Per studiare lo spostamento prodotto R*T ragioniamo nel modo seguente:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Per studiare lo spostamento prodotto R*T ragioniamo nel modo seguente:"

Transcript

1 DECIMA LEZIONE COMPOSIZIONE DI ISOMETRIE Stiamo studiando la composizione delle isometrie elementari: 1. Traslazioni e rotazioni, che sono isometrie dirette; 2. Riflessioni e glisso-riflessioni, che sono isometrie inverse. Nel seguito indicheremo brevemente con le lettere T, R, S, G una generica traslazione, rotazione, riflessione o glisso-riflessione ed indicheremo col simbolo di prodotto, come ad esempio in R*T, la loro composizione. La proprietà notevole è che le isometrie elementari sono "chiuse" per composizione (si dice che formano un gruppo ): il risultato finale della composizione è ancora una isometria elementare. Abbiamo verificato questa proprietà nel caso delle riflessioni. Oggi vediamo tre nuovi casi, ottenuti componendo una qualsiasi coppia di isometrie estratta dalla terna (T,R,S). Caso 1: R*T traslazione seguita da una rotazione Dico che la composizione di una traslazione di vettore V e di una rotazione R (O, ), di angolo e di centro O, è ancora una rotazione R (, ) dello stesso angolo attorno ad un nuovo centro. (La traslazione sposta il centro senza cambiare l'angolo) Per studiare lo spostamento prodotto R*T ragioniamo nel modo seguente: Anzitutto osserviamo che le traslazioni e le rotazioni sono isometrie dirette che non cambiano l orientazione dei triangoli; quindi anche il loro prodotto non cambia l orientazione dei triangoli e perciò è una isometria diretta. Se accettiamo che il prodotto di isometrie elementari sia una isometria elementare, ne deduciamo che il prodotto R*T non può essere altro che una traslazione o una rotazione. Per vedere quale dei due casi si realizza seguiamo l'idea della ricerca dei punti fissi: se l'isometria prodotto è una rotazione deve avere un punto fisso; questo punto fisso è costruito cercando quel punto del piano per il quale lo spostamento dovuto alla traslazione è annullato (o compensato) dallo spostamento dovuto alla rotazione. Il punto è individuato dalla seguente costruzione (vedi figura 1) fig. 1

2 1. da O si manda la perpendicolare n al vettore della traslazione; 2. si ruota la perpendicolare n attorno ad O dell'angolo + nel senso della rotazione; si ottiene la retta a 3. si prende su a il punto che dista da n di (cioè di metà della traslazione), in senso opposto al verso della traslazione. Il punto è il punto fisso cercato: infatti la traslazione manda nel simmetrico O I rispetto ad n e la rotazione riporta O I in (vedi figura 2) Fig. 2 Adesso abbiamo tutti gli elementi per studiare l isometria prodotto R*T. Dobbiamo verificare che lo spostamento che un generico punto P del piano subisce a causa della traslazione di vettore V seguita dalla rotazione di angolo attorno ad O coincide esattamente con lo spostamento prodotto dalla singola rotazione di angolo attorno ad. Verifica: consideriamo il caso concreto in cui O sia l origine del piano cartesiano, la rotazione attorno ad O sia di 90 in senso antiorario e la traslazione avvenga lungo l asse delle ascisse e sia di lunghezza di quattro quadretti. In questo caso il punto ha ascissa x=-2 e ordinata y=+2. Infatti la retta a è nel nostro esempio ruotata rispetto all asse delle ordinate di 45 in senso antiorario. Fig. 3

3 Studiamo lo spostamento che l origine O subisce separatamente nel prodotto R*T e nella rotazione di 90 attorno ad : nel prodotto R*T: la traslazione T manda l origine O nel punto O dell asse delle ascisse a distanza di quattro quadretti da O ; la successiva rotazione di 90 porta l asse delle ascisse sull asse delle ordinate e manda il punto O nel punto O di ordinata quattro quadretti (vedi figura 3) nella rotazione attorno a : il punto si trova sull asse del segmento O O e l angolo O O è di 90 ; quindi la rotazione antioraria di 90 attorno ad porta direttamente O in O (vedi figura 3) I due spostamenti di O coincidono. Lo stesso vale per qualunque altro punto del piano. Lo studente può verificare questa affermazione nel caso dei punti O ed O. Rimane così dimostrato che il prodotto R*T è la rotazione di 90 attorno ad. Caso 2: S*T traslazione seguita da riflessione Dico che la composizione di una traslazione e di una riflessione è una glisso-riflessione lungo un asse traslato (la traslazione sposta l'asse della riflessione e produce uno scivolamento lungo il nuovo asse). Spieghiamo come si ottiene il nuovo asse e come si calcola lo scorrimento: Il nuovo asse m è ottenuto traslando il vecchio asse l di in senso opposto alla traslazione; lo scorrimento s lungo m è pari alla proiezione di V lungo m (vedi figura 4) Fig. 4 Verifica: Verifichiamo che il prodotto S*T è la glisso-riflessione di asse m e scorrimento s seguendo al solito lo spostamento di un punto P prima nella traslazione e nella successiva riflessione (percorso rosso) e poi nella glisso-riflessione equivalente (percorso blù) (vedi figura 5)

4 Fig. 5 Nel percorso rosso ho eseguito prima la traslazione da P a P e poi la riflessione da P a P rispetto ad l. Nel percorso blu ho eseguito prima la riflessione da P a P rispetto ad m e poi lo scorrimento di due quadretti lungo m ( i due quadretti dello scorrimento sono la componente parallela ad l della traslazione). Caso 3: S*R rotazione seguita da una riflessione Dico che la composizione di una rotazione e di una riflessione è una glisso-riflessione; il nuovo asse m è ruotato rispetto all'asse l originale dell angolo 1/2 in senso opposto al verso della rotazione. Spieghiamo come si costruisce il nuovo asse m e lo scorrimento lungo m. m = asse della glissoriflessione AB = scorrimento Fig. 6 dal centro O della rotazione abbassiamo la perpendicolare all asse l della riflessione fino al punto B (vedi figura 6) tracciamo quindi la circonferenza di centro O e raggio OB; supposto che la rotazione attorno ad O avvenga in senso antiorario, mi sposto sulla circonferenza a partire da B in senso orario (se la rotazione attorno ad O fosse in senso orario mi sposterei sulla circonferenza a partire da B in senso antiorario) mi sposto da B fino a giungere al punto A individuato dal raggio OA che forma con il raggio OB un angolo pari all angolo della rotazione attorno ad O. La retta AB è l asse m della glisso-riflessione; il segmento AB è lo scorrimento della glisso-riflessione. Verifica: Anche in questo caso ci limitiamo a verificare l enunciato in un caso concreto. Supponiamo che l asse della riflessione sia orizzontale e che la rotazione sia di 90 in senso antiorario attorno ad un centro O che dista due quadretti dall asse l (vedi figura 7)

5 P I = rotazione rispetto ad O P II = riflessione per l = 90 Fig. 7 Seguiamo lo spostamento (percorso rosso) che il punto medio P del segmento AB (vedi figura 6) compie nella rotazione del centro O e nella successiva riflessione rispetto ad l. Poi seguiamo lo spostamento (percorso blù) che lo stesso punto esegue nella glisso-riflessione di asse m e scorrimento AB. Nel percorso rosso P è andato con la rotazione di 90 in P I e poi in P II con la riflessione rispetto ad l. Nel percorso nero P è scivolato lungo m di AB arrivando ancora in P II.

Ci proponiamo di mostrare che fatalmente si ricade in una delle precedenti isometrie.

Ci proponiamo di mostrare che fatalmente si ricade in una delle precedenti isometrie. UNDICESIMA LEZIONE DECOMPOSIZIONE DI ISOMETRIE Chiudiamo la discussione sulle isometrie facendo vedere come si analizza una generica isometria. Ciò significa in questa lezione consideriamo una qualsiasi

Dettagli

Mat Compl 2015/16 - Esercizi - Settimana 05

Mat Compl 2015/16 - Esercizi - Settimana 05 Mat Compl 2015/16 - Esercizi - Settimana 05 Isometrie. 1. Dati un mezzo giro ρ O,π e una riflessione σ r con O / r, esprimere ρ O,π come prodotto di riflessioni in cui compaia una sola volta σ r. Soluzione.

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Breve introduzione informale alle isometrie del piano

Breve introduzione informale alle isometrie del piano Breve introduzione informale alle isometrie del piano Bibliografia: John Stillwell, The Four Pillars of Geometry, Springer 2005. (Ebook del Politecnico di Milano, scaricabile dal sito del Polimi). Federico

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. Un isometria è perciò una trasformazione geometrica che conserva la distanza tra due punti. onsideriamo alcune particolari trasformazioni isometriche. 2.1.1. Traslazioni hiamiamo vettore un segmento sul

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

Angoli al centro e alla circonferenza

Angoli al centro e alla circonferenza Angoli al centro e alla circonferenza angolo al centro se il vertice coincide con il centro del cerchio proprietà ad angoli uguali corrispondono archi uguali A B angolo alla circonferenza se ha il vertice

Dettagli

Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra

Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra Esercizio 1. Traslazioni. Per traslare un oggetto di un vettore, bisogna prima definire l oggetto ed il vettore. Consideriamo la retta y = 2x

Dettagli

NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09

NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09 NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09 Introduzione Prima di analizzare le isometrie è necessario fare una breve introduzione. Bisogna innanzitutto ricordare che due

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Nel triangolo ABC la retta DE sia parallela alla base BC. La proposizione VI.2 afferma che AD: BD = AE: EC

Nel triangolo ABC la retta DE sia parallela alla base BC. La proposizione VI.2 afferma che AD: BD = AE: EC OTTAVA LEZIONE- LE ISOMETRIE Talete e primo criterio di similitudine Prima di iniziare il nuovo argomento delle isometrie terminiamo l'esame dei libri di Euclide con l'enunciato (senza dimostrazione) del

Dettagli

Un approccio costruttivo alle trasformazioni geometriche del piano

Un approccio costruttivo alle trasformazioni geometriche del piano Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

Negli esercizi che seguono ci sono alcune cose da specificare:

Negli esercizi che seguono ci sono alcune cose da specificare: DISCLAIMER Negli esercizi che seguono ci sono alcune cose da specificare: ) voi dovete interpretare i simboli V e A (R) sempre come R. Questo oggetto sarà chiamato alle volte piano affine e alle volte

Dettagli

Le simmetrie dei poliedri regolari

Le simmetrie dei poliedri regolari Le simmetrie dei poliedri regolari Le isometrie del piano e dello spazio sono state classificate da due illustri matematici. Per quanto riguarda il piano, il teorema di Chasles, del 8, afferma che nel

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

RETTE NEL PIANO RETTE PARALLELE

RETTE NEL PIANO RETTE PARALLELE RETTE NEL PIANO RETTE PARALLELE NON HANNO PUNTI IN COMUNE E QUINDI NON SI INCONTRANO MAI a SIMBOLO: aǁb b RETTE SOVRAPPOSTE HANNO TUTTI I PUNTI IN COMUNE RETTE INCIDENTI HANNO UN SOLO PUNTO IN COMUNE RETTE

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 150 Tonzig Fondamenti di Meccanica classica 5.5 Velocità e accelerazione nel moto di rototraslazione 1. miglior chiarimento di quanto precede, consideriamo il moto di un cilindro di raggio R che ruota

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

GEOMETRIA ANALITICA orizzontale verticale ORIGINE

GEOMETRIA ANALITICA orizzontale verticale ORIGINE GEOMETRIA ANALITICA Def: Il piano cartesiano è un sistema di ASSI CARTESIANI (uno orizzontale e uno verticale) orientati che si incontrano in un punto detto ORIGINE. ASSE DELLE ASCISSE o ASSE DELLE x (orizzontale)

Dettagli

ISTRUZIONI PER INIZIARE

ISTRUZIONI PER INIZIARE 1 ISTRUZIONI PER INIZIARE Questa è la barra di menu: serve per dare tutte le informazioni sui file che devi creare, salvare, ecc. Questa icona serve per chiudere a bordo pagina il file e poi riaprirlo

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

punti uniti rette di punti uniti rette unite qual è la trasformazione inversa

punti uniti rette di punti uniti rette unite qual è la trasformazione inversa 3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto

Dettagli

C C B B. Fig. C4.1 Isometria.

C C B B. Fig. C4.1 Isometria. 4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che

Dettagli

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE. Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

Trasformazioni - II. Classificazione delle trasformazioni in R 3. Rotazioni in R 3. Lezione 6 Maggio Lezione 6 maggio 2003

Trasformazioni - II. Classificazione delle trasformazioni in R 3. Rotazioni in R 3. Lezione 6 Maggio Lezione 6 maggio 2003 Corso di Laurea in Disegno Industriale Corso di Metodi Numerici per il Design Lezione 6 maggio Trasformazioni - II F. Caliò Classificazione delle trasformazioni in R (TITOLO) Rotazioni in R (TITOLO) Rotazione

Dettagli

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi

Dettagli

GEOMETRIA /2009 II

GEOMETRIA /2009 II Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:

Dettagli

Classe 3Cmm Esercizi di Matematica 8 Novembre Si dia una definizione di vettore. 2. Cosa si intende per trasformazione geometrica?

Classe 3Cmm Esercizi di Matematica 8 Novembre Si dia una definizione di vettore. 2. Cosa si intende per trasformazione geometrica? Classe 3Cmm Esercizi di Matematica 8 Novembre 2016 1. Si dia una definizione di vettore. 2. Cosa si intende per trasformazione geometrica? 3. Consideriamo il vettore p ( 2, 3) associato alla traslazione

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano Fondamenti e didattica della matematica - Geometria - Corso speciale - Facoltà di Scienze della Formazione - Università Milano Bicocca - a.a. 2007-2008 10 ottobre 2007 Marina Bertolini (marina.bertolini@mat.unimi.it)

Dettagli

LE COORDINATE CARTESIANE

LE COORDINATE CARTESIANE CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE INTRODUZIONE L iperbole fa parte di un insieme di curve (circonferenza, parabola, ellisse) chiamate coniche, perché si possono

Dettagli

Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece

Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece ha lasciato inalterato. Si chiama trasformazione geometrica un

Dettagli

1 Congruenza diretta e inversa

1 Congruenza diretta e inversa 1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile-Architettura e dell Edilizia SPAZI EUCLIDEI. TRASFORMAZIONI. ORIENTAZIONI. FORMULE DI GEOMETRIA IN R. Docente:

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Un trasformazione geometrica t è una corrispondenza biunivoca che fa corrispondere ad un punto P del piano un altro punto P, ad una figura F una figura F. Il punto P si dice il trasformato di P secondo

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Esercizio. x = 0 x = Date le rette r : y = t e s : y = t, si verifichi che sono sghembe e si scrivano le equazioni z = t z = t parametriche di una retta r ortogonale ed

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

Vettori e Calcolo vettoriale

Vettori e Calcolo vettoriale Vettori e Calcolo vettoriale Ci poniamo nello spazio ordinario S, in cui valgono gli assiomi della geometria euclidea. I vettori vengono rappresentati mediante frecce, con un punto iniziale e un punto

Dettagli

LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG La Retta Cap. II Pag. 1

LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG La Retta Cap. II Pag. 1 II. LA RETTA La Retta Cap. II Pag. 1 LA RETTA In un riferimento cartesiano ortogonale una qualunque retta si può orientare stabilendo la sua direzione e verso, secondo l angolo che essa forma con il verso

Dettagli

Proprietà di un triangolo

Proprietà di un triangolo Poligono con tre lati e tre angoli. Proprietà di un triangolo In un triangolo : I lati e i vertici sono consecutivi fra loro; La somma degli angoli interni è 180 ; La somma degli angoli esterni è 360 Ciascun

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

Trasformazioni geometriche del piano. 3 marzo 2013

Trasformazioni geometriche del piano. 3 marzo 2013 Trasformazioni geometriche del piano 3 marzo 2013 1 Indice 1 Trasformazioni geometriche del piano 3 1.1 Affinità............................... 4 1.2 Isometrie.............................. 8 1.2.1 Simmetrie..........................

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 3 Le Isometrie trasformazioni geometriche che lasciano invariate la forma e le dimensioni delle figure I movimenti Traslazioni Rotazioni Ribaltamenti Principali

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GEOMETRIA ANALITICA Il piano cartesiano rof. Calogero Contrino iano cartesiano Su un piano, si considerino due rette incidenti, sulle quali siano fissati due sistemi di ascisse. Si trasli una delle

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 1 LA PERPENDICOLARITA NELLO SPAZIO Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 2.1 La perpendicolarità retta piano Nel piano la perpendicolarità tra

Dettagli

Le isometrie Capitolo

Le isometrie Capitolo Le isometrie Capitolo Simmetria centrale e assiale erifica per la classe prima COGNOME............................... NOME............................. Classe.................................... Data...............................

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti

Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

LA RETTA NEL PIANO CARTESIANO

LA RETTA NEL PIANO CARTESIANO LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

Lavori di gruppo per il corso di Storia della Matematica

Lavori di gruppo per il corso di Storia della Matematica Lavori di gruppo per il corso di Storia della Matematica Chiara Avenoso Benedetta Paganizza Marianna Piredda 2maggio2017 Problema 1 Costruire con GeoGebra la prima e la seconda curva disegnate dal compasso

Dettagli

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x).

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x). Trasformazioni geometriche di R In questo paragrafo studiamo alcune trasformazioni geometriche del piano R Per trasformazioni si intendono sempre delle applicazioni bigettive f : R R Le trasformazioni

Dettagli

Distanza di due punti sulla retta

Distanza di due punti sulla retta Sist em a di c oordinat e asc isse sulla ret t a Prendo una retta e su di essa fisso un punto O (origine) e ad esso associo il valore 0, poi, a destra di 0, fisso un altro punto e lo chiamo U (punto unita

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

Un modello matematico della riflessione e rifrazione. Riflessione

Un modello matematico della riflessione e rifrazione. Riflessione Un modello matematico della riflessione e rifrazione. Proposizioni iniziali 1. In un dato mezzo la luce si muove con una velocità costante lungo una retta 1. 2. La velocità della luce dipende dal mezzo

Dettagli

Un modello matematico della riflessione e rifrazione. Riflessione

Un modello matematico della riflessione e rifrazione. Riflessione Un modello matematico della riflessione e rifrazione. Proposizioni iniziali 1. In un dato mezzo la luce si muove con una velocità costante lungo una retta 1. 2. La velocità della luce dipende dal mezzo

Dettagli

Compito in classe del 29/01/2013 LA CIRCONFERENZA per il Liceo Scientifico

Compito in classe del 29/01/2013 LA CIRCONFERENZA per il Liceo Scientifico www.matematicamente.it Compito sulla circonferenza 1 Compito in classe del 29/01/2013 LA CIRCONFERENZA per il Liceo Scientifico 1. Determina e rappresenta graficamente l equazione della circonferenza di

Dettagli

Trasformazioni geometriche nel piano: dalle isometrie alle affinità

Trasformazioni geometriche nel piano: dalle isometrie alle affinità Trasformazioni geometriche nel piano: dalle isometrie alle affinità Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa

Dettagli

Lezioni del 29 settembre e 1 ottobre.

Lezioni del 29 settembre e 1 ottobre. Lezioni del 29 settembre e 1 ottobre. 1. Ricordiamo informalmente e brevemente la nozione di angolo e di misura di un angolo in radianti nel senso della geometria elementare. Per angolo intendiamo una

Dettagli

4^C - Esercitazione recupero n 8

4^C - Esercitazione recupero n 8 4^C - Esercitazione recupero n 8 1 La circonferenza g passa per B 0, 4 ed è tangente in O 0,0 alla retta di coefficiente angolare m= 4 La parabola l passa per A 4,0 ed è tangente in O a g a Determina le

Dettagli

1 L omotetia. i punti O, A e A siano allineati

1 L omotetia. i punti O, A e A siano allineati 1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che

Dettagli

Esame di Stato di Liceo Scientifico P.N.I. a.s Sessione Ordinaria 23 giugno 2005 Q1 Q2 Q3 Questionario

Esame di Stato di Liceo Scientifico P.N.I. a.s Sessione Ordinaria 23 giugno 2005 Q1 Q2 Q3 Questionario 1 Esame di Stato di Liceo Scientifico P.N.I. a.s. 004-00 Sessione Ordinaria 3 giugno 00 Q1 Q Q3 Questionario Q1- Si dimostri che il lato del decagono regolare inscritto in un cerchio è la sezione aurea

Dettagli

TRASFORMAZIONE PRIMA SELEZIONE SELEZIONE SUCCESSIVA

TRASFORMAZIONE PRIMA SELEZIONE SELEZIONE SUCCESSIVA Come ottenere la figura immagine di una figura data Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione Clicca sul

Dettagli

Appunti di Matematica 2 - Il piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale

Appunti di Matematica 2 - Il piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale Il piano cartesiano Sistema di riferimento cartesiano ortogonale Fissare nel piano un sistema di riferimento cartesiano ortogonale significa fissare due rette perpendicolari orientate chiamate asse e asse

Dettagli

Distanza tra punti e punto medio di un segmento. x1 + x 2

Distanza tra punti e punto medio di un segmento. x1 + x 2 Distanza tra punti e punto medio di un segmento Siano P = (x 1, y 1 ) e Q = (x 2, y 2 ) due punti del piano cartesiano. La distanza di P da Q vale: P Q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 (si utilizza il Teorema

Dettagli

Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali?

Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali? Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali? Enrico Schlesinger Laboratorio FDS Milano, 13 novembre, 2013 Decorazioni Alhambra Escher Sky and water

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

9. Nel triangolo ABC, rettangolo in A, gli angoli acuti di vertici B e C misurano rispettivamente b e

9. Nel triangolo ABC, rettangolo in A, gli angoli acuti di vertici B e C misurano rispettivamente b e 4^ - MTEMTI compito n - 07-8 Un settore circolare ha perimetro m ed area 9 m alcola la misura del raggio e dell'angolo al centro (in radianti ed in gradi) partire dal triangolo equilatero (in nero), di

Dettagli

GEOMETRIA ANALITICA Prof. Erasmo Modica

GEOMETRIA ANALITICA Prof. Erasmo Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

GRAFICI DI FUNZIONI E TRASFORMAZIONI DEL PIANO

GRAFICI DI FUNZIONI E TRASFORMAZIONI DEL PIANO Note su GRAFICI DI FUNZINI E TRASFRMAZINI DEL IAN Giulia Fidanza In queste note ci proponiamo di trovare l equazione di una funzione il cui grafico sia ottenuto dal grafico di una funzione nota attraverso

Dettagli

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI ALGEBRA LINEARE (II PARTE) versione: 4 maggio 26 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli autovalori

Dettagli

Proprietà focali delle coniche.

Proprietà focali delle coniche. roprietà focali delle coniche. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 2014 Indice 1 Coniche 1 1.1 arabola....................................... 1 1.1.1 roprietà focale

Dettagli

Le isometrie del piano (DESM-DM 2014/2015)

Le isometrie del piano (DESM-DM 2014/2015) Le isometrie del piano (DESM-DM 2014/2015) Attenzione: per completezza di lettura sono incluse alcune nozioni sulla teoria dei gruppi che non sono state svolte a lezione e non verranno richieste all esame:

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli