Appello di Meccanica Quantistica I

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appello di Meccanica Quantistica I"

Transcript

1 Appello di Meccanica Quantistica I Facoltà di Scienze M.F.N. Università degli Studi di Pisa gennaio 007 (A.A. 06/07) Tempo a disposizione: 3 ore. Problemi e per il recupero Compitino I; problemi e 3 per il recupero Compitino II. Per Appello I risolvere Prob. (ii) e (iii); Prob. (i) - (iv) e Prob. 3 (i) - (iii). Problema Un oscillatore armonico unidimensionale H 0 = p m + κx () nello stato fondamentale 0 perde ad un tratto (t = 0) 4 3 della sua massa mentre la costante di richiamo κ resta invariata: H = p m + κx () (i) Trovare la probabilità (P 0 ) che il sistema si trovi nello stato fondamentale del nuovo oscillatore H immediatamente dopo il cambiamento della massa; (ii) Introdurre la rappresentazione degli operatori di creazione e di distruzione a a per H 0 e b b per H. Trovare la relazione tra (b b ) e (a a ). Verificare come controllo del calcolo che questa relazione sia compatibile con il fatto che [aa ] = e [bb ] = (iii) Scrivendo lo stato fondamentale dell oscillatore originale 0 in termini di autostati di H 0 = c n n n e riscrivendo la condizione a 0 = 0 in termini di b e b trovare la relazione di ricorrenza per c n. Non è necessario risolverla. (iv) Utilizzando alcune di queste relazioni nonché il risultato del punto (i) trovare la probabilità (P P ) che il systema si trovi nei primi due stati eccitati del nuovo oscillatore H immediatamente dopo il cambiamento della massa. (Nel caso in cui si risolve questo problema senza aver risolto il punto (i) è sufficiente determinare le probabilità relative P /P 0 e P /P 0. ) Problema. Si consideri una particella di spin. L operatore di spin è data da dove σ i i = xyz sono le matrici di Pauli. s i = σ i (i) Dire quali sono gli autovalori di σ x e di σ y ; determinare relativi autostati ( x x ; y y ) in termini degli autostati di σ z z o z. (ii) Invertendo le relazioni trovate in sopra esprimere gli stati di s z definiti z o z in termini di x e x nonché in termini di y e y.

2 Una particella di spin incognito decade a riposo in tre particelle tutte di spin. Assumete che i momenti angolari orbitali siano nulli: si devono tenere conto solo di spin. Supponiamo che lo stato sia descritto da ψ = ( z z z z z z ). (3) (iii) Lo stato (3) è un autostato di S tot? (S tot = s + s + s 3 ) Se lo è con quale autovalore? È un autostato di S tot z? Se lo è con quale autovalore? (iv) Dire se lo stato (3) è un autostato dell operatore e se lo è dire qual è l autovalore. σ x σ x σ 3x ( σ x σ x σ 3x ) (v) Dire se lo stato (3) è un autostato dell operatore e se lo è dire qual è l autovalore; σ x σ y σ 3y ( σ x σ y σ 3y ) Problema 3. Un atomo di idrogeno è perturbato da un termine H = H 0 + H dove s è l operatore di spin dell elettrone. H 0 = p m e r H = λs r (i) In presenza di H quali degli operatori s L J J i sono conservati? La parità? J è il momento angolare totale J = L + s. (ii) Dimostrare che nello stato fondamentale dell atomo di idrogeno ψ 00 (autostato di H 0 ) vale 00; χ H 00; χ = 0. dove χχ sono autovalori ±/ di s z. (iii) Consideriamo gli stati di n = lm;χ con l =. risultati del punto () che vale Dimostrare utilizzando i ; H 00; + 0; H 00; = 0 (4) senza fare il calcolo degli elementi di matrice. (iv) [Opzionale] Verificare la (4) facendo esplicito calcolo dei due elementi di matrice che ci appaiono. parità. L operatore di spin si comporta nella stessa maniera di un operatore di momento angolare orbitale sotto

3 Soluzione Problema. (i) Lo stato fondamentale di H 0 e quello di H sono rispettivamente ( ) ( mω ) /4 ψ 0 = e mωx / h ; ψ m ω /4 0 = e m ω x / h ; π h π h La frequenza angolare dell oscillatore prima e dopo il cambiamento della massa è κ κ ω = m ω = m = m 4 m. mω = mκ m ω mκ = m κ = La detta probabilità è data da (A mω ψ 0 ψ 0 = A A π π h ) dxe Ax / e Ax /4 = A 4π π 3A = (ii) Paragonando la relazione tra x p e aa con quella tra x p e bb si trova a + a = b + b ; a a = b b = mω. da cui Per consistenza a = (3b + b ) a = (b + 3b ); b = (3a a ) b = (3a a); [bb ] = (9 ) = 8 se si utilizza [aa ] =. (iii) (3b + b ) c n n = 0 Utilizzando i noti elementi di matrice di b e di b c n [3 n n + n + n + ] = 0 e proiettando questa relazione sullo stato n si trova la relazione di ricorrenza 3 n + c n+ + nc n = 0 n = 3... Segue che c = c 3 =... = 0 e soltanto i coefficienti pari sono non nulli. Si può comprendere che i coefficienti dispari si annullano tutti dal fatto che la funzione d onda a t = 0 è pari. (iv) Risulta dalla relazione di ricorrenza che c = 3 c 0. La probabilità che il sistema si trovi nel primo stato eccitato è zero; mentre quella per il secondo stato eccitato è: P = 8 P 0 =

4 Problema. (i) Gli autovalori di σ x σ y sono ± con autovettori x = σ x = = ( ) ; x = σ x = = ( y = σ y = = ( ) ; i y = σ y = = ( i Oppure con la notazione di spin up e down x = ( z + z ) x = ( z z ) y = ( z + i z ); y = ( z i z ) ) ) (ii) z = ( x + x ); z = ( x x ); z = ( y + y ); z = i ( y y ); (iii) Visto che S tot z = ± 3 ψ è un autostato di S tot con autovalore 5 4 (cioè S tot = 3 ); mentre ovviamente non è un autostato di S tot z. (iv) Per vedere l effetto dell operatore σ x σ x σ 3x sullo stato ψ scrivo quest ultimo in termini di autostati di σ x σ x σ 3x : ψ = 4 [( x + x )( x + x )( x + x ) ( x x )( x x )( x x )] = [ ] (5) Ciascun termine è un autostato dell operatore σ x σ x σ 3x con autovalore : lo stesso vale per ψ. (v) Per vedere l effetto dell operatore σ x σ y σ 3y sullo stato ψ scrivo quest ultimo in termini di autostati di σ x σ y σ 3y : ψ = 4 [( x + x )( y + y )( y + y ) + ( x x )( y y )( y y )] = [ ] (6) Ciascun termine è un autostato dell operatore σ x σ y σ 3y con autovalore +: lo stesso vale per ψ. Nota: lo stato ψ è stato considerato da Mermin (Am. J. Phys. 58 (990) 73) per produrre una versione più forte dell argomento di Bell sulla questione che riguarda le teorie con variabili nascoste. Problema 3. (i) s J e J i sono conservate. L non è conservato. s commuta con H perché s commuta con ogni sua componente. Per vedere che J e J i commutano con H [J z s x x + s y y + s z z] = [s z + L z s x x + s y y] = is y x is x y + is x y is y x = 0. La parità non è conservata. 4

5 (ii) 00; χ H 00; χ si annulla per parità. (L integrando è dispari.) (iii) Visto che H commuta con J e con J z lo stato H 00 ha gli stessi numeri quantici di 00 cioè (JJ z) = ( ). Tra gli stati di n = l = la combinazione ; ; è uno stato di spin totale J = 3 : esso è ortogonale ad ogni stato di spin (JJ z ) = ( ). N.B L affermazione generale di questo tipo di ragionamento è il contenuto del teorema di Wigner-Eckart. (iv) ; H 00; = λ ; s x x + s y y 00;. 0; H 00; = λ ; s z z 00;. s x x + s y y = ( ) 0 x iy x + iy 0 s z z = ( ) z 0 0 z perrciò (r B = ) ; H 00; = λ x+iy 00 = λ dr r 3 R R 0 d cosθdφ Y sinθe iφ Y 00 0; H 00; = λ 0 z 00 = λ dr r 3 R R 0 d cosθdφ Y 0 cosθy 00. Gl integrali sono elementari. Visto che si deve dimostrare la relazione (4) la parte radiale (comune) è irrelevante. Gli integrali angolari danno in due casi 3 π d cosθ sin θ = 8π 4π 3 ; 3 π d cosθ cos θ =. 4π 4π 3 5

Compitino 1 di Meccanica Quantistica I

Compitino 1 di Meccanica Quantistica I Compitino di Meccanica Quantistica I Facoltà di Scienze, M.F.N., Università degli Studi di Pisa, 5 dicembre 00 (A.A. 0/) (Tempo a disposizione: 3 ore ) Problema. Un sistema a due stati è caratterizzato

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi Problemi di Meccanica Quantistica Capitolo IX Spin a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema IX.1 Un sistema consiste di due particelle distinguibili

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

REGISTRO DELLE LEZIONI 2005/2006. Tipologia

REGISTRO DELLE LEZIONI 2005/2006. Tipologia Struttura formale della meccanica quantistica Rapprestazione matriciale Addì 03-10-2005 Addì 03-10-2005 15:00-16:00 Teorema della compatibilità Theorema dell'indeterminazione per operatori non commutanti

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2012-2013 (1) Per un sistema n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione x

Dettagli

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d.

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d. 1 Stati Coerenti Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana H = 1 m p + 1 m ω x (1) Per semplicitá introduciamo gli operatori autoaggiunti adimensionali

Dettagli

Oscillatore armonico in più dimensioni

Oscillatore armonico in più dimensioni Oscillatore armonico in più dimensioni 1 Oscillatore in D dimensioni La teoria dell oscillatore armonico si può generalizzare facilmente da una a più dimensioni. Infatti la hamiltoniana di un oscillatore

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2013-2014 (1) Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI Orbitali atomici e loro rappresentazione Le funzioni d onda Ψ n che derivano dalla risoluzione dell equazione d onda e descrivono il moto degli elettroni nell atomo si dicono orbitali

Dettagli

Esercitazioni di Meccanica Quantistica I

Esercitazioni di Meccanica Quantistica I Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base

Dettagli

Soluzione del secondo Esonero di Meccanica Quantistica

Soluzione del secondo Esonero di Meccanica Quantistica 1 Soluzione del secondo Esonero di Meccanica Quantistica 1/3/007 Compito A Osserviamo che l hamiltoniana è separabile nella forma H = H x1 + H y1 + H x + H y dove si è posto H x1 = p x 1 m + U(x 1), H

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Atomi a più elettroni

Atomi a più elettroni Chapter 7 Atomi a più elettroni 7.1 Lo spin Gli esperimenti indicano che alle particelle si deve associare un momento angolare intrinseco, o spin, indipendentemente dalla loro natura (particelle elementari

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

Lezioni di Meccanica Quantistica

Lezioni di Meccanica Quantistica Luigi E. Picasso Lezioni di Meccanica Quantistica seconda edizione Edizioni ETS www.edizioniets.com Copyright 2015 EDIZIONI ETS Piazza Carrara, 16-19, I-56126 Pisa info@edizioniets.com www.edizioniets.com

Dettagli

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013 L atomo di idrogeno R. Dovesi, M. De La Pierre, C. Murace Corso di Laurea in Chimica A.A. 2012/2013 Chimica Fisica II Modello per l atomo di idrogeno Modello: protone fisso nell origine ed elettrone in

Dettagli

Metalli alcalini: spettri ottici

Metalli alcalini: spettri ottici Metalli alcalini: spettri ottici l Rimozione della degenerazione. Aspetti quantitativi l Regole di selezione. Giustificazione. Possiamo introdurre un numero quantico principale efficace nel modo seguente:

Dettagli

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi. 1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3

Dettagli

Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica,

Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica, Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica, spin, ). Esempi: due elettroni, due protoni, due neutroni,

Dettagli

Problemi di Meccanica Quantistica. Capitolo IV. Oscillatore Armonico Unidimensionale

Problemi di Meccanica Quantistica. Capitolo IV. Oscillatore Armonico Unidimensionale Problemi di Meccanica Quantistica Capitolo IV Oscillatore Armonico Unidimensionale a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema IV.1 All istante

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Collezione di esami del corso di (Istituzioni di) Meccanica Quantistica del terzo anno della laurea in Fisica dell Università di Napoli Federico II

Collezione di esami del corso di (Istituzioni di) Meccanica Quantistica del terzo anno della laurea in Fisica dell Università di Napoli Federico II Collezione di esami del corso di (Istituzioni di) Meccanica Quantistica del terzo anno della laurea in Fisica dell Università di Napoli Federico II Avvertenze Ogni esame ha alle sue spalle un corso, che

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

La struttura elettronica degli atomi

La struttura elettronica degli atomi 1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,

Dettagli

ESERCIZI DI MECCANICA QUANTISTICA. a cura di Stefano Patrì - a.a

ESERCIZI DI MECCANICA QUANTISTICA. a cura di Stefano Patrì - a.a ESERCIZI DI MECCANICA QUANTISTICA a cura di Stefano Patrì - a.a. - Esercizio Un oscillatore armonico in dimensione con massa m e pulsazione ω si trova in uno stato iniziale ψ, tale che: una misura dell

Dettagli

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton Democrito IV secolo A.C. ATOMO Lavoisier Proust Legge della conservazione della massa Legge delle proporzioni definite Dalton (808) Teoria atomica Gay-Lussac volumi di gas reagiscono secondo rapporti interi

Dettagli

8.1 Problema della diffusione in meccanica quantistica

8.1 Problema della diffusione in meccanica quantistica 8.1 Problema della diffusione in meccanica quantistica Prima di procedere oltre nello studio dell interazione puntuale, in questo paragrafo vogliamo dare un breve cenno alle nozioni di base della teoria

Dettagli

n(z) = n(0) e m gz/k B T ; (1)

n(z) = n(0) e m gz/k B T ; (1) Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 4 Luglio 008 - (tre ore a disposizione) [sufficienza con punti 8 circa di cui almeno 4 dagli esercizi nn. 3 e/o 4] [i bonus possono essere

Dettagli

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare)

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) 1 Spazi vettoriali (1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) (a) R 5 (b) [0, ) (c) x R 2 : x 1 + 2x 2 = 0} (d) x R 2 : x 2 1 + 2x 2 = 0} (e) x R 2 : x 1 > x

Dettagli

DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ

DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ 2/3 DISTRIBUZIONI SINGOLARI E "FUNZIONE" DELTA DI DIRAC 0/ DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ Consideriamo una distribuzione continua di una data quantità Q ad esempio la carica elettrica o la

Dettagli

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive. Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se

Dettagli

Esercizi di Geometria - 1

Esercizi di Geometria - 1 Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi

Dettagli

Metodi I Secondo appello

Metodi I Secondo appello Metodi I Secondo appello Chi recupera la prima prova fa la parte A in due ore. Chi recupera la seconda prova fa la parte B in due ore. Chi fa l appello per intero fa A., B., le prime tre domande di A.2

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica Chapter 3 L equazione di Schrödinger unidimensionale: soluzione analitica e numerica In questo capitolo verrà descritta una metodologia per risolvere sia analiticamente che numericamente l equazione di

Dettagli

Esercizio 1. CF 2 CS 2 CCl 4 ClF 3

Esercizio 1. CF 2 CS 2 CCl 4 ClF 3 Esercizio 1 Determinare in base al metodo del legame di valenza la forma delle seguenti molecole, tenendo conto delle repulsioni coulombiane tra le coppie elettroniche di valenza CF 2 CS 2 CCl 4 ClF 3

Dettagli

SEMINARIO ANALISI ARMONICA PROF. VLADIMIR GEORGIEV UNIVERSITA DI PISA - A.A. 2012/2013 MATTEO DI NUNNO

SEMINARIO ANALISI ARMONICA PROF. VLADIMIR GEORGIEV UNIVERSITA DI PISA - A.A. 2012/2013 MATTEO DI NUNNO SEMINARIO ANALISI ARMONICA PROF. VLADIMIR GEORGIEV UNIVERSITA DI PISA - A.A. 22/23 MATTEO DI NUNNO Sia dove δ (,.. TRASFORMATA DI FOURIER F (x = R3 i xξ e ξ 2 ( + iδ 2 dξ ( Vedere se F (x é una funzione

Dettagli

4 Sistemi di equazioni.

4 Sistemi di equazioni. 4 Sistemi di equazioni. Risolvere un sistema significa erminare le soluzioni comuni a tutte le equazioni che lo compongono. Il grado di un sistema è il prodotto dei gradi di tali equazioni. 4. Sistemi

Dettagli

ATOMI MONOELETTRONICI

ATOMI MONOELETTRONICI ATOMI MONOELETTRONICI L equazione di Schrödinger per gli atomi contenenti un solo elettrone (atomo di idrogeno, ioni He +, Li 2+ ) può essere risolta in maniera esatta e le soluzioni ottenute permettono

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16) Scopo del corso Lo studente dovrebbe apprendere alla fine di questo corso i contenuti fondamentali della meccanica quantistica e imparare ad applicarli

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI I numeri quantici Le funzioni d onda Ψ n, soluzioni dell equazione d onda, sono caratterizzate da certe combinazioni di numeri quantici: n, l, m l, m s n = numero quantico principale,

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Antonino Polimeno Università degli Studi di Padova Equazioni differenziali - 1 Un equazione differenziale è un equazione la cui soluzione è costituita da una funzione incognita

Dettagli

24.1. Ritorno al gruppo delle trasformazioni di Möbius Lo spazio proiettivo degli stati di un qubit.

24.1. Ritorno al gruppo delle trasformazioni di Möbius Lo spazio proiettivo degli stati di un qubit. 4.1. Ritorno al gruppo delle trasformazioni di Möbius. 4.1.1. Lo spazio proiettivo degli stati di un qubit. Il qubit è il sistema quantistico più semplice che esista: un sistema i cui stati possibili possono

Dettagli

Programma della I parte

Programma della I parte Programma della I parte Cenni alla meccanica quantistica: il modello dell atomo Dall atomo ai cristalli: statistica di Fermi-Dirac il modello a bande di energia popolazione delle bande livello di Fermi

Dettagli

Effetto Zeeman anomalo

Effetto Zeeman anomalo Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli

Dettagli

Violazione della Parità

Violazione della Parità Violazione della Parità Raffaele Pontrandolfi Corso di Astrosica e Particelle Elementari Motivazione Per spiegare l asimmetria nell universo tra particelle e antiparticelle bisogna trovare dei processi

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Sviluppo in Serie di Fourier

Sviluppo in Serie di Fourier Capitolo Sviluppo in Serie di Fourier. Proprietà della Serie di Fourier Un segnale reale tempo continuo e periodico di periodo, per il quale sono valide le condizioni di Dirichlet vedi pag. 4 [], può essere

Dettagli

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica

Dettagli

Struttura del sistema periodico Stato fondamentale degli elementi

Struttura del sistema periodico Stato fondamentale degli elementi Struttura del sistema periodico Stato fondamentale degli elementi Singolo elettrone: 1)Numero quantico principale n 2)Numero quantico del momento angolare orbitale l = 0, 1,, n-1 3)Numero quantico magnetico

Dettagli

Struttura Elettronica degli Atomi Meccanica quantistica

Struttura Elettronica degli Atomi Meccanica quantistica Prof. A. Martinelli Struttura Elettronica degli Atomi Meccanica quantistica Dipartimento di Farmacia 1 Il comportamento ondulatorio della materia 2 1 Il comportamento ondulatorio della materia La diffrazione

Dettagli

Interazione luce- atomo

Interazione luce- atomo Interazione luce- atomo Descrizione semiclassica L interazione predominante è quella tra il campo elettrico e le cariche ASSORBIMENTO: Elettrone e protone formano un dipolo che viene messo in oscillazione

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Dalle configurazioni ai termini

Dalle configurazioni ai termini Dalle configurazioni ai termini Introduzione Nello sviluppare i metodi di Thomas - Fermi, di Hartree e di Hartree - Fock, abbiamo sempre rappresentato gli autostati di un sistema costituito da due o più

Dettagli

Momento angolare. Operatori: richiami. Momento angolare classico. z Momento angolare v. Operatore posizione in 3D

Momento angolare. Operatori: richiami. Momento angolare classico. z Momento angolare v. Operatore posizione in 3D Operatori: richiami Operatore posizione in 3D Non Operatore è permessa, momento in particolare, la riproduzione anche parziale i Per l autorizzazione a riprodurre in parte [ o in tutto la presente Detti

Dettagli

Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà.

Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà. Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà. Nell atomo l energia associata ad un elettrone (trascurando

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Risultati della teoria di Hartree

Risultati della teoria di Hartree Risultati della teoria di Hartree Il potenziale è a simmetria sferica, come nell atomo di idrogeno, quindi: ψ n, l, m = Rn, l ( r) Θ l, m ( θ ) Φ m ( ϕ ) l l l La dipendenza angolare delle autofunzioni

Dettagli

BUCA DI POTENZIALE RETTANGOLARE

BUCA DI POTENZIALE RETTANGOLARE 4/3 POTENZIALI RETTANGOLARI 09/10 1 BUCA DI POTENZIALE RETTANGOLARE La buca di potenziale unidimensionale rettangolare è definita da (1) V (x) = { V0, per x < b (V 0 > 0), 4/3 POTENZIALI RETTANGOLARI bozza

Dettagli

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) Atomi 16 Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) 17 Teoria atomica di Dalton Si basa sui seguenti postulati: 1. La materia è formata

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 5 GIUGNO 6 Si svolgano cortesemente i seguenti Problemi. PRIMO PROBLEMA (PUNTEGGIO: 3/3) Dati due operatori hermitiani  and ˆB in uno spazio di Hilbert

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 3 La dualità nella Programmazione Lineare 3.1 Teoria della dualità Esercizio 3.1.1 Scrivere il problema duale del seguente problema di Programmazione Lineare: min x 1 x 2 + x 3 2x 1 +3x 2 3 x

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Il Principio di Indeterminazione di Heisenberg

Il Principio di Indeterminazione di Heisenberg Il Principio di Indeterminazione di Heisenberg Il Principio di Indeterminazione di Heisenberg è uno dei fondamenti della meccanica quantistica, e stabilisce che non è possibile ottenere nello stesso tempo

Dettagli

Le molecole ed il legame chimico

Le molecole ed il legame chimico La meccanica quantistica è in grado di determinare esattamente i livelli energetici dell atomo di idrogeno e con tecniche matematiche più complesse è anche in grado di descrivere l atomo di elio trovando

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 FEBBRAIO 6 Si risolvano cortesemente i seguenti problemi. PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l integrale SOLUZIONE DEL PRIMO PROBLEMA M=. (+ x

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado Un equazione di secondo grado può sempre essere ridotta nella forma: a + bx + c 0 forma normale con a 0. Le lettere a, b, c sono rappresentano i coefficienti. Solo b e c possono

Dettagli

Estremi liberi. (H x, x) x 2 (1) F (x) =

Estremi liberi. (H x, x) x 2 (1) F (x) = Estremi liberi Allo scopo di ottenere delle condizioni sufficienti affinchè un punto stazionario sia un estremante, premettiamo alcuni risultati riguardanti le proprietà delle forme quadratiche. Sia H

Dettagli

Funzione d onda dello stato fondamentale (trascurando l interazione elettrone-elettrone)

Funzione d onda dello stato fondamentale (trascurando l interazione elettrone-elettrone) -e -e +2e ATOMO DI ELIO. Considero il nucleo fisso (sistema di riferimento del centro di massa, circa coincidente col nucleo). I due elettroni vanno trattati come indistinguibili. -e -e +2e SENZA il termine

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Lezione 7: Il Teorema di Rouché-Capelli

Lezione 7: Il Teorema di Rouché-Capelli Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da

Dettagli

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x):

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x): sercizio Considerare il moto di un punto materiale di massa m = soggetto ad un potenziale V (x): ẍ = V (x), dove V (x) = x x.. Scrivere esplicitamente l equazione del moto e verificare esplicitamente la

Dettagli

(5 sin x + 4 cos x)dx [9]

(5 sin x + 4 cos x)dx [9] FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN SCIENZE NATURALI II Modulo di Matematica con elementi di statistica. Esercitazioni A.A. 009.00. Tutor: Mauro Soro, p.soro@tin.it Integrali definiti Risolvere

Dettagli

E. SCHRODINGER ( )

E. SCHRODINGER ( ) E. SCHRODINGER (1887-1961) Elettrone = onda le cui caratteristiche possono essere descritte con un equazione simile a quella delle onde stazionarie le cui soluzioni, dette funzioni d onda ψ, rappresentano

Dettagli

Problemi supplemetari

Problemi supplemetari Problemi supplemetari Problemi per Capitolo. Sistema a 3 stati Un sistema a tre stati è descritto dall Hamiltoniana H = H 0 + H = E 0 0 0 0 E 0 0 ɛ 0 0 0 0 0 E 0 0 0. () (i) Determinare gli autovalori

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

LA STRUTTURA ELETTRONICA DEGLI ATOMI

LA STRUTTURA ELETTRONICA DEGLI ATOMI LA STRUTTURA ELETTRONICA DEGLI ATOMI 127 Possiamo trattare insieme l atomo di idrogeno e gli atomi idrogenoidi He +, Li 2+, ecc., in quanto differiscono l uno dall altro solo per la carica nucleare. Protone

Dettagli

1.3 L effetto tunnel (trattazione semplificata)

1.3 L effetto tunnel (trattazione semplificata) 1.3 L effetto tunnel (trattazione semplificata) Se la parete di energia potenziale non ha altezza infinita e E < V, la funzione d onda non va rapidamente a zero all interno della parete stessa. Di conseguenza,

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

FAM. Il sistema spin 1/2. Christian Ferrari. Liceo di Locarno

FAM. Il sistema spin 1/2. Christian Ferrari. Liceo di Locarno FAM Il sistema spin 1/2 Christian Ferrari Liceo di Locarno L esperienza di Stern Gerlach 1 1922: Stern e Gerlach Misura del momento magnetico di atomi di argento con un campo magnetico fortemente inomogeneo.

Dettagli

Simmetrie della hamiltoniana e degenerazione

Simmetrie della hamiltoniana e degenerazione Simmetrie della hamiltoniana e degenerazione. Simmetrie e gruppi di trasformazioni In meccanica quantistica hanno grande importanza le simmetrie della hamiltoniana, dove per simmetria si intende l invarianza

Dettagli

Struttura fine dei livelli dell idrogeno

Struttura fine dei livelli dell idrogeno Struttura fine dei livelli dell idrogeno. Introduzione Consideriamo un atomo idrogenoide di massa m N e carica atomica Z. Dall equazione di Schrödinger si ottengono per gli stati legati i seguenti autovalori

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Corso di Geometria III - A.A. 2016/17 Esercizi

Corso di Geometria III - A.A. 2016/17 Esercizi Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

7. Equazioni differenziali

7. Equazioni differenziali 18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non

Dettagli

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza Parte I Problemi Richiami Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza u ν = 8π hν c 3 ν e βhν 1, dove c è la velocità della luce

Dettagli

Elettronica II L equazione di Schrödinger p. 2

Elettronica II L equazione di Schrödinger p. 2 Elettronica II L equazione di Schrödinger Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/ liberali

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

CONDENSATI DI BOSE-EINSTEIN E SUPERFLUIDI

CONDENSATI DI BOSE-EINSTEIN E SUPERFLUIDI CONDENSATI DI BOSE-EINSTEIN E SUPERFLUIDI Consideriamo un fluido in una scatola. Questo è un insieme di tanti piccoli costituenti che supponiamo per semplicità essere identici. Dalla meccanica quantistica

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli