Polinomi ortogonali. 21 febbraio 2017

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Polinomi ortogonali. 21 febbraio 2017"

Transcript

1 Polinomi ortogonali 1 febbraio 017 I polinomi ortogonali di grado n in una variabile reale x sono, innanzitutto, POLINOMI, ossia qualcosa la cui definizione è sprofondata nei tempi della vostra pur giovanile memoria, risalendo alla vostra frequentazione della scuola media inferiore. L aggettivo ortogonali che vien loro appioppato significa semplicemente che ne esistono numerose famiglie, a loro volta numerose, nel senso che ne fanno parte polinomi di tutti i gradi possibili, da 0 a, ciascuna contraddistinta da una funzione di famiglia w(x) 0 e da un dominio di definizione per tale funzione, di modo che, presi due membri diversi P k (x) e P l (x) (significa due polinomi di grado differente: k e l) di ciascuna famiglia, valga SEMPRE P k (x)p l (x) w(x) dx 0 (1) in cui D è appunto il dominio di w(x). Alcune considerazioni discendono immediatamente: D la presenza della funzione w(x) nella definizione(1) è indispensabile, perché il dominio di un polinomio è l intera retta reale e quindi, in assenza del vincolo posto da w(x), l integrale (1) sarebbe sempre divergente; occorre, con tutta evidenza, che sia k l, altrimenti nella (1) comparirebbe il quadrato di un certo polinomio della famiglia e quindi, data la positività assunta di w(x), mai l integrale (1) potrebbe annullarsi se non nel caso sconfortantemente triviale in cui tutti i polinomi della famiglia fossero identicamente nulli (perbacco: che farsene?); poiché della famiglia fa parte anche il polinomio di grado zero, la (1) dice anche che OGNI polinomio della famiglia che abbia grado k > 0 ha integrale nullo su D, se pesato con w(x); l integrale del polinomio di grado zero è, peraltro, chiaramente proporzionale a quello di w(x) stessa; il prodotto P k (x)p l (x) che compare nella (1) è, ovviamente, un polinomio di grado k + l e ha integrale pesato nullo su D, ma NON È ASSOLU- TAMENTE DETTO che coincida con il P k+l (x) che fa parte della stessa famiglia, ANZI... 1

2 Assodate tutte le precedenti ovvietà, restano da identificare le famiglie di polinomi ortogonali più significative per un Fisico, o per un Fisico-matematico: ne saranno introdotte tre() che incontrerete presto nel vostro percorso di aspiranti Fisici più un altra che ha più interesse dal punto di vista matematico. 1 Polinomi di Hermite H n (x) Li incontrerete come basi per le funzioni d onda dell oscillatore armonico quantistico; per essi la funzione w(x) è ) w(x) exp ( x () e il dominio D è dunque esteso sull intera retta reale. Sono definiti dalla seguente formula: H n (x) ( 1) n exp(x ) dn dx n exp( x ) () che dà evidentemente un polinomio di grado n perché tale è la derivata n esima dell esponenziale indicato, a parte il fattore esponenziale stesso, opportunamente eliso tramite il prefattore esponenziale di esponente opposto. Convenendo che la derivata 0 esima di una funzione sia la funzione stessa cui venga applicata, i polinomi di Hermite dei gradi più bassi sono H 0 (x) = 1 H 1 (x) exp(x ) d dx exp( x ) = x H (x) exp(x ) d dx exp( x ) = exp(x ) d dx H (x) exp(x ) d dx exp( x ) = exp(x ) d dx = 8x 1x ( xexp( x ) ) = 4x ( (4x )exp( x ) ) = La condizione (1) è soddisfatta in maniera evidente se k e l hanno diversa parità, mentre assai meno evidente è la sua validità quando la parità fosse la stessa: in quel caso sono appunto cruciali i singoli coefficienti e l azione della funzione w(x) all interno del dominio d integrazione. La struttura stessa della formula che definisce i polinomi di Hermite suggerisce a chi non sia orbo le seguenti formule di ricorrenza, che consentono di velocizzarne in maniera vertiginosa il calcolo dei coefficienti: dh n dx (x) = nh n 1(x) n > 0 H n+1 (x) = xh n (x) dh n dx (x) (5) (4)

3 Pertanto, dallaconoscenzadirettadeisolih 0 (x)eh 1 (x), sipossonodeterminare i coefficienti di tutti i polinomi successivi senza dover più calcolare una sola derivata. Polinomi di Laguerre L n (x) Li incontrerete quando risolverete l equazione di Schrödinger per l atomo d idrogeno per la componente radiale della funzione d onda; si tratta di un caso particolare, per α = 0, dei cosiddetti polinomi associati di Laguerre n (x) definiti dalla formula n (x) x α e x d n ( e x n! dx n x n+α) (6) in cui α è qualsiasi numero reale. Questi polinomi adempiono la condizione (1) sul dominio D = {x > 0} con la funzione w(x) = x α e x, anzi si mostra che 0 x α e x k (x)l(α) l (x)dx = δ kl Γ(k +α+1) k! in cui Γ(z) è la funzione di Eulero la quale, per z intero non negativo, verifica Γ(z + 1) z! di modo che i polinomi di Laguerre L n (x) L (0) n (x) sono addirittura ortonormali. I polinomi dei gradi più bassi, calcolati esplicitamente, sono: 0 (x) = 1 1 (x) x α e x d dx (x) x α e x ( e x x 1+α) = α+1 x d dx ( e x x +α) = x α e x e x x α[ x (α+)x+(α+)(α+1) ] = 1 x (α+)x+ (α+)(α+1) (x) x α e x 6 d dx ( e x x +α) = = x 6 + α+ x (α+)(α+) x+ (α+)(α+)(α+1) 6 Ognuno si ricavi da sé le corrispondenti espressioni con α = 0. Anche per i polinomi di Laguerre vige una relazione di ricorrenza a due passi, che può essere agevolmente verificata anche sperimentandola sulle espressioni esplicite dei gradi bassi; precisamente: L (0) n+1 (x) L n+1(x) = 1 n+1 [(n+1 x)l n(x) nl n 1 (x)] n 1 (9) (7) (8)

4 che può essere avviata mediante la conoscenza diretta di L 0 (x) e L 1 (x); come si intuisce facilmente questa ricorrenza produce coefficienti dei monomi di grado alto vertiginosamente piccoli al crescere di n. Un altra relazione interessante lega i polinomi associati di Laguerre con α = 1 ai polinomi di Hermite, consentendo quindi, anche mercé gli integrali che compaiono in (1) per le due famiglie, di valutare gli integrali pesati del prodotto di un polinomio di Hermite per sé stesso. Valgono infatti L (±1/) 0 (x) = H 0 (x) = 1 e: H n (x) =( 1) n n n!l ( 1/) n (x ) n > 0 H n+1 (x) =( 1) n n+1 n!xl (1/) n (x ) n 0 (10) come si può abbastanza facilmente controllare. Polinomi di Legendre L n (x) Li incontrerete là dove avrete incontrato anche i polinomi di Laguerre, quando si tratterà di esprimere la parte angolare della funzione d onda dell atomo d idrogeno: infatti sono le espressioni fondanti per le cosiddette funzioni associate di Legendre le quali, a loro volta, con poco lavoro aggiuntivo, costituiranno le armoniche sferiche, ossia gli autostati del momento angolare, quelli che in Chimica, ma anche in Fisica, sono chiamati più familiarmente orbitali atomici. Sono definiti dalla formula d n L n (x) 1 [ (x n n! dx n 1) n] (11) e verificano la condizione (1) con w(x) = 1 nell intervallo [ 1,1] e w(x) = 0 altrove. Si può anzi calcolare esplicitamente la (1) in questo caso, trovando 1 1 L k (x)l l (x) dx = δ kl k +1 (1) È interessante notare che dei polinomi di Legendre, vista la definizione di w(x), serve solo l andamento in un intervallo compatto della retta reale: quello che faranno al di fuori non importa un accidente. Anche in questo caso si forniscono le espressioni esplicite dei polinomi di grado 4

5 basso: L 0 (x) = 1 L 1 (x) 1 d ( x 1 ) = x dx d L (x) 1 [ (x 8dx 1) ] = 1 (x 1) L (x) 1 d [ (x 48dx 1) ] = 1 (5x x) (1) Si noti che anche i polinomi di Legendre, come quelli di Hermite, ma NON come quelli di Laguerre, hanno parità definita, uguale a quella del loro grado. Anch essi posseggono una relazione di ricorrenza a due passi che qui si riporta: L n+1 (x) n+1 n+1 xl n(x) n n+1 L n 1(x) (14) che, come d abitudine, consente di determinarli tutti partendo dai due d infimo grado. La validità della ricorrenza è direttamente sperimentabile sulle espressioni esplicite sopra riportate. È curioso (fino a un certo punto) notare che, una volta espressi i coefficienti razionali dei diversi polinomi in modo che tutti abbiano lo stesso denominatore di quello di grado maggiore, tale denominatore comune è sempre una potenza di. ComegiàsièanticipatolefunzioniassociatediLegendreP n (m) (x) si costruiscono partendo dai polinomi di Legendre; esse dipendono da due cosiddetti numeri quantici: il grado n del polinomio di Legendre che le definisce e un secondo numero, pure intero, m, vincolato all intervallo 0 m n, secondo la seguente definizione P (m) n (x) = (1 x ) m d m dx ml n(x) x 1 (15) Si osservi che la definizione è ben posta: il dominio è quello significativo dei polinomi di Legendre, per cui è ben definito il prefattore anteposto all operatore di derivazione; d altro canto, poiché m non supera n, le funzioni così definite non sono banalmente e identicamente nulle sul loro dominio, né si può affermare che si tratti ancora di polinomi perché, per ogni valore dispari di m, il prefattore è una funzione irrazionale. Ricordando l espressione data per il polinomio di Legendre L n (x) si potrà riscrivere, equivalentemente: P (m) n (x) = ( 1)n n n! (1 x ) m d m+n dx m+n [ (1 x ) n] (16) in cui l introduzione del fattore ( 1) n tiene conto del fatto che si è cambiato il segno della funzione da derivare, per ricondurla al dominio di interesse (quando si definirono i polinomi di Legendre non aveva importanza, dato che non vi erano coinvolte radici di checchessia). In questa forma, però, risulta palese che 5

6 la condizione 0 m n può essere trasformata nella più debole 0 m n, consentendocioèalnumeroquanticomdiassumeretuttiivaloriinteriin[ n,n]. È proprio grazie a quest ultima osservazione che è possibile definire le armoniche sferichey lm (θ,φ), autostatidelmoduloquadrodelmomentoangolareedellasua proiezionesuundeterminatoassecartesiano: quiθ eφsonoappuntogliangolidi colatitudine e azimuth (rispettivamente) delle coordinate polari sferiche, l(l + 1) è il modulo quadro del momento angolare (quantizzato, in unità di ) e l m l è il valore (quantizzato, nelle stesse unità) della sua componente lungo l asse delle coordinate polari stesse. L espressione esplicita dell armonica sferica più generale possibile, completa di fattori di normalizzazione rispetto all integrazione sull intero angolo solido, è: Y lm (θ,φ) ( 1) m+ m { l+1 4π }1 (l m )! ( m ) P l (cosθ) e imφ (17) (l+ m )! in cui la valutazione della funzione associata di Legendre in x = cosθ è nell intrinseca natura del suo dominio. Si riconoscerà facilmente nell unica armonica sferica di numero quantico l = 0, Y 00 (θ,φ), che, per inciso, è la costante 1, 4π null altro che la distribuzione angolare isotropa dell orbitale s; così come, nelle tre armoniche sferiche di numero quantico l = 1, i tre orbitali p: Y 1, 1 (θ,φ) = sin(θ) e iφ 8π Y 1, 0 (θ,φ) = 4π cos(θ) Y 1, 1 (θ,φ) = 8π sin(θ) eiφ = Y 1, 1 (θ,φ) (18) 4 Polinomi di Tchebyshev di prima specie T n (x) Il nome di questo matematico russo è un altro di quelli che nessuno, in occidente, sa esattamente come scrivere, e pertanto ne esistono un numero di grafie diverse che è più o meno proporzionale al fattoriale del numero di lettere che lo compongono. Anche i suoi polinomi soddisfanno la condizione (1) nell intervallo [ 1,1] con una funzione peso w(x) = 1 1 x. In pratica la loro definizione è quella di un polinomio trigonometrico basato sulla formula di De Moivre per cui: T n (cosθ) cos(nθ) (19) 6

7 I polinomi dei gradi bassi sono pertanto T 0 (x) = T 0 (cosθ) cos(0) = 1 T 1 (x) = T 1 (cosθ) cos(θ) = x T (x) = T (cosθ) cos(θ) = cos(θ) 1 = x 1 T (x) = T (cosθ) cos(θ) = cos(θ +θ) = = cos(θ)cos(θ) sin(θ)sin(θ) = = (cos(θ) 1)cos(θ) sin(θ) cos(θ) = = (cos(θ) 1)cos(θ) (1 cos(θ) )cos(θ) = = 4x x (0) Non poteva mancare la consueta formula di ricorrenza a due passi che, nel caso presente, recita: T n+1 (x) xt n (x) T n 1 (x) (1) Non si ritiene necessario aggiungere altro. 7

5.2 Sistemi ONC in L 2

5.2 Sistemi ONC in L 2 5.2 Sistemi ONC in L 2 Passiamo ora a considerare alcuni esempi di spazi L 2 e di relativi sistemi ONC al loro interno. Le funzioni trigonometriche Il sistema delle funzioni esponenziali { e ikx 2π },

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Oscillatore armonico tridimensionale

Oscillatore armonico tridimensionale Oscillatore armonico isotropo Oscillatore armonico tridimensionale L oscillatore armonico isotropo in 3 dimensioni é descritto dall hamiltoniana con H = m p + m ω r = h m + m ω r ) [ p, H ] 0 [ L, H ]

Dettagli

Ricorrenza. Un allevatore compra una coppia di conigli appena nati. Dopo due. mesi i conigli sono in grado di riprodursi, dando vita ad un altra

Ricorrenza. Un allevatore compra una coppia di conigli appena nati. Dopo due. mesi i conigli sono in grado di riprodursi, dando vita ad un altra Ricorrenza Il problema dei conigli Un allevatore compra una coppia di conigli appena nati. Dopo due mesi i conigli sono in grado di riprodursi, dando vita ad un altra coppia di conigli; questa può riprodursi

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Elementi di struttura della materia

Elementi di struttura della materia Elementi di struttura della materia Luigi Sangaletti Università Cattolica del Sacro Cuore Dipartimento di Matematica e Fisica a.a. 2004-2005 Quantizzazione delle energie Tracciare ed identificare i primi

Dettagli

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Numeri complessi Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri complessi Analisi Matematica 1 1 / 34 Introduzione L introduzione dei numeri complessi

Dettagli

Non c è alcuna possibilità che gli uomini un giorno accedano all energia. Robert Millikan Premio Nobel per la Fisica 1923

Non c è alcuna possibilità che gli uomini un giorno accedano all energia. Robert Millikan Premio Nobel per la Fisica 1923 Capitolo 3 Atomi Non c è alcuna possibilità che gli uomini un giorno accedano all energia atomica. Robert Millikan Premio Nobel per la Fisica 1923 3.1 Potenziali a simmetria sferica In problemi a simmetria

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI Orbitali atomici e loro rappresentazione Le funzioni d onda Ψ n che derivano dalla risoluzione dell equazione d onda e descrivono il moto degli elettroni nell atomo si dicono orbitali

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i.

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i. 1 Corso di Laurea in Chimica e Tecnologie Chimiche - A.A. 212-213 Chimica Fisica II Esame scritto del 25 Febbraio 213 Quesiti d esame: 1. Definire gli operatori componente del momento cinetico P x e del

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Il calcolo letterale

Il calcolo letterale Il calcolo letterale Si dice ESPRESSIONE ALGEBRICA LETTERALE (o semplicemente espressione algebrica) un espressione in cui compaiono lettere che rappresentano numeri. Esempio: OSS: QUANDO non c è nessuna

Dettagli

Oscillatore Armonico in M.Q.

Oscillatore Armonico in M.Q. Oscillatore Armonico in M.Q. Oscillatore Armonico Unidimensionale Risoluzione in coordinate cartesiane L oscillatore armonico unidimensionale è un sistema che ha la seguente Hamiltoniana: H = P M + Mω

Dettagli

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013 L atomo di idrogeno R. Dovesi, M. De La Pierre, C. Murace Corso di Laurea in Chimica A.A. 2012/2013 Chimica Fisica II Modello per l atomo di idrogeno Modello: protone fisso nell origine ed elettrone in

Dettagli

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Numeri complessi Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Introduzione I numeri complessi vengono introdotti perché tutte

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Introduzione ai numeri complessi Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Definizione (Campo complesso C. Prima definizione.) Il campo complesso C è costituito da tutte le espressioni

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

Il calcolo letterale

Il calcolo letterale Il calcolo letterale Si dice ESPRESSIONE ALGEBRICA LETTERALE (o semplicemente espressione algebrica) un espressione in cui compaiono lettere che rappresentano numeri. Esempio: 5ab 4a b 3 + b 5a 1 ab 3

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 64555 - Fax +39 09 64558 Analisi Matematica Testi d esame e Prove parziali a prova - Ottobre

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare 1 Momento angolare. Il momento della quantitá di moto (momento angolare) é definito in fisica classica dal vettore (nel seguito usiamo la convenzione che gli indici ripetuti vanno intesi sommati) l = x

Dettagli

1.3 L effetto tunnel (trattazione semplificata)

1.3 L effetto tunnel (trattazione semplificata) 1.3 L effetto tunnel (trattazione semplificata) Se la parete di energia potenziale non ha altezza infinita e E < V, la funzione d onda non va rapidamente a zero all interno della parete stessa. Di conseguenza,

Dettagli

LA STRUTTURA ELETTRONICA DEGLI ATOMI

LA STRUTTURA ELETTRONICA DEGLI ATOMI LA STRUTTURA ELETTRONICA DEGLI ATOMI 127 Possiamo trattare insieme l atomo di idrogeno e gli atomi idrogenoidi He +, Li 2+, ecc., in quanto differiscono l uno dall altro solo per la carica nucleare. Protone

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

Derivate di ordine superiore

Derivate di ordine superiore Derivate di ordine superiore Derivate di ordine superiore Il processo che porta alla definizione di derivabilta e di derivata di una funzione in un punto si puo iterare per dare per ogni intero positivo

Dettagli

Oscillatore armonico in più dimensioni

Oscillatore armonico in più dimensioni Oscillatore armonico in più dimensioni 1 Oscillatore in D dimensioni La teoria dell oscillatore armonico si può generalizzare facilmente da una a più dimensioni. Infatti la hamiltoniana di un oscillatore

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

OSCILLATORE ARMONICO UNIDIMENSIONALE. Consideriamo una particella sottoposta a una forza armonica di costante mω 2.

OSCILLATORE ARMONICO UNIDIMENSIONALE. Consideriamo una particella sottoposta a una forza armonica di costante mω 2. 4/7 OSCILLATORE ARMONICO 09/10 1 OSCILLATORE ARMONICO UNIDIMENSIONALE Lo spazio di Hilbert e l operatore hamiltoniano Consideriamo una particella sottoposta a una forza armonica di costante mω 2. Nello

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

9. Lezione 9/10/2017. = a 3 a a

9. Lezione 9/10/2017. = a 3 a a 9. Lezione 9/10/017 9.1. Funzioni esponenziali. Scelta una base positiva a possiamo considerare le potenze a n per ogni n N. Valgono le proprietà: a 0 = 1 1 n 1 a = 1 a 1/ = a a a 4/3 = a 3 a a 0.5 = 1

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Numeri complessi. Scrivere in forma algebrica i seguenti numeri complessi. a) z + i) i) + i) i) b) z + i) i) + i) + + i) i) + i) + i) c) z

Dettagli

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1.

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1. Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi NOTA: PER FARE PIÚ ALLA SVELTA NON HO SCRITTO TUTTI I DETTAGLI DELLE SOLUZIONI. HO CERCATO DI SPIEGARE LE IDEE PRINCIPALI.

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

Matematica II prof. C.Mascia

Matematica II prof. C.Mascia Corso di laurea in CHIMICA INDUSTRIALE Sapienza, Università di Roma Matematica II prof CMascia alcuni esercizi, parte, 7 marzo 25 Indice Testi degli esercizi 2 Svolgimento degli esercizi 4 Testi degli

Dettagli

19. Lezione. f (x) =,

19. Lezione. f (x) =, IST. DI MATEMATICA I [A-E] mercoledì 30 novembre 2016 19. Lezione 19.1. Formula di Taylor e punti stazionari. Sia f (x 0 ) = 0 come decidere se x 0 è punto di minimo o di massimo? Con la formula di Taylor

Dettagli

FM210 / MA - Prima prova pre-esonero ( )

FM210 / MA - Prima prova pre-esonero ( ) FM10 / MA - Prima prova pre-esonero (4-4-018) 1. Una particella di massa m si muove in una dimensione sotto l effetto di una forza posizionale, come descritto dalla seguente equazione: mẍ = A x xx 0 3x

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

Equazioni Differenziali in Campo Complesso

Equazioni Differenziali in Campo Complesso Capitolo 2 Equazioni Differenziali in Campo Complesso 2.1 Equazioni differenziali ordinarie del second ordine La forma più generale di equazione differenziale ordinaria del II ordine omogenea è A(z)u (z)

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica Chapter 3 L equazione di Schrödinger unidimensionale: soluzione analitica e numerica In questo capitolo verrà descritta una metodologia per risolvere sia analiticamente che numericamente l equazione di

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 09 27.10.2017 Soluzioni dell'equazione di Laplace Metodo separazione delle variabili Anno Accademico 2017/2018 Separazione

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

ESERCITAZIONE 4: I NUMERI COMPLESSI

ESERCITAZIONE 4: I NUMERI COMPLESSI ESERCITAZIONE 4: I NUMERI COMPLESSI Tiziana Raparelli 19/0/008 1 DEFINIZIONI E PROPRIETÀ Vogliamo risolvere l equazione x + 1 = 0, estendiamo dunque l insieme dei numeri reali, introducendo l unità immaginaria

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html TRASFORMATE DI LAPLACE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto Lezione del 22 ottobre. 1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto ad un punto. Data una funzione f definita su un intervallo [a, b], derivabile

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Classi: 4A inf Serale Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Serale Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Serale Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente quando esiste un legame di natura qualsiasi che ad ogni valore di faccia corrispondere uno e uno solo

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti fondamentali

Dettagli

ESERCIZI SUGLI INSIEMI NUMERICI. 1) Mettere in ordine crescente i seguenti numeri reali:

ESERCIZI SUGLI INSIEMI NUMERICI. 1) Mettere in ordine crescente i seguenti numeri reali: ESERCIZI SUGLI INSIEMI NUMERICI ) Mettere in ordine crescente i seguenti numeri reali:,4; 2/7; 5/8; 0, ; 5/8; π; 2/7; 0,; 0 ; 0,00 0. Inserire poi nel precedente ordinamento i seguenti numeri reali: 2/5;

Dettagli

2 Numeri complessi. 3 Lo spazio euclideo R N. 4 Topologia di R N

2 Numeri complessi. 3 Lo spazio euclideo R N. 4 Topologia di R N PROGRAMMA DI ANALISI MATEMATICA L-A Corsi di Laurea in Ing. Informatica, Ing. dell Automazione, Ing. Elettrica (Prof. Ravaglia) Anno Accademico 2007/08 Simboli: I= introduzione intuitiva, D = definizione,

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 03 a.a

Analisi Matematica per Bio-Informatici Esercitazione 03 a.a Analisi Matematica per Bio-Informatici Esercitazione a.a. 7-8 Dott. Simone Zuccher 6 Novembre 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

Elettronica II L equazione di Schrödinger p. 2

Elettronica II L equazione di Schrödinger p. 2 Elettronica II L equazione di Schrödinger Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/ liberali

Dettagli

PARITA. Parità Parità intrinseca Conservazione della Parità

PARITA. Parità Parità intrinseca Conservazione della Parità PARITA Parità Parità intrinseca Conservazione della Parità PARITÀ L operatore di inversione spaziale è una trasformazione discreta che inverte il segno delle tre coordinate spaziali: P x, y, z -x, -y,

Dettagli

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così :

Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così : Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così : Q = q r + q i i + q j j + q k k ove le quantità q sono numeri reali e i, j e k sono tre unità immaginarie. Quando

Dettagli

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Considero l equazione di Schrödinger per gli autovalori Ĥψ = Eψ e prendo un s.o.n.c. di funzioni u j (x). ψ si potrà esprimere come

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Appello di Meccanica Quantistica I

Appello di Meccanica Quantistica I Appello di Meccanica Quantistica I Facoltà di Scienze M.F.N. Università degli Studi di Pisa gennaio 007 (A.A. 06/07) Tempo a disposizione: 3 ore. Problemi e per il recupero Compitino I; problemi e 3 per

Dettagli

Esercizi di Fisica Matematica 3, anno

Esercizi di Fisica Matematica 3, anno Esercizi di Fisica Matematica 3, anno 01-013 Dario Bambusi, Andrea Carati 5.06.013 Abstract Tra i seguenti esercizi verranno scelti gli esercizi dell esame di Fisica Matematica 3. 1 Meccanica Hamiltoniana

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.2 Funzioni Complesse Una funzione complessa di variabile complessa f : E C, E C è un applicazione ce associa un numero complesso f(z) ad ogni z E, con E sottoinsieme del

Dettagli

Un esempio: Il letto di un fiume è posto lungo la parabola di equazione

Un esempio: Il letto di un fiume è posto lungo la parabola di equazione Massimi e Minimi Vincolati La precedente sezione si è chiusa con due interessanti problemi (facoltativi), riconducibili alla ricerca del minimo assoluto per funzioni definite in tutto riguardanti gli estremi

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Primo Scritto [1-6-018] 1. Si consideri il sistema meccanico bidimensionale per x R. ẍ = ( x 4 1)x, (a) Si identifichino due integrali

Dettagli

Analisi Matematica. Alcune funzioni elementari

Analisi Matematica. Alcune funzioni elementari a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Alcune funzioni elementari Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso rappresenta l evoluzione di un fenomeno al passare del tempo. Se siamo interessati a sapere con che rapidità il fenomeno si evolve

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzioni Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente x quando esiste un legame di natura qualsiasi che ad ogni valore di x faccia corrispondere

Dettagli

Richiami di Meccanica Classica

Richiami di Meccanica Classica Richiami di Meccanica Classica Corso di Fisica Matematica 3 (seconda parte), a.a. 2016/17 G. Gaeta 18/4/2017 Questa dispensa, che va vista in connessione a quella sul principio variazionale e la formulazione

Dettagli

ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI

ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI EQUAZIONI IRRAZIONALI Una equazione si definisce irrazionale quando

Dettagli