, di scorrimento e di collasso per carico limite dell insieme fondazione-terreno per il muro di sostegno in calcestruzzo semplice

Dettagli

OPERE DI SOSTEGNO. Normativa sismica Diego Lo Presti & Nunziante Squeglia Dipartimento di Ingegneria Civile Università di Pisa

OPERE DI SOSTEGNO. Normativa sismica Diego Lo Presti & Nunziante Squeglia Dipartimento di Ingegneria Civile Università di Pisa OPERE DI SOSTEGNO 1 TIPOLOGIE STRUTTURALI 2 OPCM 3274 Requisiti generali di progetto Funzionalità (durante e dopo) Ammessi spostamenti permanenti (compatibili) Criteri di progetto Materiale di riporto

Dettagli

Regione Marche. Provincia: Ascoli Piceno Comune: Ascoli Piceno. Gestore: Comune Ascoli Piceno

Regione Marche. Provincia: Ascoli Piceno Comune: Ascoli Piceno. Gestore: Comune Ascoli Piceno Regione Marche Provincia: Ascoli Piceno Comune: Ascoli Piceno Gestore: Comune Ascoli Piceno OGGETTO: LAVORI DI RICOSTRUZIONE PARZIALE E CONSOLIDAMENTO DEL MURO DI VIA DELLE BEGONIE. PROGETTO ESECUTIVO

Dettagli

Relazione di calcolo. Consolidamento sponda destra idrografica del Torrente Apsa, Località Trasanni PROGETTO DEFINITIVO INTERVENTO 8

Relazione di calcolo. Consolidamento sponda destra idrografica del Torrente Apsa, Località Trasanni PROGETTO DEFINITIVO INTERVENTO 8 INTERVENTO 8 Piano degli interventi finanziabili con le risorse di cui al Comma 548 art 1 della legge 8/1 e DPCM del marzo 01 Eventi alluvionali del novembre 01 Consolidamento sonda destra idrografica

Dettagli

RELAZIONE GEOTECNICA N_GT DEI PALI DI FONDAZIONE

RELAZIONE GEOTECNICA N_GT DEI PALI DI FONDAZIONE RELAZIONE GEOTECNICA N_GT DEI PALI DI FONDAZIONE Sommario RELAZIONE GEOTECNICA GT DEI PALI DI FONDAZIONE... 1 1. INTRODUZIONE... 1 2. NORMATIVE DI RIFERIMENTO... 2 3. RELAZIONE GEOTECNICA PALI DIAMETRO

Dettagli

Esempio di calcolo di un muro in c.a.

Esempio di calcolo di un muro in c.a. appendice D Esempio di calcolo di un muro in c.a. Pagina 157 del testo Esempio di calcolo Nel presente paragrafo si vuole illustrare un applicazione operativa relativa alle verifiche di stabilità di un

Dettagli

RICHIAMI SUL CALCOLO DELLE SPINTE SUI MURI DI SOSTEGNO

RICHIAMI SUL CALCOLO DELLE SPINTE SUI MURI DI SOSTEGNO RICHIAMI SUL CALCOLO DELLE SPINTE SUI MURI DI SOSTEGNO Quasi tutte le immagini sono tratte da: Lancellotta, Costanzo, Foti, PROGETTAZIONE GEOTECNICA Hoepli Ed. 2011 GENERALITÀ Sono strutture di sostegno

Dettagli

OGGETTO COMPLESSO TURISTICO ALBERGHIERO E RESIDENZIALE IN LOCALITA' VIGNASSE

OGGETTO COMPLESSO TURISTICO ALBERGHIERO E RESIDENZIALE IN LOCALITA' VIGNASSE COMUNE DI LOANO (SV ricettiva (ai sensi dell' art. 7 - L.R. 3 novembre 2009, n.49 COMUNE DI LOANO (SV per intervento di demolizione, ricostruzione di edifici incongrui con cambio di destinazione d'uso

Dettagli

ESERCIZIO SVOLTO B. Verifica al ribaltamento (tipo EQU)

ESERCIZIO SVOLTO B. Verifica al ribaltamento (tipo EQU) l Muri di sostegno e fondazioni 1 ESERCIZIO SVOLTO B Eseguire le verifiche agli stati limite ultimi di ribaltamento, di scorrimento sul piano di posa e di collasso per carico limite dell insieme fondazione-terreno

Dettagli

COMUNE DI SELARGIUS. Lavori di adeguamento alle norme di sicurezza della scuola elementare di via Roma. Città metropolitana di Cagliari

COMUNE DI SELARGIUS. Lavori di adeguamento alle norme di sicurezza della scuola elementare di via Roma. Città metropolitana di Cagliari COMUNE DI SELARGIUS Città metropolitana di Cagliari Lavori di adeguamento alle norme di sicurezza della scuola elementare di via Roma Progetto definitivo - esecutivo All. Oggetto: Febbraio 2017 L Tav.

Dettagli

RELAZIONE GEOTECNICA

RELAZIONE GEOTECNICA Comune di Ascoli Piceno Provincia di Ascoli Piceno RELAZIONE GEOTECNICA OGGETTO: COMMITTENTE: PROGETTO PER IL RECUPERO, LA RISTRUTTURAZIONE ED IL RISANAMENTO CONSERVATIVO DI ALCUNI TRATTI DELLA CINTA MURARIA

Dettagli

ESERCIZI DA ESAMI ( ) Capacità portante di fondazioni superficiali

ESERCIZI DA ESAMI ( ) Capacità portante di fondazioni superficiali ESERCIZI DA ESAMI (1996-2003) Capacità portante di fondazioni superficiali Esercizio 1 Una fondazione rettangolare di dimensioni BxL è posta alla profondità D da p.c. su un terreno costituito da sabbia,

Dettagli

OPERE DI SOSTEGNO. Normativa sismica Diego Lo Presti & Nunziante Squeglia Dipartimento di Ingegneria Civile Università di Pisa

OPERE DI SOSTEGNO. Normativa sismica Diego Lo Presti & Nunziante Squeglia Dipartimento di Ingegneria Civile Università di Pisa OPERE DI SOSTEGNO 1 TIPOLOGIE STRUTTURALI 2 Normativa: OPCM 3274, NTC 14.01.2008 Requisiti generali di progetto Funzionalità (durante e dopo) Ammessi spostamenti permanenti (compatibili) Criteri di progetto

Dettagli

COMUNE DI COMACCHIO Provincia di Ferrara

COMUNE DI COMACCHIO Provincia di Ferrara COMUNE DI COMACCHIO Provincia di Ferrara Tecnico incaricato: Ing. Alessio Colombi Ing.A.Colombi Ing.M.Roversi Ing.O.Vitarelli Via Piangipane, 141 int.6 44121 FERRARA Progetto: INTERVENTI DI MESSA IN SICUREZZA

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO RELAZIONE DI CALCOLO ANALISI DEI CARICHI ANALISI DEL CARICO NEVE NORMATIVE DI RIFERIMENTO [D.M. 14/01/2008]: Norme tecniche per le costruzioni NTC2008 [Circ. Ministero delle Infrastrutture e dei Trasporti

Dettagli

= 1+ = posta a distanza. dalla base del muro.

= 1+ = posta a distanza. dalla base del muro. Premessa Al fine di realizzare un tratto di strada in rilevato limitando il più possibile l area di occupazione del solido stradale, viene realizzato un terrapieno alto 4,50 m delimitato da un muro di

Dettagli

Sommario. Premessa. Normativa di riferimento

Sommario. Premessa. Normativa di riferimento Sommario Sommario...2 Premessa...2 Normativa di riferimento...3 Caratterizzazione geotecnica...4 Scelta tipologica delle fondazioni...4 Verifiche di sicurezza...4 Carico limite fondazioni dirette...6 Verifiche

Dettagli

RELAZIONE SULL ANALISI SISMICA

RELAZIONE SULL ANALISI SISMICA RELAZIONE SULL ANALISI SISMICA 1 - Premessa La nuova costruzione sarà realizzata su di un terreno che ricade in zona sismica 3 secondo l attuale vigente normativa. I dati utilizzati per la determinazione

Dettagli

Dettagli costruttivi. Limitazioni geometriche e Armature

Dettagli costruttivi. Limitazioni geometriche e Armature Dettagli costruttivi Limitazioni geometriche e Armature Travi: limitazioni geometriche Travi emergenti: b 200 mm Travi basse: b b pil +2H t /2 b 2b pil Travi emergenti e a spessore: b/h 0.25 ZONE CRITICHE

Dettagli

STRADA DI COLLEGAMENTO S.S.36 - A.T.1.1.

STRADA DI COLLEGAMENTO S.S.36 - A.T.1.1. COMUNE DI CHIAVENNA PROVINCIA DI SONDRIO PIANO DI LOTTIZZAZIONE DI INIZIATIVA PRIVATA (Ambito di trasformazione 1.1. Via per Uggia) LOCALITA BETTE, CHIAVENNA (SO) STRADA DI COLLEGAMENTO S.S.36 - A.T.1.1.

Dettagli

COMUNE DI PROSERPIO. (Provincia di Como) SCALA Progetto Esecutivo/DOCPEGE07 DENOMINAZIONE PROGETTO DENOMINAZIONE ELABORATO DATA

COMUNE DI PROSERPIO. (Provincia di Como) SCALA Progetto Esecutivo/DOCPEGE07 DENOMINAZIONE PROGETTO DENOMINAZIONE ELABORATO DATA COMUNE DI PROSERPIO (Provincia di Como) COMMESSA F.TO ELABORATO AAARCHIVIO11\C35-11 AC Proserpio A4 FILE SCALA Progetto Esecutivo/DOCPEGE07 - DENOMINAZIONE PROGETTO PROGETTO ESECUTIVO DOCPEGE07 Via G.

Dettagli

SWISO 14/03/ c

SWISO 14/03/ c SWISO 14/03/2014 0303 1.4.7c Aztec Informatica s.r.l. * PAC Relazione di calcolo 1 Normative di riferimento - Legge nr. 1086 del 05/11/1971. Norme per la disciplina delle opere in conglomerato cementizio,

Dettagli

opere di sostegno a gravità

opere di sostegno a gravità Andria, giugno 2010 PROGETTAZIONE GEOTECNICA SECONDO LE NORME TECNICHE PER LE COSTRUZIONI D.M. 14.01.2008 opere di sostegno a gravità Luigi Callisto Luigi Callisto sommario opere di sostegno a gravità

Dettagli

Spinta sulle opere di sostegno

Spinta sulle opere di sostegno Spinta sulle opere di sostegno TEORIA DI COULOMB (o del cuneo di massima spinta) Charles Augustin De Coulomb (1736-1806) Ingegnere e fisico francese Ipotesi: 1. il terrapieno spingente è privo di coesione

Dettagli

Relazione di calcolo

Relazione di calcolo Relazione di calcolo Premessa Di seguito sono sviluppate 7 verifiche di stabilità in quanto esse sono rappresentative delle situazioni più gravose sotto il profilo dello spessore dei materiali accumulati,

Dettagli

MB Muro ( Rev. 3 ) Documento di Validazione. Ing. Mauro Barale

MB Muro ( Rev. 3 ) Documento di Validazione. Ing. Mauro Barale MB Muro ( Rev. 3 ) Documento di Validazione Ing. Mauro Barale barale.mauro@igeas.it Indice Premessa... 2 Campo di applicazione e limitazioni d uso... 3 Esempi di Verifica... 4 Esempio di calcolo completo...

Dettagli

SLU PER TAGLIO 109. Allo stato limite ultimo la combinazione da considerare è la seguente, con i relativi coefficienti moltiplicativi:

SLU PER TAGLIO 109. Allo stato limite ultimo la combinazione da considerare è la seguente, con i relativi coefficienti moltiplicativi: SLU PER TAGLIO 109 3.2. ESEMPI Esempio n. 28 - Verifica a taglio della trave rettangolare inflessa a doppia armatura di dimensioni 30 50 cm allo stato limite ultimo e confronto con i risultati prodotti

Dettagli

COMUNE DI PONTIDA. Via Lega Lombarda, 30 Pontida (BG)

COMUNE DI PONTIDA. Via Lega Lombarda, 30 Pontida (BG) studio assoiato Via Giorgio e Guido Paglia, n 21 24122 BERGAMO e-mail: bergamo@eurogeo.net Tel. +39 035 248689 Fax +39 035 271216 REL. SS-1 16/01/2015 COMUNE DI PONTIDA Via Lega Lombarda, 30 Pontida (BG)

Dettagli

MB Muro ( Ver. 2.0 ) Documento di Validazione. Ing. Mauro Barale

MB Muro ( Ver. 2.0 ) Documento di Validazione. Ing. Mauro Barale MB Muro ( Ver. 2.0 ) Documento di Validazione Ing. Mauro Barale barale.mauro@mbmuro.it Indice Premessa... 2 Campo di applicazione e limitazioni d uso... 3 Esempi di Verifica... 4 Esempio di calcolo completo...

Dettagli

PROVINCIA DI FIRENZE. NUMERO ELABORATO formato A4

PROVINCIA DI FIRENZE. NUMERO ELABORATO formato A4 PROVINCIA DI FIRENZE COMMITTENTE: Tenuta di Castelfalfi S.p.A. Loc. Castelfalfi 50050 - Montaione (FI) PROGETTISTA RESPONSABILE: Dott. Ing. Giovanni Cardinale COLLABORATORI: GPA INGEGNERIA - Via Leone

Dettagli

Verifiche dei fattori di sicurezza pre e post intervento Cavatore (AL)

Verifiche dei fattori di sicurezza pre e post intervento Cavatore (AL) COMUNE DI CAVATORE Gli interventi previsti in progetto prevedono opere di stabilizzazione della scarpata. La stabilizzazione del versante verrà attuata mediante esecuzione di chiodature e posa di rete

Dettagli

CAVRIGLIA. RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE STUDIO ALTIERI S.p.A. Direttore Tecnico : Ing.

CAVRIGLIA. RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE STUDIO ALTIERI S.p.A. Direttore Tecnico : Ing. COMUNE DI S.GIOVANNI Valdarno COMUNE DI Valdarno COMUNE DI CAVRIGLIA 080 TITOLO: TECNICI: RESPONSABILE DEL PROCEDIMENTO: ing. Lorenzo CURSI PROGETTISTI: RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE

Dettagli

ESERCIZIO SVOLTO E. Verifica al ribaltamento (EQU)

ESERCIZIO SVOLTO E. Verifica al ribaltamento (EQU) 1 ESERCIZIO SVOLTO E Eseguire le verifiche agli stati limite ultimi di ribaltamento, di scorrimento sul piano di posa e di schiacciamento relative alle sezioni A-A e B-B del muro di sostegno in calcestruzzo

Dettagli

ALLEGATO N.9 Portanza e cedimenti - valutazioni preliminari

ALLEGATO N.9 Portanza e cedimenti - valutazioni preliminari ALLEGATO N.9 Portanza e cedimenti - valutazioni preliminari DATI GENERALI Azione sismica NTC 2008 Lat./ Long. [WGS84] 43,618868/10,642293 Larghezza fondazione 1,2 m Lunghezza fondazione 10,0 m Profondità

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO RELAZIONE DI CALCOLO Trave di fondazione Proprietà: ditta Bianchi Srl Via Garibaldi 28 Milano (MI) Il progettista delle strutture: Ing. Rossi 2 Geometria Nome trave di fondazione su suolo elastico: Lunghezza

Dettagli

COMUNE DI PIETRACAMELA PROVINCIA DI TERAMO

COMUNE DI PIETRACAMELA PROVINCIA DI TERAMO COMUNE DI PIETRACAMELA PROVINCIA DI TERAMO UFFICI REGIONALI DEL GENIO CIVILE SEDE DI TERAMO OGGETTO: AMPLIAMENTO CIMITERO DI INTERMESOLI ALL INTERNO DEL PERIMETRO ESISTENTE Loc. Intermesoli del comune

Dettagli

Strutture di Fondazione Fondazioni e Opere di Sostegno Prova scritta di esame 11/01/2016

Strutture di Fondazione Fondazioni e Opere di Sostegno Prova scritta di esame 11/01/2016 Strutture di Fondazione Fondazioni e Opere di Sostegno Prova scritta di esame 11/1/16 Si richiede la progettazione delle fondazioni di un serbatoio circolare di diametro 15 m e altezza 5 m. Ai fini del

Dettagli

CAVRIGLIA. RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE STUDIO ALTIERI S.p.A. Direttore Tecnico : Ing.

CAVRIGLIA. RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE STUDIO ALTIERI S.p.A. Direttore Tecnico : Ing. COMUNE DI S.GIOVANNI Valdarno COMUNE DI Valdarno COMUNE DI CAVRIGLIA 081 TITOLO: TECNICI: RESPONSABILE DEL PROCEDIMENTO: ing. Lorenzo CURSI PROGETTISTI: RESPONSABILE INTEGRAZIONE SINGOLE ATTIVITA' SPECIALISTICHE

Dettagli

Criticità e problemi applicativi delle Nuove Norme Tecniche per le Costruzioni

Criticità e problemi applicativi delle Nuove Norme Tecniche per le Costruzioni Criticità e problemi applicatii delle Nuoe Norme Tecniche per le Costruzioni Verifiche agli Stati Limite con particolare riguardo alle strutture geotecniche Mantoa, 4-06-011 Dott. Ing. Antonio Sproccati

Dettagli

LAVORI DI MESSA IN SICUREZZA TRATTO STRADALE DI VIA ALTA CAMPAGNANO.

LAVORI DI MESSA IN SICUREZZA TRATTO STRADALE DI VIA ALTA CAMPAGNANO. Provincia di Rovigo Oggetto : LAVORI DI MESSA IN SICUREZZA TRATTO STRADALE DI VIA ALTA CAMPAGNANO. Richiedente : Data Il Progettista Il Committente Piazzale G. Marconi 1-45020 Giacciano con Baruchella

Dettagli

Lezione 10 GEOTECNICA

Lezione 10 GEOTECNICA Lezione 10 GEOTECNICA Docente: Ing. Giusy Mitaritonna e-mail: g.mitaritonna@poliba.it 1 - Lezione 10 A. Opere di sostegno B. Spinta delle Terre C. Teoria di Rankine (1857) D. Teoria di Coulomb (1776) 10.A

Dettagli

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008)

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008) CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008) Editare descrizione: es. Il solaio di copertura sarà portato da capriate in legno del tipo alla Palladio con estremi

Dettagli

ESEMPIO DI PROGETTAZIONE ED ESECUZIONE DI UN NUOVO EDIFICIO INDUSTRIALE SECONDO N.T.C. 2008

ESEMPIO DI PROGETTAZIONE ED ESECUZIONE DI UN NUOVO EDIFICIO INDUSTRIALE SECONDO N.T.C. 2008 ESEMPIO DI PROGETTAZIONE ED ESECUZIONE DI UN NUOVO EDIFICIO INDUSTRIALE SECONDO N.T.C. 2008 1 MODELLAZIONE STRUTTURALE PARAMETRI SISMICI REGOLARITA STRUTTURALE MODELLO DI CALCOLO 2 PARAMETRI SISMICI Parametri

Dettagli

ESERCITAZIONE N. 6 Gerarchia delle resistenze

ESERCITAZIONE N. 6 Gerarchia delle resistenze ESERCITAZIONE N. 6 Gerarchia delle resistenze Corso di Costruzioni in Zona Sismica Università degli Studi Roma Tre - Facoltà di Ingegneria Dott. Ing. Daniele Corritore Nodo trave - pilastro Si definisce

Dettagli

Esempio n Progetto e verifica della seguente trave a torsione, taglio e flessione, allo stato limite ultimo

Esempio n Progetto e verifica della seguente trave a torsione, taglio e flessione, allo stato limite ultimo SLU PER TORSIONE SEMPLICE O COMPOSTA 151 Esempio n. 38 - Progetto e verifica della seguente trave a torsione taglio e flessione allo stato limite ultimo SVOLGIMENTO Si consideri una trave in c.a. dallo

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO COMUNE di INDUNO OLONA - PROVINCIA DI VARESE PROGETTO di AMPLIAMENTO del CIMITERO COMUNALE PROGETTO STRUTTURALE ESECUTIVO RELAZIONE DI CALCOLO Brescia, 20 Ottobre 2011 1 Il dimensionamento e le verifiche

Dettagli

Interstudio Day. Geotecnica e D.M Determinazione di ag. Valutazione delle azioni sismiche. ing. Sauro Agostini

Interstudio Day. Geotecnica e D.M Determinazione di ag. Valutazione delle azioni sismiche. ing. Sauro Agostini Interstudio Day Geotecnica e D.M. 14-1-08 Valutazione delle azioni sismiche ing. Sauro Agostini 1 Determinazione di ag 2 Determinazione di ag Non esistono più le zone sismiche. L Italia è stata suddivisa

Dettagli

PROGETTO ESECUTIVO. Relazione di calcolo opere in cemento armato

PROGETTO ESECUTIVO. Relazione di calcolo opere in cemento armato AMSA Spa Azienda Milanese Servizi Ambientali Sede legale e amministrativa Via Olgettina, 25 20132 Milano MI Tel. 02-27298.1 Fax. 02-26300911 E mail: amsa@amsa.it http://www.amsa.it REALIZZAZIONE DI PARCHEGGIO

Dettagli

CITTÀ DI PIOSSASCO P.IVA

CITTÀ DI PIOSSASCO P.IVA CITTÀ DI PIOSSASCO C..A.P. 10045 PROVINCIA DI TORINO P.IVA 0161477001 ----------------------------------------- Tel. : 011/ 90.7.63-6 - Fax 011/ 90.7.69 REALIZZAZIONE NUOVI LOCULI LUNGO LA CINTA SUD DELL

Dettagli

LE NUOVE NORME TECNICHE PER LE COSTRUZIONI NTC-2017 aspetti geotecnici D E M O. Riccardo Zoppellaro

LE NUOVE NORME TECNICHE PER LE COSTRUZIONI NTC-2017 aspetti geotecnici D E M O. Riccardo Zoppellaro LE NUOVE NORME TECNICHE PER LE COSTRUZIONI NTC-2017 aspetti geotecnici D E M O Riccardo Zoppellaro ESERCITAZIONI PRATICHE DI GEOTECNICA SISMICA LE NUOVE NORME TECNICHE PER LE COSTRUZIONI NTC 2017 aspetti

Dettagli

RELAZIONE DI CALCOLO MURI IN C.A.

RELAZIONE DI CALCOLO MURI IN C.A. COMUNE DI ROMA S.P.Q.R. DIPARTIMENTO IX III U.O. B50 MONTESTALLONARA LEGGE 18 APRILE 1962 n 167 PROGETTO DEFINITIVO - 1 STRALCIO OPERE DI URBANIZZAZIONE PRIMARIA RELAZIONE DI CALCOLO MURI IN C.A. INDICE

Dettagli

Ponti Isolati Criteri di progettazione ed analisi

Ponti Isolati Criteri di progettazione ed analisi Ponti Isolati Criteri di progettazione ed analisi Università degli Studi di Pavia 1/38 Laboratorio di progettazione strutturale A 1 Sommario 1) Criteri base della progettazione 2) Componenti del sistema

Dettagli

CDWWin - Computer Design of Walls. CDWWin Release 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 e Validazione del codice di calcolo

CDWWin - Computer Design of Walls. CDWWin Release 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 e Validazione del codice di calcolo CDWWin - Computer Design of Walls CDWWin Release 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 e 2018 Validazione del codice di calcolo Introduzione Il programma CDWWin della S.T.S. S.r.l. effettua

Dettagli

SUPERSTRADA A PEDAGGIO PEDEMONTANA VENETA

SUPERSTRADA A PEDAGGIO PEDEMONTANA VENETA COMMISSARIO DELEGATO PER L EMERGENZA DETERMINATASI NEL SETTORE DEL TRAFFICO E DELLA MOBILITA NEL TERRITORIO DELLE PROVINCE DI TREVISO E VICENZA SUPERSTRADA A PEDAGGIO PEDEMONTANA VENETA PROGETTO DEFINITIVO

Dettagli

Regione Campania - Genio Civile

Regione Campania - Genio Civile Regione Campania - Genio Civile Controllo di progetti relativi ad edifici in muratura Le prescrizioni generali dell Ordinanza 3274 e succ. modif. La verifica degli edifici in muratura ordinaria per i carichi

Dettagli

NI.C.A. NUOVI EDIFICI IN C.A. SCHEDA SPECIFICA SEZIONE II Versione 01 Febbraio 2016

NI.C.A. NUOVI EDIFICI IN C.A. SCHEDA SPECIFICA SEZIONE II Versione 01 Febbraio 2016 NI.C.A. NUOVI EDIFICI IN C.A. SCHEDA SPECIFICA SEZIONE II Versione 01 Febbraio 2016 2.A QUADRO DI SINTESI SULLE AZIONI CONSIDERATE 1 Carichi superficiali in [dan/mq] Impalcato TRAVE IN C.A. Impalcato SOLETTA

Dettagli

Via Pinarella. Relazione geotecnica e sulle fondazioni Edificio Sud. Comune di Cervia (Ra)

Via Pinarella. Relazione geotecnica e sulle fondazioni Edificio Sud. Comune di Cervia (Ra) Via Pinarella Relazione geotecnica e sulle fondazioni Relazione geotecnica e sulle fondazioni Edificio Sud Via Pinarella Comune di Cervia (Ra) INDICE INDICE... 1 1 Descrizione della struttura di fondazione...

Dettagli

INDICE SUPERFICIE DI SCORRIMENTO CIRCOLARE... 43

INDICE SUPERFICIE DI SCORRIMENTO CIRCOLARE... 43 INDICE 1. NOTE ILLUSTRATIVE SOFTWARE... 3 2. DEFINIZIONE... 3 3. INTRODUZIONE ALL ANALISI DI STABILITA...4 3.1 METODO EQUILIBRIO LIMITE (LEM)... 4 3.1.1 Metodo dei conci... 5 4. VALUTAZIONE DELL AZIONE

Dettagli

Indice. Premessa... 11

Indice. Premessa... 11 Indice Premessa... 11 Capitolo 1 PROFILO STORICO DELL ANALISI STRUTTURALE E DELLA NORMATIVA TECNICA IN ZONA SISMICA... 15 1. Una rivoluzione all inizio del nuovo millennio... 15 2. Evoluzione storica del

Dettagli

OPEREE DI SOSTEGNO II

OPEREE DI SOSTEGNO II Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì OPEREE DI SOSTEGNO II AGGIORNAMENTO 25/01/2015 Progetto di un muro di sostegno a gravità in cls Sviluppiamo

Dettagli

OPEREE DI SOSTEGNO II

OPEREE DI SOSTEGNO II Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì OPEREE DI SOSTEGNO II AGGIORNAMENTO 28/02/2013 Progetto di un muro di sostegno a gravità in cls Sviluppiamo l argomento direttamente

Dettagli

P O N T E S U L L O S T R E T T O D I M E S S I N A PROGETTO DEFINITIVO

P O N T E S U L L O S T R E T T O D I M E S S I N A PROGETTO DEFINITIVO Concessionaria per la progettazione, realizzazione e gestione del collegamento stabile tra la Sicilia e il Continente Organismo di Diritto Pubblico (Legge n 1158 del 17 dicembre 1971, modificata dal D.Lgs.

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO Gruppo di progettazione Ing. Francesco Donatelli - Ing. Nicola Montesano Mario Cerillo Arch. Gianfranco Mariani RELAZIONE DI CALCOLO MURO DI SOSTEGNO IN C.A. 1) - Premesse e caratteristiche generali delle

Dettagli

COMUNE DI BOLOGNA RELAZIONE DI CALCOLO DELLE OPERE STRUTTURALI - CARATTERISTICHE MATERIALI E - GEOTECNICA

COMUNE DI BOLOGNA RELAZIONE DI CALCOLO DELLE OPERE STRUTTURALI - CARATTERISTICHE MATERIALI E - GEOTECNICA COMUNE DI BOLOGNA PROGETTO ESECUTIVO DEL SISTEMA DI LAMINAZIONE DELLE ACQUE METEORICHE E DELLO SPOSTAMENTO DELLA FOGNATURA MISTA E DELLA CANALETTA DELLE LAME NELL AMBITO DELLA REALIZZAZIONE DELL EDIFICIO

Dettagli