CHE COSA DIFFERENZIA I DIVERSI COMPORTAMENTI?

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CHE COSA DIFFERENZIA I DIVERSI COMPORTAMENTI?"

Transcript

1 CHE COSA DIFFERENZIA I DIVERSI COMPORTAMENTI? * n+ -* 8 6 n+ n -* 4 2 n

2 Se n n * * I termini si avvicinano sempre più al punto di equilibrio * * punto di equilibrio attrattivo

3 Se n n * * I termini si allontanano sempre più dal punto di equilibrio * * punto di equilibrio repulsivo

4 n n * * Rapporto dei cateti Pendenza della retta f ( ) b

5 Teorema: Si consideri il sistema dinamico lineare n n b Si ha n n b per n ( ) b * b se il punto * è attrattivo nel senso che * per ogni valore iniziale n se il punto * è repulsivo nel senso che * per ogni valore iniziale non tende a n

6 popolazione Dinamica di una popolazione di cinciallegre con immigrazione 3 n+ = n * * b La popolazione nel lungo periodo si assesta al valore *=25, indipendentemente dal dato iniziale. Il punto *=25 è il punto stazionario di questo modello. anni

7 popolazione Dinamica di una popolazione di cavallette con prelievo 25 n+ = n * * b anni Anche partendo da valori vicini al valore stazionario *=72 la popolazione non si stabilizza vicino ad esso. Il punto stazionario non è stabile.

8 SE IL MODELLO NON E LINEARE I punti di equilibrio possono essere più di uno Il carattere del punto * è determinata dalla pendenza della curva f in * ( cioè f (*) ) Per sistemi dinamici non lineari se la pendenza della retta tangente alla curva f nel punto di equilibrio è in valore assoluto minore di allora il punto * è attrattivo nel senso che per ogni condizione iniziale vicina all equilibrio, la successione tende Lucia Della a Croce * - Matematica

9 IL MODELLO DI MALTHUS NEL CASO CONTINUO Il modello discreto si basa sull ipotesi cha la riproduzione sia concentrata in una stagione dell anno. Il passaggio da una generazione all altra è descritto dalla variabile tempo che assume valori interi: t t In molte popolazione questa approssimazione non è corretta, gli individui si riproducono con continuità. Occorre formulare un modello in cui il tempo è una variabile che assume valori reali Invece di studiare il passaggio dalla generazione t alla generazione t si considera un breve intervallo di tempo ( t ) ( t) nascite( t, t ) morti( t, t )

10 IPOTESI (Analoghe al caso discreto) Il numero di nati è proporzionale a: Numero di individui presenti al tempo t : (t) Tasso medio di natalità nell unita di tempo Durata dell intervallo di tempo considerata nascite ( t ) ( t)

11 Il numero di morti è proporzionale a: Numero di individui presenti al tempo t : (t) Tasso medio di mortalità nell unita di tempo Durata dell intervallo di tempo considerata morti ( t, t ) ( t)

12 L equazione di bilancio diventa: ( t ) ( t) ( t) ( t) ( t ) ( t) ( ) ( t) Per intervalli di tempo molto piccoli si ottiene: ( ) d ( ) r Equazione differenziale

13 ' ( x) f ( x, ) (x) (x) (x) (x) (x)

14 ' ( x) f ( x) ( x, ) Problema di Cauch ( x ) * (x)

15 d r r ( ) ' d t t ' r ln( ln( ) ) rt ln( ) rt rt rt exp( rt rt ) exp( rt ) ( t )

16 exp( rt) rt e Il caso continuo risulta equivalente al caso discreto r e ( ) t exp(r) t

17 Numero di individui Andamento qualitativo dell abbondanza della popolazione malthusiana continua al variare del parametro r Accrescimento Malthusiano continuo e rt r> crescita esponenziale 8 r =.2 > r = -.6 < r< declina all estinzione tempo

18 ALTRE APPLICAZIONI DELLA CRESCITA ESPONENZIALE Gli stessi modelli possono descrivere fenomeni che appaiono in ambiti molto diversi Datazione di materiale biologico (decadimento radioattivo) Livello di glucosio nel sangue Modello di diffusione dell AIDS (Modello di Ho)

19 DATAZIONE AL CARBONIO C4 E noto che gli elementi radioattivi sono instabili, nel senso che decadono in isotopi di altri elementi mediante l emissione di particelle alpha (nuclei di elio), particelle beta (elettroni) o fotoni. Si può descrivere il processo di decadimento di un numero elevato di nuclei radioattivi basandosi sulla seguente legge sperimentale: La diminuizione del numero di nuclei radioattivi durante un intervallo di tempo è direttamente proporzionale alla lunghezza dell intervallo e al numero di nuclei presenti all inizio dell intervallo.

20 N(t) t Numero di nuclei radioattivi al tempo t Intervallo di tempo N ( t t) N( t) kn( t) t K costante di proporzionalità N(t) t è un numero intero (numero di nuclei) varia con continuità. È necessario idealizzare il fenomeno interpretando anziché discreta (per es. misura di massa). N(t) come misura continua

21 N( t t) N( t) lim t kn( t) t Si ottiene cioè l equazione differenziale lineare: dn kn(t) che risolta (separando le variabili ed integrando, vedi Malthus continuo) fornisce la soluzione: N ( t) N exp( k( t t )) N valore iniziale Legge di decadimento radioattivo

DIFFUSIONE DELL AIDS. ( Modello di Ho )

DIFFUSIONE DELL AIDS. ( Modello di Ho ) DIFFUSIONE DELL AIDS ( Modello di Ho - 1994 ) Il virus HIV (Human Immunodeficienc Virus) provoca lo sviluppo dell AIDS (Acquired ImmunoDeficienc Sindrome) Il virus attacca una classe di linfociti ( CD4

Dettagli

3 SITUAZIONI POSSIBILI. la popolazione è in declino I morti superano i nati. Lucia Della Croce - Matematica applicata alla biologia

3 SITUAZIONI POSSIBILI. la popolazione è in declino I morti superano i nati. Lucia Della Croce - Matematica applicata alla biologia 3 SITUAZIONI POSSIBILI 1 la popolazione è in declino I morti superano i nati EVOLUZIONE DI UNA POPOLAZIONE DI BATTERI IN DECLINO popolazione 3 Con immigrazione: 2.5 2 Yn = 0.8 * Yn-1 + 0.2 1.5 1 0.5 0

Dettagli

Riassunto: 17 ottobre / 1

Riassunto: 17 ottobre / 1 Riassunto: Il modello di Malthus classico (discreto) prevede solo 3 possibili evoluzioni, che dipendono dal tasso netto di crescita r (costante): - se r = n m > 0 si osserva esplosione demografica - se

Dettagli

3 SITUAZIONI POSSIBILI. la popolazione è in declino I morti superano i nati. Lucia Della Croce - Matematica applicata alla Biologia

3 SITUAZIONI POSSIBILI. la popolazione è in declino I morti superano i nati. Lucia Della Croce - Matematica applicata alla Biologia 3 SITUAZIONI POSSIBILI 1 la popolazione è in declino I morti superano i nati applicata alla Biologia EVOLUZIONE DI UNA POPOLAZIONE DI BATTERI IN DECLINO applicata alla Biologia popolazione 3 Con immigrazione:

Dettagli

CRESCITA DI POPOLAZIONI. Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t:

CRESCITA DI POPOLAZIONI. Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t: CRESCITA DI POPOLAZIONI Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t: n : R N Questa è una funzione costante a tratti, cioè una

Dettagli

Matematica Lezione 11

Matematica Lezione 11 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 11 Sonia Cannas 15/11/2018 Funzione esponenziale Abbiamo disegnato il grafico qualitativo delle funzioni esponenziali y = a x con a

Dettagli

1 Sistemi dinamici discreti

1 Sistemi dinamici discreti Esercizi sui sistemi dinamici discreti e continui Esercitatori: Dott. Alessandro Ottazzi Dott.ssa Maria Vallarino 1 Sistemi dinamici discreti Esercizio 1. In un vivaio di orate la numerosità delle orate

Dettagli

è movimento, è capacità di perpetuarsi, è un complicato insieme di processi fisici e bio-chimici è capacità di riflessione e consapevolezza

è movimento, è capacità di perpetuarsi, è un complicato insieme di processi fisici e bio-chimici è capacità di riflessione e consapevolezza Molte le definizioni possibili: Vita è movimento, è capacità di perpetuarsi, è un complicato insieme di processi fisici e bio-chimici è capacità di riflessione e consapevolezza...... CONSEGUENZA (semplice):

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Equazioni differenziali ordinarie del primo ordine: Equazioni del tipo x (t) = f(t) Equazioni lineari del tipo x (t) + ax(t) = b Equazioni a variabili separabili del tipo x t =

Dettagli

Modelli matematici e realtà:

Modelli matematici e realtà: Piano Lauree Scientifiche Matematica e Statistica 2011-12 Modelli matematici e realtà: Laboratorio computazionale sulle equazioni differenziali prima parte R. Vermiglio 1 1 Dipartimento di Matematica e

Dettagli

CRESCITA DI POPOLAZIONI BATTERICHE

CRESCITA DI POPOLAZIONI BATTERICHE CRESCITA DI POPOLAZIONI BATTERICHE I batteri (dal greco bacterion, piccolo oggetto) si riproducono per duplicazione. Ogni batterio produce una copia di sé stesso. Assumiamo che tutte le duplicazioni di

Dettagli

FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE

FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE (lezione I, 07.05.13) Marta Ruspa 1 L

Dettagli

La logistica: una curva semplice con molte applicazioni

La logistica: una curva semplice con molte applicazioni La logistica: una curva semplice con molte applicazioni Francesco Galvagno Relatore: Franco Pastrone Università degli studi di Torino Scuola di Studi Superiori di Torino Torino, 27 giugno 2017 Francesco

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Equazioni differenziali Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche. () Equazioni

Dettagli

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 6-7 Settimana : Equazioni Differenziali Esempio. L esempio più familiare di equazione differenziale proviene dalla legge di Newton. Se t y(t)

Dettagli

N(t+ t) N(t) = (a N a M )N(t) t. (0.9) Dalla (0.9) si ricava = (a N a M )N(t). (0.10)

N(t+ t) N(t) = (a N a M )N(t) t. (0.9) Dalla (0.9) si ricava = (a N a M )N(t). (0.10) 3.. Il modello esponenziale continuo Supponiamo di avere una popolazione composta di individui di una sola specie. Indichiamo con N(t) il numero di individui presenti al tempo t. Supponiamo inoltre che

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

Charles Darwin che su Alfred Russel Wallace per la formulazione della loro teoria evoluzionista.

Charles Darwin che su Alfred Russel Wallace per la formulazione della loro teoria evoluzionista. MODELLI MATEMATICI IN BIOLOGIA economista e demografo inglese Nel 1798 pubblicò An essay of the principle of the population as it affects the future improvement of society (Saggio sul principio della popolazione

Dettagli

APPLICAZIONI DEL CONCETTO DI DERIVATA

APPLICAZIONI DEL CONCETTO DI DERIVATA ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA APPLICAZIONI DEL CONCETTO DI DERIVATA A. A. 2014-2015 L. Doretti 1 A. Significato geometrico di derivata 1. Dato il grafico di f, utilizzare il

Dettagli

Sia y una grandezza che varia, in funzione del tempo, secondo la legge

Sia y una grandezza che varia, in funzione del tempo, secondo la legge Il tasso di crescita Sia y una grandezza che varia, in funzione del tempo, secondo la legge dove è un numero reale positivo diverso da 1 e è il valore che y assume nell istante t=0. Se a>1 la funzione

Dettagli

Studio scientifico delle interazioni tra gli organismi ed il loro ambiente (Haeckel)

Studio scientifico delle interazioni tra gli organismi ed il loro ambiente (Haeckel) Principi di Ecologia Dipartimento di Biologia Animale-Università di Pavia Dott. Nicola Gilio Definizioni di ecologia Studio scientifico delle interazioni tra gli organismi ed il loro ambiente (Haeckel)

Dettagli

LEZIONE 10. Esercizio La media di tre numeri reali può essere maggiore del massimo dei tre numeri?

LEZIONE 10. Esercizio La media di tre numeri reali può essere maggiore del massimo dei tre numeri? 10 LEZIONE 10 Esercizio 10.1. La media di tre numeri reali può essere maggiore del massimo dei tre numeri? Siano a, b, c tre numeri reali, senza perdita di generalità possiamo assumere che sia a il massimo

Dettagli

Modelli differenziali per le scienze della vita

Modelli differenziali per le scienze della vita Modelli differenziali per le scienze della vita Andrea Susa Agenda Modelli Matematici Crescita delle popolazioni isolate crescita di una cellula Decadimento radioattivo Modello Malthus Modello a crescita

Dettagli

Formuliamo il problema: vogliamo studiare l evoluzione di una popolazione. Struttura delle popolazioni

Formuliamo il problema: vogliamo studiare l evoluzione di una popolazione. Struttura delle popolazioni Formuliamo il problema: vogliamo studiare l evoluzione di una popolazione Una popolazione è l insieme degli individui di una specie che vivono in una determinata area. Molti fattori determinano le variazioni

Dettagli

il modello logistico

il modello logistico LOTTA PER LA SOPRAVVIVENZA ovvero il modello logistico Circa 50 anni dopo l introduzione del modello di Malthus, il demografo belga Adolphe J. Quetelet (1796,1874) nella sua opera Sull uomo e sullo sviluppo

Dettagli

LA FUNZIONE LOGARITMO

LA FUNZIONE LOGARITMO LA FUNZIONE LOGARITMO In una popolazione la cui numerosita varia con la legge N(t)=N(0)R t, con R=1+n-m, formata inizialmente da 10 5 individui, ad ogni generazione muore il 15% e il tasso di natalità

Dettagli

C.d.L. in Scienze naturali Prova di Matematica del 12/12/2016

C.d.L. in Scienze naturali Prova di Matematica del 12/12/2016 C.d.L. in Scienze naturali Prova di Matematica del //06 Cognome: Nome: Matricola: Svolgere gli esercizi nelle facciate bianche disponibili e scrivere le soluzioni nei riquadri. Sarà ritirato soltanto questo

Dettagli

Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana

Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana Argomenti da studiare sui testi di riferimento: Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana P - Preliminari 1 Limiti e continuità 1.1 Velocità, rapidità di crescita, area: alcuni esempi Velocità

Dettagli

Facoltà di AGRARIA anno accademico 2009/10

Facoltà di AGRARIA anno accademico 2009/10 Facoltà di AGRARIA anno accademico 2009/10 Attività didattica MATEMATICA E STATISTICA [AG0233], MATEMATICA E STATISTICA [AG0233] Periodo di svolgimento: Primo Semestre Docente titolare del corso: FREDDI

Dettagli

IL MODELLO ESPONENZIALE

IL MODELLO ESPONENZIALE IL MODELLO ESPONENZIALE La crescita esponenziale è caratterizzata dal fatto che,a ogni istante, l accrescimento direttamente proporzionale al valore istantaneo della variabile è ovvero Suddivisa la durata

Dettagli

Limiti di funzioni I. Limiti per x che tende all infinito

Limiti di funzioni I. Limiti per x che tende all infinito Limiti di funzioni I. Limiti per x che tende all infinito 1 La crescita della popolazione mondiale La crescita della popolazione umana mondiale e il suo impatto sull ambiente: discussioni e studi matematici

Dettagli

Modelli Matematici Ambientali. Mastroeni/Cioni (Dipartimento di Informatica/Scuola Normale Superiore)

Modelli Matematici Ambientali. Mastroeni/Cioni (Dipartimento di Informatica/Scuola Normale Superiore) Mastroeni/Cioni (Dipartimento di Informatica/Scuola Normale Superiore) 1 di 17 Lezione, 25/03 A.A. 2014/2015 Decima lezione piano di lavoro [Ri]vedremo alcuni andamenti "tipici" o "paradigmatici" (modelli

Dettagli

Registro delle lezioni

Registro delle lezioni 2 Registro delle lezioni Lezione 1 17 gennaio 2006, 2 ore Notazione dell o piccolo. Polinomio di Taylor di ordine n con resto in forma di Peano per funzioni di classe C n. Polinomio di Taylor di ordine

Dettagli

I a settimana di novembre

I a settimana di novembre L. Seta I a settimana di novembre Metodi Matematici per l Economia 2016 2 Settimana 1 Successioni e dinamica di popolazione 1.1 I concetti chiave di questa settimana... 1.1.1 Scoprire uno schema in una

Dettagli

Modelli matematici. La matematica applicata alla vita reale. Progetto Lauree Scientifiche

Modelli matematici. La matematica applicata alla vita reale. Progetto Lauree Scientifiche Modelli matematici La matematica applicata alla vita reale Cos è la matematica applicata Si basa sull osservazione di processi reali Costruisce un modello matematico che basandosi su leggi e principi generali

Dettagli

iv Indice c

iv Indice c Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale

Dettagli

Appunti della lezione del Prof. Stefano De Marchi del 12/02/16 a cura del Prof. Fernando D Angelo. Equazioni differenziali.

Appunti della lezione del Prof. Stefano De Marchi del 12/02/16 a cura del Prof. Fernando D Angelo. Equazioni differenziali. Appunti della lezione del Prof. Stefano De Marchi del /0/6 a cura del Prof. Fernando D Angelo. Premessa. Equazioni differenziali. In generale un equazione differenziale di ordine n si può scrivere nel

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Equazioni Differenziali Si consideri il seguente problema: Quali sono le curve y = f (x) del piano

Dettagli

1 FEBBRAIO 2013 MODELLI ESPONENZIALI

1 FEBBRAIO 2013 MODELLI ESPONENZIALI 1 FEBBRAIO 2013 MODELLI ESPONENZIALI COS E UN MODELLO? La ricerca scientifica ha tra i suoi principali obiettivi quelli di comprendere descrivere come si svolgono I FENOMENI nel mondo che ci circonda MODELLI

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ.

Dettagli

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici INSIEMI FRATTALI Dimensione di un insieme Insiemi frattali elementari Dimensioni frattali Insiemi frattali e sistemi dinamici C. Piccardi Politecnico di Milano - 03/01/2007 1/1 Caratteristiche tipiche

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

CORSO DI MATEMATICA E LABORATORIO ESERCIZI ASSEGNATI NELL A.A. 2016/17

CORSO DI MATEMATICA E LABORATORIO ESERCIZI ASSEGNATI NELL A.A. 2016/17 CORSO DI MATEMATICA E LABORATORIO ESERCIZI ASSEGNATI NELL A.A. 26/7 GABRIELE BIANCHI Gli esercizi che seguono sono quelli che assegnerò durante il corso 26/7. Tutti gli esercizi presenti in un compito

Dettagli

Matematica per Economia Finanza e Management

Matematica per Economia Finanza e Management School of Economics and Management Matematica per Economia Finanza e Management A.A. 2015/2016 Annuale Prof. Paolo Crespi E-mail Office pcrespi@liuc.it Piano Terra Antistante Torre Phone +39-0331.572418

Dettagli

Successioni 1. Matematica con Elementi di Statistica - prof. Sergio ROVIDA e Anna Torre

Successioni 1. Matematica con Elementi di Statistica - prof. Sergio ROVIDA e Anna Torre Successioni 1 vi sono fenomeni naturali e situazioni concrete che presentano sviluppi significativi in tempi discreti vale a dire è naturale che i controlli per quei dati fenomeni o per quelle date situazioni

Dettagli

Il numero totale di chicchi è Perché le caselle sono 64 Generalizzando, se le caselle fossero n avremmo 2 n -1 (numero primo di Mersenne

Il numero totale di chicchi è Perché le caselle sono 64 Generalizzando, se le caselle fossero n avremmo 2 n -1 (numero primo di Mersenne Esponenziali I chicchi di riso Il numero totale di chicchi è 2 64-1 Perché le caselle sono 64 Generalizzando, se le caselle fossero n avremmo 2 n -1 (numero primo di Mersenne collegato con i numeri perfetti,

Dettagli

1.1 Sistemi dinamici monodimensionali

1.1 Sistemi dinamici monodimensionali ½ ½½º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. 1.1 Sistemi dinamici monodimensionali Esercizio 1.1: Consideriamo

Dettagli

LICEO SCIENTIFICO STATALE A. Einstein

LICEO SCIENTIFICO STATALE A. Einstein LICEO SCIENTIFICO STATALE A. Einstein PROGRAMMA CONSUNTIVO MATEMATICA Classe V L Anno Scolastico 2017-2018 Docente: prof. Barbara Veronesi Ore di insegnamento: 4 settimanali Analisi matematica 1. Ripasso

Dettagli

equazione della popolazione o bilancio demografico:

equazione della popolazione o bilancio demografico: La dimensione della popolazione Consideriamo un conto corrente bancario: il saldo (fenomeno statico) è riferito ad un certo istante, ad es. inizio anno. Nel corso dell anno si verificano entrate ed uscite

Dettagli

Matematica per Economia Finanza e Management

Matematica per Economia Finanza e Management School of Economics and Management Matematica per Economia Finanza e Management A.A. 2017/2018 Annuale Prof. Paolo Crespi E-mail Office pcrespi@liuc.it Piano Terra Antistante Torre Phone +39-0331.572418

Dettagli

SCALA QUADRATICA. Grafico di y(x) Grafico di y(x 2 ) y. X=x 2

SCALA QUADRATICA. Grafico di y(x) Grafico di y(x 2 ) y. X=x 2 SCALA QUADRATICA Grafico di y(x) y Grafico di y(x 2 ) y x X=x 2 1 SCALE NON LINEARI L utilizzo di scale non lineari permette di: Riconoscere le curve di tipo esponenziale o potenza Semplificare le curve

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

MATEMATICA APPLICATA ALLA BIOLOGIA (II MODULO)

MATEMATICA APPLICATA ALLA BIOLOGIA (II MODULO) Corso di laurea Magistrale in Biologia sperimentale ed applicata MATEMATICA APPLICATA ALLA BIOLOGIA (II MODULO) Lucia Della Croce Dipartimento di Matematica - Università di Pavia A. A. 29/21 Matematica

Dettagli

TECNICHE RADIOCHIMICHE

TECNICHE RADIOCHIMICHE TECNICHE RADIOCHIMICHE L ATOMO - Un atomo e costituito da un nucleo carico positivamente, circondato da una nuvola di elettroni carichi negativamente. - I nuclei atomici sono costituiti da due particelle:

Dettagli

Matematica per Economia Finanza e Management

Matematica per Economia Finanza e Management School of Economics and Management Matematica per Economia Finanza e Management A.A. 2016/2017 Annuale Prof. Paolo Crespi E-mail Office pcrespi@liuc.it Piano Terra Antistante Torre Phone +39-0331.572418

Dettagli

Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento

Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento Esercizio Si considerino 3 popolazioni P, P, P 3 che vivono nelle regioni A, B, C le cui numerosità sono

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA CRESCITA DI UNA POPOLAZIONE BATTERICA DISEQUAZIONI ESPONENZIALI E LOGARITMICHE SIMMETRIE E GRAFICI DEDUCIBILI Angela Donatiello FUNZIONI ESPONENZIALI Crescita

Dettagli

Primi passi tra i sistemi dinamici

Primi passi tra i sistemi dinamici Primi passi tra i sistemi dinamici Nicola Sansonetto PLS Corso di Aggiornamento per Insegnanti - GeoGebra via Modelli Matematici Dipartimento di Informatica, Università degli Studi di Verona 19/09/2017

Dettagli

I decadimenti radioattivi

I decadimenti radioattivi Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 3 I decadimenti radioattivi Radioattività naturale Osservazione di Bequerel della presenza di trasmutazioni di atomi. Osservazione

Dettagli

Elementi di Teoria dei Sistemi

Elementi di Teoria dei Sistemi Parte 2, 1 Elementi di Teoria dei Sistemi Parte 2, 2 Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Ingresso Uscita Parte 2, 4 Cosa significa Dinamico?? e` univocamente determinata?

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari Sito Personale di Ettore Limoli Lezioni di Matematica Prof. Ettore Limoli Sommario Lezioni di Matematica... Equazioni differenziali lineari... Generalità... Equazione differenziale lineare omogenea del

Dettagli

Matematica per Economia Finanza e Management

Matematica per Economia Finanza e Management School of Economics and Management Matematica per Economia Finanza e Management A.A. 2018/2019 Annuale Prof. Paolo Crespi E-mail Office pcrespi@liuc.it Piano Terra Antistante Torre Phone +39-0331.572418

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

CORSO DI MATEMATICA E LABORATORIO ESERCIZI ASSEGNATI NELL A.A. 2017/18

CORSO DI MATEMATICA E LABORATORIO ESERCIZI ASSEGNATI NELL A.A. 2017/18 CORSO DI MATEMATICA E LABORATORIO ESERCIZI ASSEGNATI NELL A.A. 27/8 GABRIELE BIANCHI Gli esercizi che seguono sono quelli che assegnerò durante il corso 27/8. Tutti gli esercizi presenti in un compito

Dettagli

Appendice Descrizione dei quesiti rilasciati per l attribuzione ai benchmark internazionali

Appendice Descrizione dei quesiti rilasciati per l attribuzione ai benchmark internazionali Appendice Descrizione dei quesiti rilasciati per l attribuzione ai benchmark internazionali Matematica avanzata Quesiti attribuiti al benchmark internazionale intermedio (475) M6_02 (MA23135) Risolvere

Dettagli

PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa Gli assiomi dei numeri reali Alcune conseguenze degli assiomi dei

PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa Gli assiomi dei numeri reali Alcune conseguenze degli assiomi dei PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa 23 2. Gli assiomi dei numeri reali 24 3. Alcune conseguenze degli assiomi dei numeri reali 25 4. Cenni di teoria degli insiemi 30

Dettagli

Matematica per Economia Finanza e Management

Matematica per Economia Finanza e Management School of Economics and Management Matematica per Economia Finanza e Management A.A. 2018/2019 Annuale Prof. Paolo Crespi E-mail Office pcrespi@liuc.it Piano Terra Antistante Torre Phone +39-0331.572418

Dettagli

MODELLO DI LOTKA-VOLTERRA Logistico. La risorsa (preda) in assenza di consumatori (predatore) si accresce in modo logistico.

MODELLO DI LOTKA-VOLTERRA Logistico. La risorsa (preda) in assenza di consumatori (predatore) si accresce in modo logistico. MODELLO DI LOTA-VOLTERRA Logistico La risorsa (preda) in assenza di consumatori (predatore) si accresce in modo logistico dp A* p( t) diventa: dp mp 1 p dp mp 1 p pq dq Dq pq Stati di equilibrio e diagramma

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale

Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Politecnico di Milano Ingegneria Industriale Docenti: P Antonietti, F Cipriani, F Colombo, F Lastaria G Mola, E Munarini, P Terenzi, C Visigalli Terzo appello, Settembre 9 Compito A

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Argomenti trattati Introduzione ai modelli Equazioni differenziali del primo ordine Metodi risolutivi:integrazione diretta

Dettagli

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici INSIEMI FRATTALI Dimensione di un insieme Insiemi frattali elementari Dimensioni frattali Insiemi frattali e sistemi dinamici C. Piccardi e F. Dercole Politecnico di Milano - 30/11/2011 1/29 Caratteristiche

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Corso di Biomatematica 1 Esame del 28 Settembre 2016

Corso di Biomatematica 1 Esame del 28 Settembre 2016 Corso di Biomatematica 1 Esame del 28 Settembre 2016 Scrivere chiaramente in testa all elaborato: Nome, Cognome, numero di matricola. Risolvere tutti gli esercizi. Tempo a disposizione: DUE ORE. Non e

Dettagli

Modello matematico di un sistema fisico

Modello matematico di un sistema fisico Capitolo 1. INTRODUZIONE 1.1 Modello matematico di un sistema fisico La costruzione del modello matematico è anche un procedimento che permette di comprendere a pieno il fenomeno fisico che si vuol descrivere.

Dettagli

Corso di Studi di Fisica Corso di Chimica

Corso di Studi di Fisica Corso di Chimica Corso di Studi di Fisica Corso di Chimica Luigi Cerruti www.minerva.unito.it Lezione 27-28 2010 Legge dell azione di massa Il caso dei gas: utilizziamo le pressioni parziali Per definizione le concentrazioni

Dettagli

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti.

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti. Ottobre 2016 Note sul sistema di Lotka-Volterra Prima versione. Commenti e correzioni sono benvenuti. 1 Introduzione Il sistema di Lotka Volterra (LV), o sistema preda predatore è probabilmente il primo

Dettagli

1 Equazioni differenziali

1 Equazioni differenziali 1 Equazioni differenziali Un equazione del tipo F(t, y, y,...,y (n) ) = 0 (1) con una funzione incognita y dipendente dalla variabile indipendente t, assieme alle sue derivate fino all ordine n, viene

Dettagli

Carta Semilogaritmica Esempio

Carta Semilogaritmica Esempio Carta Semilogaritmica Esempio 8 10000 1000 100 10 3 2 1 8 3 2 1 8 3 2 1 8 3 2 1 8 3 2 Sono date le coordinate cartesiane di alcuni punti desunti da osservazioni sperimentali: A = (1,7.1) B = (2,12.1) C

Dettagli

1 Il modello preda predatore di Lotka Volterra

1 Il modello preda predatore di Lotka Volterra Il modello preda predatore di Lotka Volterra Questo modello si occupa di un sistema in cui vi sia la coesistenza di prede e predatori. Nel modello entrano due variabili: il numero delle prede e quello

Dettagli

Calcolo delle cinetiche dei substrati: modello monocompartimentale.

Calcolo delle cinetiche dei substrati: modello monocompartimentale. Calcolo delle cinetiche dei substrati: modello monocompartimentale. Calcolare la cinetica di un substrato significa determinare la velocità di comparsa (rate of appearance, Ra) di un substrato e, perlomeno

Dettagli

1.1 Struttura dell atomo

1.1 Struttura dell atomo CAPITOLO I Richiami di fisica generale e descrizione delle radiazioni ionizzanti. Struttura dell atomo L atomo è la più piccola porzione di un elemento chimico, che conserva le proprietà dell elemento

Dettagli

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 Soluzioni 1. Due sperimentatori hanno rilevato rispettivamente 25 e 5 misure di una certa grandezza lineare e calcolato le medie che sono risultate

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

MATEMATICA - Esempio di prova per il Liceo Scientifico - MIUR PROBLEMA 1 (soluzione di L. Tomasi)

MATEMATICA - Esempio di prova per il Liceo Scientifico - MIUR PROBLEMA 1 (soluzione di L. Tomasi) MATEMATICA - Esempio di prova per il Liceo cientifico - MIUR - 0.1.018 PROBLEMA 1 (soluzione di L. Tomasi) 1 oluzione. La famiglia di funzioni data rappresenta delle curve logistiche. Punto 1. Le funzioni

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

La dimensione della popolazione

La dimensione della popolazione La dimensione della popolazione Consideriamo un conto corrente bancario: il saldo (fenomeno statico) è riferito ad un certo istante, ad es. inizio anno. Nel corso dell anno si verificano entrate ed uscite

Dettagli

Il nucleo dell atomo

Il nucleo dell atomo Il nucleo dell atomo Ci sono quattro interazioni(forze) i i(f tra le particelle: Gravita ElettroMagnetica Nucleare Forte Nucleare Debole Le forze La forza nucleare forte è responsabile del legame tra i

Dettagli

Camera a Ioni. Misure di Radon. Sistema Theremino Rev.1. Sistema Theremino IonChamber_ITA - 22/06/2015 Pag. 1

Camera a Ioni. Misure di Radon. Sistema Theremino Rev.1. Sistema Theremino IonChamber_ITA - 22/06/2015 Pag. 1 Camera a Ioni Misure di Radon Sistema Theremino Rev.1 Sistema Theremino IonChamber_ITA - 22/06/2015 Pag. 1 Sommario Misure con Camera a Ioni... 3 Teoria... 3 Apparecchiature... 3 Radon in abitazione -

Dettagli

La datazione mediante radioisotopi

La datazione mediante radioisotopi : Le trasformazioni nucleari: La datazione mediante radioisotopi Lezioni d'autore VIDEO Premessa (I) I processi radioattivi sono reazioni che dipendono dalla struttura nucleare degli atomi. Il rapporto

Dettagli

Prova Esame 10 gennaio 08 Risposte agli esercizi d esame. Esercizio 1

Prova Esame 10 gennaio 08 Risposte agli esercizi d esame. Esercizio 1 Prova Esame gennaio 8 Risposte agli esercizi d esame Testo: Esercizio La crescita dei tumori può essere modellata con l equazione di Gompertz: dr R = a R ln K dove R è la dimensione (raggio [=] L) della

Dettagli

y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m =

y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m = DERIVATA DI UNA FUNZIONE IN UN PUNTO SIGNIFICATO GEOMETRICO. EQUAZIONE DELLA RETTA TANGENTE AL GRAFICO NEL PUNTO DI TANGENZA. REGOLE DI DERIVAZIONE. CONTINUITA E DERIVABILITA PUNTI DI NON DERIVABILITA

Dettagli

ESPONENZIALI. n volte

ESPONENZIALI. n volte Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA ESPONENZIALI IL CONCETTO DI POTENZA E LA SUA GENERALIZZAZIONE L elevamento a potenza è un operazione aritmetica che associa

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Derivata di una funzione Massimo e minimo assoluti Definizione R, si dice che M è massimo assoluto (o

Derivata di una funzione Massimo e minimo assoluti Definizione R, si dice che M è massimo assoluto (o Derivata di una unzione Massimo e minimo assoluti Deinizione Sia :[ a, ] R, si dice che M è massimo assoluto o gloale di in [a,] e [ a, ] è punto di massimo se M, [ a, ] In modo analogo: Si dice che m

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti fondamentali

Dettagli

REAZIONI CHIMICHE: LEGGI CINETICHE, MECCANISMI DI REAZIONE E BILANCI DI MASSA

REAZIONI CHIMICHE: LEGGI CINETICHE, MECCANISMI DI REAZIONE E BILANCI DI MASSA REAZIONI CHIMICHE: LEGGI CINETICHE, MECCANISMI DI REAZIONE E BILANCI DI MASSA Reazione chimica in condizione di equilibrio: concentrazioni costanti che obbediscono al vincolo determinato dalla costante

Dettagli

Prove di esame a.a

Prove di esame a.a Prove di esame a.a. 2008-09 Perugia, 26 gennaio 2009 Svolgere i seguenti esercizi motivando tutte le risposte. 1. Indice di massa corporea. L indice di massa corporea (IMC) è un indice biometrico usato

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine nno ccademico 5/6 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/7/6 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli