Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO"

Transcript

1 Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare Durante il volo transatmosferico A) si conservano in ogni caso la velocitá del baricentro e il momento angolare. B) si conservano l energia meccanica e il momento angolare. C) si conservano la quota e la velocitá. D) nessuna delle precedenti risposte é corretta. La velocitá alla quota di tangenza per un velivolo a getto A) é proporzionale all eccesso di spinta alla stessa quota di tangenza B) dipende direttamente dalla velocitá massima C) aumenta con l allungamento e con la spinta al suolo, mentre diminuisce all aumentare del peso. D) é maggiore della velocitá al suolo ottenuta alla medesima incidenza. Un significativo incremento del fattore di Oswald ottenuto mediante un curato raccordo ala-fusoliera, determina A) un sensibile incremento della velocitá massima B) un importante aumento delle prestazioni in manovra, in salita e un incremento della autonomia chilometrica. C) una sensibile riduzione degli angoli d attacco alla velocitá di stallo D) una significativa riduzione delle prestazioni nel volo librato e durante manovre di virata. Durante il volo spaziale la forma dell orbita A) é una spirale. B) é sempre una circonferenza. C) é sempre un iperbole. D) dipende dalle condizioni iniziali attraverso gli integrali primi del moto. Il rateo di virata in una manovra corretta nel piano orizzontale A ) cresce all aumentare di grado di ammissione e potenza massima del motore B) cresce all aumentare di grado di ammissione e diminuisce al crescere della potenza massima del motore C) é costante per la sola motoelica a giri costanti sotto la quota di ristabilimento. D) dipende dall angolo di rampa. In un volo transatomosferico con ρc L = 0, la velocitá necessaria su traiettoria circolare corrispondente a una quota h A ) é maggiore della velocitá circolare g(r E + h) B) é minore della velocitá circolare g(r E + h) C) dipende dallo scambio termico e dal coefficiente di portanza massimo D) é uguale alla velocita circolare g(r E + h) Le velocitá caratteristiche di decollo e atterraggio dipendono A ) dal grado di ammissione e dal fattore di Oswald B) dalla velocitá di stallo C) dalla velocitá massima D) dalla velocitá di potenza minima. La spinta disponibile di una motoelica a giri costanti A ) ha un andamento iperbolico decrescente all aumentare della velocitá B) é lineare con la velocitá C) é costante rispetto alla velocitá D) ha un andamento quadratico crescente all aumentare della velocitá. Quali fra i seguenti valori rappresenta in modo ragionevole il coefficiente di resistenza minimo per un velivolo dell Aviazione Generale in configurazione pulita? A ) 10 3 B) π C) 10 D) nessuno dei precedenti 100

2 A DOMANDA TEORICA Determinare il propellente consumato per effettuare una manovra alla Hohmann che trasferisca una navetta da un orbita circolare di raggio geocentrico r 1 ad un altra con raggio geocentrico r 2. ESERCIZIO Il progetto preliminare di un velivolo sportivo da acrobazia prevede le seguenti caratteristiche: motoelica a giri costanti, ala bassa, dritta a pianta trapezia con rapporto di rastremazione c tip /c root = 0.6 e allungamento alare A=5.8. Peso totale W = 800 kg. Fattore di carico massimo strutturale n max = 7 Coefficiente di portanza massimo C Lmax = 1.5. Efficienza massima E max = 12. La specifica di progetto prevede i seguenti requisiti 1. Velocitá di stallo al suolo non superiore a 22 m s Velocitá massima al suolo non inferiore a 350 km/h. 3. Il velivolo debba poter eseguire all incidenza corrispondente alla minima potenza necessaria una virata corretta con rateo di virata di almento 30 o s Nel volo orizzontale conseguito alla massima efficienza, il velivolo abbia una accelerazione non inferiore a 1 m s Il velivolo debba poter compiere una manovra alla minima potenza necessaria con una accelerazione di 0.8 m s 2, un rateo di salita di 5 m s 1 e un fattore di carico di 1.5. Assumendo con adeguato criterio i dati mancanti: Si esegua il calcolo della geometria alare in base alla specifica sulla velocitá di stallo. In particolare si determini superficie alare, apertura alare nonché corda alla radice e all estremitá. Per ciascuna delle restanti specifiche si determini la potenza del motore occorrente per eseguire le corrispondenti manovre e si individui il massimo della potenza Π mmax. Sia assuma definitivamente che la potenza del motore sia uguale Π mmax e si determini: La velocitá massima al suolo, il massimo rateo di virata, il massimo rateo di salita, il massimo fattore di carico (propulsivo) e la perdita di quota nell unitá di tempo alla corner velocity.

3 Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO B Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare Quali fra i seguenti valori puó rappresentare l efficienza massima di un aeromobile in configurazione pulita? A) 125 B) 12.5 C) 1.25 D) Nessuno dei precedenti In configurazione di decollo A) il C Lmax e minore del corrispondente valore in configurazione pulita B) il C Lmax e minore del corrispondente valore in configurazione di atterraggio C) il C Lmax e maggiore del corrispondente valore in configurazione di atterraggio D) il C Lmax e uguale al corrispondente valore in configurazione di atterraggio indicare il numero di giri plausibile per un elica del diametro di 20 cm A) R.P.M. B) 1000 R.P.M. C) R.P.M. D) 100 R.P.M. I veicoli spaziali impiegati nel rientro A) hanno la parte anteriore con elevata curvatura locale in modo da ridurre la resistenza d onda B) hanno la parte anteriore con modesta curvature cosi da ridurre l energia termica assorbita dagli scudi termici. C) sono muniti di alette direttrici anteriori cosi da aumentare lo scambio termico soltanto verso la prua D) hanno sempre un efficienza aerodinamica maggiore di 10. La velocitá alla quota di tangenza per una motoelica. A ) é maggiore della velocitá al suolo al corrispondente angolo d attacco. B) é minore della velocitá al suolo al corrispondente angolo d attacco. C) é sempre maggiore della velocitá massima D) é nulla. Le caratterisriche di un orbita dipendono A ) dal carico alare della navetta spaziale B) dalla sola velocitá iniziale C) dalla sola posizione iniziale D) dalla posizione e dalla velocitá iniziali tramite gli integrali primi del moto. La velocitá di stallo equivalente A ) aumenta con la quota di volo B) é sensibilmente costante con la quota C) dipende dalla velocitá massima D) aumenta con la quota proporzionalmente a d ln ρ dh. L impiego dei profili laminari A ) Aumenta sempre in modo significativo le prestazioni in manovra. B) determina una bassa resisitenza a paritá di spessore relativo soltanto per un insieme limitato di incidenze. C) Aumenta sempre in modo sensibile le prestazioni di salita D) conferisce alle ali bassi spessori relativi e quindi una bassa resisitenza. Nella motoelica a giri costanti A ) il grado di ammissione é opportunamente regolato in modo da mantenere costante il numero di giri B) il grado di ammissione é opportunamente regolato in modo da mantenere costante la potenza del motore C) il passo dell elica é opportunamente regolato in modo da mantenere costante il numero di giri D) il passo dell elica é opportunamente regolato in modo da mantenere costante il grado di ammissione

4 B DOMANDA TEORICA Determinare la legge di variazione della velocitá di volo per una navetta che esegua un rientro balistico in funzione della quota. ESERCIZIO Lo Yakovlev Yak-55 é un velivolo acrobatico ala media, motoelica a giri costanti, i cui dati principali al livello del mare sono riportati nella seguente scheda tecnica sommaria: Dati: Peso totale: W = 840 kg Superficie alare: S = 14.3 m 2 Apertura alare: b = 8.20 m Velocitá massima: V max = 320 Km/h Motore: Vedeneyev M-14P da 268 kw. In base a tale scheda tecnica ed assumendo con ragionevole criterio i dati mancanti, si compili, calcolando le diverse grandezze al suolo, la seguente scheda tecnica estesa. 1. Coefficiente di resistenza minimo. 2. Efficienza massima. 3. Potenza minima necessaria (kw) 4. Velocitá di stallo (m/s) 5. Rateo di Salita massimo (velocitá di volo costante )(m/s). 6. Gradiente di Salita massimo (velocitá di volo costante ) (gradi). 7. Massimo fattore di carico propulsivo. 8. Massimo rateo di virata (manovra corretta) (gradi/sec). 9. Raggio minimo di virata (manovra corretta)(m). 10. Rateo di energia meccanica dh/dt alla minima potenza necessaria con n z =5 e δ T =1 (m/s). N.B. Per ogni singola voce si descriva la procedura seguita per ottenere la corrispondente grandezza.

5 Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO C Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare Quali fra i seguenti valori numerici puó rappresentare il fattore di Oswald un aeromobile? A) 10 5 B) 0.15 C) 2π D) nessuno dei precedenti. 10 Secondo le JAR23 e/o 25, il distacco dal suolo nella fase di decollo A) puó compiersi alla velocitá di stallo purché sia compiuto con un grado di ammissione adeguato B) puó compiersi alla velocitá di stallo purché la potenza dei motori lo permetta C) deve in ogni caso compiersi ad una velocitá superiore a quella di stallo D) puó avvenire alla velocitá di stallo purché il coefficiente di portanza massimo sia maggiore di 1.44 Nell analisi del moto generico di un aeromobile, l angolo di rampa iniziale A) é sempre proporzionale all eccesso di spinta B) assume un valore dipendentemente dalle condizioni iniziali C) dipende dal fattore di Oswald e dalla velocitá di stallo D) é sempre nullo Gli integrali primi del moto sono comunque A) l energia cinetica e il momento angolare B) l energia potenziale e il momento angolare C) quantitá che assumono valore costante su ciascuna traiettoria dipendentemente dalle condizioni iniziali D) il momento angolare, e la velocitá del baricentro. In quale condizione di volo si ha velocitá di stallo negativa? A ) in volo rovescio B) solo nelle manovre fortemente instazionarie. C) per fattore di carico normale negativo D) mai. Nella motoelica a passo fisso A ) la velocitá massima diminuisce al crescere del rapporto di funzionamento B) la spinta ha un andamento quadratico crescente con la velocitá C) la potenza disponibile é costante con la velocitá D) il numero di giri aumenta con la velocitá. rateo di salita e rateo di virata A ) sono tra loro direttamente proporzionali B) sono tra loro inversamente proporzionali C) sono quantitá indipendenti D) aumentano con la quota Si puó avere una condizione di volo con Π < 0 e RC > 0? A ) no, mai B) si, ma soltanto nel volo rovescio C) si, ma soltanto durante la fase di richiamata D) si, durante manovre non stazionarie Nella motoelica a giri costanti, per assegnate condizioni di volo, il passo dell elica A ) é indipendente dal grado di ammissione B) aumenta col grado di ammissione C) diminuisce all aumentare del grado di ammissione D) nessuna delle precedenti risposte é corretta.

6 C DOMANDA TEORICA A partire dalle equazioni del moto associate al problema dei due corpi, mostrare che l energia meccanica e il momento angolare si conservano. ESERCIZIO Il Cessna Model 650 Citation III é un business jet bimotore, ala bassa, avente le seguenti caratteristiche: Apertura Alare: b = m Allungamento Alare: A= 8.94 Peso al decollo W = 9979 kg p Motori: 2 turbofan Garrett TFE731-3B-100S ciascuno con spinta al decollo T 1 = N Velocitá di stallo in conf. di decollo V stall = 55 m/s Coefficiente di resistenza minimo al decollo comprensivo di carrello C D0 = (stimato) Assumendo con ragionevole criterio i dati mancanti, determinare secondo le JAR 25 l intera fase di decollo, in particolare stimare spazio e tempo di rullaggio al suolo. spazio e tempo di rotazione. spazio e tempo per la fase di involo. Determinare la spinta disponibile occorrente al superamento della quota h 35 = 35 ft e stabilire se il velivolo riesce a decollare o meno in sicurezza secondo quanto prescritto dalle JAR 25. Stimare inoltre in combustibile consumato nell intera dase di decollo, tenuto conto che il TSFC = 0.3 N/N h. Eseguito il decollo ed esaurito il transitorio, l aeromobile, mantenendo velocitá e angolo di rampa uguali a quelli del superamento di h 35, compie una fase di salita per uno spazio orizzintale di 2 km. Determinare l efficienza aerodinamica, il grado di ammissione e il combustibile consumato supponendo che la fase di salita venga effettuata sempre nella configurazione di decollo.

7 Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO D Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare Nella motoelica a giri costanti, per assegnate condizioni di volo, il passo dell elica A ) é indipendente dal grado di ammissione B) aumenta col grado di ammissione C) diminuisce all aumentare del grado di ammissione D) nessuna delle precedenti risposte é corretta. L impiego dei profili laminari A ) Aumenta sempre in modo significativo le prestazioni in manovra. B) determina una bassa resisitenza a paritá di spessore relativo soltanto per un insieme limitato di incidenze. C) Aumenta sempre in modo sensibile le prestazioni di salita D) conferisce alle ali bassi spessori relativi e quindi una bassa resisitenza. Le velocitá caratteristiche di decollo e atterraggio dipendono A ) dal grado di ammissione e dal fattore di Oswald B) dalla velocitá di stallo C) dalla velocitá massima D) dalla velocitá di potenza minima. Durante il volo transatmosferico A) si conservano in ogni caso la velocitá del baricentro e il momento angolare. B) si conservano l energia meccanica e il momento angolare. C) si conservano la quota e la velocitá. D) nessuna delle precedenti risposte é corretta. I veicoli spaziali impiegati nel rientro A) hanno la parte anteriore con elevata curvatura locale in modo da ridurre la resistenza d onda B) hanno la parte anteriore con modesta curvature cosi da ridurre l energia termica assorbita dagli scudi termici. C) sono muniti di alette direttrici anteriori cosi da aumentare lo scambio termico soltanto verso la prua D) hanno sempre un efficienza aerodinamica maggiore di 10. Si puó avere una condizione di volo con Π < 0 e RC > 0? A ) no, mai B) si, ma soltanto nel volo rovescio C) si, ma soltanto durante la fase di richiamata D) si, durante manovre non stazionarie La velocitá di stallo equivalente A ) aumenta con la quota di volo B) é sensibilmente costante con la quota C) dipende dalla velocitá massima D) aumenta con la quota proporzionalmente a d ln ρ dh. In un volo transatomosferico con ρc L = 0, la velocitá necessaria su traiettoria circolare corrispondente a una quota h A ) é maggiore della velocitá circolare g(r E + h) B) é minore della velocitá circolare g(r E + h) C) dipende dallo scambio termico e dal coefficiente di portanza massimo D) é uguale alla velocita circolare g(r E + h) Quali fra i seguenti valori rappresenta in modo ragionevole il coefficiente di resistenza minimo per un velivolo dell Aviazione Generale in configurazione pulita? A ) 10 3 B) π C) 10 D) nessuno dei precedenti 100

8 D DOMANDA TEORICA Determinare la quota si volo (in termini di densitá atmosferica) corrispondente al massimo dello scambio termico per un veicolo transatmosferico che esegua un volo sostentato su traiettoria circolare. ESERCIZIO Il Curtiss P-40 C Warhawk era un motomotore a giri costanti, ala bassa, la cui scheda tecnica sommaria é di seguito riportata Peso W = 3424 kg p Apertura alare b = m Superficie alare S = m 2 Motore: Allison V da Π m =1090 h = h r Quota di ristabilimento motore h r = 4572 m (δ = ) Velocitá massima V max = 555 h = h r Assumendo con ragionevole criterio i dati mancanti, stimare in primo luogo la polare aerodinamica del velivolo. Il velivolo vola inizialmente in moto orizzontale uniforme alla quota h r alla massima efficienza aerodinamica. Calcolare la velocitá di volo e la potenza che il motore deve erogare in tale condizione, nonché il relativo grado di ammissione. Successivamente il velivolo esegue una manovra di nose-down ottenuta riducendo inizialmente, in modo istantaneo, l angolo d attacco dal valore di massima efficienza fino a quello corrispondente a T/V min. La durata della manovra é 1 sec, mentre la velocitá é costante e pari alla velocitá della precedente fase orizzontale. Calcolare il fattore di carico normale, il raggio della traiettoria e il valore di γ ipotizzando che l angolo di rampa sia comunque limitato, nonché l angolo di rampa al termine della manovra γ m. Terminata la manovra il velivolo si pone in una condizione di discesa, mantenendo la velocitá iniziale e angolo di rampa costante e pari a γ m. Calcolare il coefficiente di portanza, la potenza che il motore deve erogare e il corrispondente grado di ammissione. Successivamente l aeromobile esegue una richiamata (nose-up) alla medesima velocitá che porta il velivolo dalla condizione di fine discesa fino a un angolo di rampa nullo per un tempo di 3 secondi. Calcolare l efficienza aerodinamica, il fattore di carico e γ. Per ogni singola fase si assuma che la densitá dell aria sia uguale a quella della quota di ristabilimento.

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Ingegneria Meccanica e Aerospaziale Corso di MECCANICA DEL VOLO

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Ingegneria Meccanica e Aerospaziale Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Ingegneria Meccanica e Aerospaziale Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del

Dettagli

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

POLITECNICO DI TORINO ESAME DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INDUSTRIALE. I Sessione Sezione A. Settore industriale

POLITECNICO DI TORINO ESAME DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INDUSTRIALE. I Sessione Sezione A. Settore industriale POLITECNICO DI TORINO ESAME DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INDUSTRIALE Tema n. 3 I Sessione 2011 - Sezione A Settore industriale Classe 25/S Ingegneria Aerospaziale Prova pratica

Dettagli

Esercitazione N. 6. = W con riferimento alla figura, le equazioni di equilibrio in direzione dell asse verticale Z ed orizzontale X, si scrivono:

Esercitazione N. 6. = W con riferimento alla figura, le equazioni di equilibrio in direzione dell asse verticale Z ed orizzontale X, si scrivono: R. BARBONI FONDAMENTI DI AEROSPAZIAE 1 Esercitazione N. 6 1) Un velivolo esegue una virata corretta a velocità V=500 km/h con fattore di carico n =3. Si calcoli l angolo di rollio φ ed il raggio di virata

Dettagli

Corso di MECCANICA DEL VOLO. Prof. F. Nicolosi. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1

Corso di MECCANICA DEL VOLO. Prof. F. Nicolosi. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1 Corso di MECCANICA DEL VOLO Modulo Prestazioni INTRO- Il Vli Velivolol Prof. F. Nicolosi Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1 Il volo, come è possibile?

Dettagli

ESAME DI AERODINAMICA 11/02/2015

ESAME DI AERODINAMICA 11/02/2015 ESAME DI AERODINAMICA 11/02/2015 In un profilo alare non simmetrico, al diminuire dell angolo di incidenza, la coordinata del centro di pressione: (a) tende verso il bordo di attacco (b) tende verso il

Dettagli

3 - Calcolo del Punto di progetto.

3 - Calcolo del Punto di progetto. 3 - Calcolo del Punto di progetto. 3.1 Il punto di progetto Scopo di questo calcolo è quello di determinare due parametri di progetto fondamentali del velivolo: il carico alare ed il rapporto spinta-peso.

Dettagli

Ad uso didattico - Copia in lavorazione

Ad uso didattico - Copia in lavorazione Indice Lezioni di Meccanica del Volo La Salita - Parte II Prof. Giuliano Deledda Istituto Tecnico Commerciale ed Aeronautico G. P. Chironi Nuoro A.S. 203/204 Sommario Queste note riportano lo studio dei

Dettagli

ESAME DI AERODINAMICA 10/9/2012

ESAME DI AERODINAMICA 10/9/2012 ESAME DI AERODINAMICA 10/9/2012 Se un aereo Boeing 727 sviluppa un C L pari a 16 volte il suo C D, quale distanza (in Km) può percorrere in volo planato partendo da un altezza di 7500 m se all improvviso

Dettagli

TRACCE DI ESAME: Manovre in Volo e Stabilita Statica TRACCIA 1) Parte A) Siano date le seguenti caratteristiche di un velivolo:

TRACCE DI ESAME: Manovre in Volo e Stabilita Statica TRACCIA 1) Parte A) Siano date le seguenti caratteristiche di un velivolo: TRACCE DI ESAME: Manovre in Volo e Stabilita Statica TRACCIA 1) Parte A) W=850 Kg S w =14 m 2 C Lcrociera =.2 C LMAX =2.2 e supponendo un n max =4.5 Determinare: 1) Massimo angolo di rollio in virata 2)

Dettagli

IMPIANTO PROPULSIVO. Potenza di targa

IMPIANTO PROPULSIVO. Potenza di targa IMPIANTO PROPULSIVO Potenza di targa Dalla determinazione del punto di progetto risulta che il rapporto tra il peso e la potenza del velivolo deve essere pari a circa 10.3. Essendo il peso del velivolo

Dettagli

Corso di PROGETTO GENERALE DEI VELIVOLI Determinazione del punto di progetto. Fabrizio Nicolosi

Corso di PROGETTO GENERALE DEI VELIVOLI Determinazione del punto di progetto. Fabrizio Nicolosi Corso di PROGETTO GENERALE DEI VELIVOLI Determinazione del punto di progetto Fabrizio Nicolosi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 -BAC L11 2 -B727 3 -Ilyiuschin 4 -A320 5 -MD11 6 -B747

Dettagli

PRESTAZIONI. Parte 1. Polare, Crociera, Salita, Decollo

PRESTAZIONI. Parte 1. Polare, Crociera, Salita, Decollo PRESTAZIONI Parte 1 Polare, Crociera, Salita, Decollo POLARE PARABOLICA POLARE PARABOLICA POLARE PARABOLICA POLARE PARABOLICA Si capisce perché alle alte velocità il sistema propulsivo ad elica non è efficace

Dettagli

ESAME DI AERODINAMICA 11/6/2012

ESAME DI AERODINAMICA 11/6/2012 ESAME DI AERODINAMICA /6/202 La velocità in un campo fluidodinamico bidimensionale è espressa, in m/s, da u = x y t,v = 2 y 2. La vorticità nel punto (x= -2 m, y= m) al tempo t=2 s è, in s : (a) -4 (b)

Dettagli

Negli anni 60 la NASA sviluppò profili aventi migliori prestazioni nel subsonico rispetto ai profili largamente usati ai tempi che erano profili NACA

Negli anni 60 la NASA sviluppò profili aventi migliori prestazioni nel subsonico rispetto ai profili largamente usati ai tempi che erano profili NACA SCELTA DEI PROFILI A nostro avviso risulta molto importante la scelta di profili che mantengano buone prestazioni nel campo del transonico. Infatti tutti gli aerei commerciali, e anche il nostro, volano

Dettagli

Cap.7 Volo livellato. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. Coiro / Nicolosi

Cap.7 Volo livellato. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. Coiro / Nicolosi PRESTAZIONI IN VOLO NON ACCELERATO Velocità massima in volo livellato Velocità i crociera (a un grao i ammissione

Dettagli

Corso di PROGETTO GENERALE DEI VELIVOLI Determinazione del punto di progetto. Fabrizio Nicolosi

Corso di PROGETTO GENERALE DEI VELIVOLI Determinazione del punto di progetto. Fabrizio Nicolosi orso di PROGETTO GENERALE DEI VELIVOLI Determinazione del punto di progetto Fabrizio Nicolosi 1 PROGETTO PRELIMINARE STIMA PRELIMINARE DEI PESI RIERA DEL 2 INPUT REQUISITI DI NORMATIVA REQUISITI DI SPEIFIA

Dettagli

8. PRESTAZIONI (Parte 1) - Polare, Crociera, Salita, Decollo. Prestazioni (parte I) 1

8. PRESTAZIONI (Parte 1) - Polare, Crociera, Salita, Decollo. Prestazioni (parte I) 1 8. PRESTAZIONI (Parte 1) - Polare, Crociera, Salita, Decollo Prestazioni (parte I) 1 POLARE PARABOLICA Prestazioni (parte I) 2 POLARE PARABOLICA Prestazioni (parte I) 3 POLARE PARABOLICA Prestazioni (parte

Dettagli

Prestazioni e Pianificazioni

Prestazioni e Pianificazioni Prestazioni e Pianificazioni Maurizio Pizzamiglio 96 Corso Piloti 2 Lezione IL VELIVOLO COMPLETO PORTANZA E RESISTENZA TOTALI Valgono le stesse relazioni già viste per l ala isolata: L=1/2C L ρsv 2 D=1/2C

Dettagli

Perché un aereo vola? Prof. G. Graziani Dipartimento Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma

Perché un aereo vola? Prof. G. Graziani Dipartimento Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma Perché un aereo vola? Prof. G. Graziani Dipartimento Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma Domanda: Perché un aeroplano dal peso di molte tonnellate riesce a volare? Ø L aerodinamica

Dettagli

Messerschmitt Me-262 Schwalbe

Messerschmitt Me-262 Schwalbe UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE Quest'opera è stata rilasciata sotto la licenza Creative Commons Attribuzione-Non commerciale- Condividi allo stesso

Dettagli

INTODUZIONE SPECIFICHE DI PROGETTO VALUTAZIONE DEI PESI CONFIGURAZIONE GENERALE

INTODUZIONE SPECIFICHE DI PROGETTO VALUTAZIONE DEI PESI CONFIGURAZIONE GENERALE INTODUZIONE SPECIFICHE DI PROGETTO VALUTAZIONE DEI PESI Determinazione dei pesi Peso del carico pagante Peso dell equipaggio Stima approssimativa del peso al decollo Peso del combustibile Peso a vuoto

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Corso di MECCANICA DEL VOLO. Prof. F. Nicolosi. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1

Corso di MECCANICA DEL VOLO. Prof. F. Nicolosi. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1 Corso di MECCANICA DEL VOLO Modulo Prestazioni INTRO- Il Velivolo l Prof. F. Nicolosi Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1 Il volo, come è possibile?

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

ESAME DI AERODINAMICA 29/3/2007

ESAME DI AERODINAMICA 29/3/2007 ESAME DI AERODINAMICA 29/3/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 12 m. Quando si muove in aria alla velocità di 150 km/h e sviluppa un

Dettagli

Studio di massima di un aerogeneratore di alta quota autosostentato

Studio di massima di un aerogeneratore di alta quota autosostentato ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA Sede di Bologna ELABORATO FINALE DI LAUREA in Disegno Tecnico Industriale Studio di massima di un

Dettagli

ESAME DI AERODINAMICA 16/4/2007

ESAME DI AERODINAMICA 16/4/2007 ESAME DI AERODINAMICA 6/4/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

ESAME DI AERODINAMICA 16/4/2007

ESAME DI AERODINAMICA 16/4/2007 ESAME DI AERODINAMICA 6/4/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

ESAME DI AERODINAMICA 13/7/2009

ESAME DI AERODINAMICA 13/7/2009 ESAME DI AERODINAMICA 3/7/2009 Una presa d aria supersonica è progettata per funzionare a M = 2.6. se la sezione d ingresso ha un area A i = 0.58m 2, la sezione di gola in m 2 è: (b).32 (c).2 (d).4 (e).078

Dettagli

Nome Cognome Matricola Esercitazione N. 1 Grandezza Simbolo Unità di Misura Nome dell unità di dimensionale misura

Nome Cognome Matricola Esercitazione N. 1 Grandezza Simbolo Unità di Misura Nome dell unità di dimensionale misura R. BARBONI FONDAMENTI DI AEROSPAZIALE 1 Nome : Cognome: Matricola: Esercitazione N. 1 1) Scrivere il simbolo dimensionale e l unità di misura, precisandone il nome, delle grandezze in tabella nei due sistemi

Dettagli

ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE SOLUZIONE

ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE SOLUZIONE ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE CORSO SPERIMENTALE Progetto IBIS Indirizzo: COSTRUZIONI AERONAUTICHE Tema di: AEROTECNICA E IMPIANTI DI BORDO Sessione Ordinaria 011 SOLUZIONE Calcoliamo

Dettagli

ESAME DI AERODINAMICA 15/1/2014

ESAME DI AERODINAMICA 15/1/2014 ESAME DI AERODINAMICA 5//04 Un aereo leggero dal peso a pieno carico di KN ha l apertura alare di m e la corda di.8 m.. Valutare la velocità di decollo (in m/s) corrispondente ad un incidenza di 8 (assumere

Dettagli

Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezioni n. 11 Caratteristiche propulsive

Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezioni n. 11 Caratteristiche propulsive Corso di MECCANICA DEL OLO Modulo Prestazioni Lezioni n. 11 Caratteristiche propulsive Corso di Meccanica del olo - Mod. Prestazioni - Prof. Coiro / Nicolosi 1 - Razzi (Rockets) -Ramjet - Turbojet - Turbofan

Dettagli

Capitolo 2: Determinazione dei pesi

Capitolo 2: Determinazione dei pesi apitolo : eterminazione dei pesi Il primo passo in un progetto di un velivolo è la stima dei pesi del velivolo stesso in diverse condizioni di esercizio. Per capire meglio si può pensare il peso massimo

Dettagli

ESAME DI AERODINAMICA 29/3/2007

ESAME DI AERODINAMICA 29/3/2007 ESAME DI AERODINAMICA 29/3/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

INVILUPPO DI VOLO VELOCITÀ MASSIMA IN VOLO ORIZZONTALE RETTILINEO UNIFORME

INVILUPPO DI VOLO VELOCITÀ MASSIMA IN VOLO ORIZZONTALE RETTILINEO UNIFORME INILUPPO DI OLO Una volta diagrammate le curve delle potenze disponibili e necessarie, dobbiamo ora usarle per determinare le prestazioni fondamentali del velivolo: tali prestazioni andranno a generare

Dettagli

Progetto dell ala. Superficie alare Apertura alare 22 Allungamento Alare 7.5 Rapporto di rastremazione Corda alla radice

Progetto dell ala. Superficie alare Apertura alare 22 Allungamento Alare 7.5 Rapporto di rastremazione Corda alla radice Progetto dell ala La scelta del punto di progetto ha permesso di ricavare, fissando il valore del carico alare e della superficie alare, i parametri base per il progetto dell ala. In analogia ai velivoli

Dettagli

Fondamenti di Meccanica del Volo Atmosferico e Spaziale AA Docenti: M. Borri/F. Bernelli, L. Trainelli/M. Massari 29 Giugno 2010

Fondamenti di Meccanica del Volo Atmosferico e Spaziale AA Docenti: M. Borri/F. Bernelli, L. Trainelli/M. Massari 29 Giugno 2010 PRIMA PROVA D ESAME Docenti: M. Borri/F. Bernelli, L. Trainelli/M. Massari 29 Giugno 2010 Prima parte Nella soluzione degli esercizi, si riporti il procedimento completo. Le risposte, a meno di diversa

Dettagli

Cap.6 Caratteristiche propulsive. - Ramjet - Turbojet - Turbofan - Turboprop - Motoelica

Cap.6 Caratteristiche propulsive. - Ramjet - Turbojet - Turbofan - Turboprop - Motoelica - Razzi (Rockets) - Ramjet - Turbojet - Turbofan - Turboprop - Motoelica - Razzi (Rockets) (o anche Endoreattori) - Ramjet Motoelica Motoelica Turbogetto Turboprop (tipo ATR42) Turbofan BPR (By-Pass

Dettagli

1. STIMA DEI PESI DI UN VELIVOLO

1. STIMA DEI PESI DI UN VELIVOLO Corso di PROGETTO GENERALE DEI VELIVOLI ESERCITAZIONI 1. STIMA DEI PESI DI UN VELIVOLO F. Nicolosi PROGETTO PRELIMINARE STIMA DEI PESI DETERMINAZIONE DEL PUNTO DI PROGETTO (superficie alare e spinta/potenza

Dettagli

FONDAZIONE MALAVASI ISTITUTO TECNICO DEI TRASPORTI E LOGI- STICA

FONDAZIONE MALAVASI ISTITUTO TECNICO DEI TRASPORTI E LOGI- STICA FONDAZIONE MALAVASI ISTITUTO TECNICO DEI TRASPORTI E LOGI- STICA PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: MECCANICA MACCHINE DOCENTE: COLICA MARIA TERESA CLASSE: V SEZ. A /2018 A.S.2017 1.

Dettagli

ESAME DI AERODINAMICA 12/6/2009

ESAME DI AERODINAMICA 12/6/2009 ESAME DI AERODINAMICA 12/6/2009 Le misure effettuate in galleria del vento su un profilo alare danno Cd=0.012 e Cl=0.365. Considerando un ala finita non svergolata di allungamento 5 composta da profili

Dettagli

65(a), (b), (c) e (d). Esse stabiliscono che in configurazione di decollo e con

65(a), (b), (c) e (d). Esse stabiliscono che in configurazione di decollo e con Prove di salita Le prove sono state condotte per determinare le velocità ottime di salita V x e V y. Per il P92-JS le parti del regolamento riguardanti la salita sono le JAR-VLA 65(a), (b), (c) e (d).

Dettagli

Corso Progetto Generale Velivoli

Corso Progetto Generale Velivoli Corso Progetto Generale Velivoli Progetto Piano Orizzontale Docente Fabrizio Nicolosi di Università i di Napoli Federico II e.mail : fabrnico@unina.it Corso Progetto Generale Velivoli 1 IL Progetto del

Dettagli

AERODINAMICA DEL VELIVOLO COMPLETO

AERODINAMICA DEL VELIVOLO COMPLETO AERODINAMICA DEL VELIVOLO COMPLETO Si tratta ora di studiare il comportamento aerodinamico complessivo del velivolo, tenendo conto dei risultati raggiunti per l ala isolata e sommandovi i contributi di

Dettagli

ESAME DI AERODINAMICA 26/3/2008

ESAME DI AERODINAMICA 26/3/2008 ESAME DI AERODINAMICA 26/3/2008 Un ala finita viene investita da una corrente d aria con velocità 60 m/s. In una sezione dell ala la circolazione vale -0 m 2 /s e l incidenza indotta vale 0.5. La resistenza

Dettagli

POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INDUSTRIALE. II Sessione Sezione A Settore industriale

POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INDUSTRIALE. II Sessione Sezione A Settore industriale POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INDUSTRIALE II Sessione 2012 - Sezione A Settore industriale Classi 25/S-LM-20 Ingegneria Aerospaziale Prova pratica

Dettagli

Fondamenti di Aerospaziale

Fondamenti di Aerospaziale Fondamenti di Aerospaziale Prof. Renato Barboni FLUSSO Quantità di una certa grandezza che nell unità di tempo attraversa una superficie S: x y di Volume: di massa: z m V (z) S Volume dz V = = S = SV dt

Dettagli

ESAME DI AERODINAMICA 14/06/2013

ESAME DI AERODINAMICA 14/06/2013 ESAME DI AERODINAMICA 14/06/2013 La derivata della retta C L in fuzione di α, per un ala finita di allungamento 8 composta da profili sottili simmetrici e lungo la quale si realizza una distribuzione di

Dettagli

mentre nello studio iniziale delle varie fasi di volo si erano ritenuti necessari

mentre nello studio iniziale delle varie fasi di volo si erano ritenuti necessari IPERSOSTENTATORI L uso degli ipersostentatori è necessario in quanto, ricordando i risultati raggiunti nella sezione sull aerodinamica dell ala, i profili utilizzati non sono in grado di garantire il C

Dettagli

ESAME DI AERODINAMICA 14/06/2013

ESAME DI AERODINAMICA 14/06/2013 ESAME DI AERODINAMICA 14/06/2013 La derivata della retta C L in fuzione di α, per un ala finita di allungamento 8 composta da profili sottili simmetrici e lungo la quale si realizza una distribuzione di

Dettagli

CAP 2 Flussi viscosi e resistenza aerodinamica

CAP 2 Flussi viscosi e resistenza aerodinamica Corso di MECCANICA DEL VOLO Modulo Prestazioni CAP 2 Flussi viscosi e resistenza aerodinamica Prof. F. Nicolosi Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi 1 RESISTENZA AERODINAMICA

Dettagli

Capitolo 4 MOTI CURVI. Esercizio 1. Virata corretta a velocità costante..

Capitolo 4 MOTI CURVI. Esercizio 1. Virata corretta a velocità costante.. MECCANICA E MACCHINE olume Secondo Capitolo 4 MOTI CURI ESERCIZI (IRATA) Esercizio. irata corretta a velocità costante.. Dall equazione di equilibrio della virata corretta Pcos θ ricavo la velocità della

Dettagli

Decollo ed atterraggio del velivolo Preceptor N3 pup: sviluppo di un modulo software con visualizzazione 3D interattiva

Decollo ed atterraggio del velivolo Preceptor N3 pup: sviluppo di un modulo software con visualizzazione 3D interattiva Università degli Studi di Palermo FACOLTÀ DI INGEGNERIA Corso di Laurea in Ingegneria Aerospaziale Decollo ed atterraggio del velivolo Preceptor N3 pup: sviluppo di un modulo software con visualizzazione

Dettagli

Istituto Tecnico Industriale Statale Giulio Cesare Falco. Settore Tecnologico

Istituto Tecnico Industriale Statale Giulio Cesare Falco. Settore Tecnologico Istituto Tecnico Industriale Statale Giulio Cesare Falco Settore Tecnologico nuovo indirizzo in Trasporti e Logistica articolazione Costruzione del Mezzo opzione Costruzioni Aeronautiche Formulario di

Dettagli

UNIVERSITA' DEGLI STUDI DI BOLOGNA. Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica STUDIO ED OTTIMIZZAZIONE DI UN AEROGENERATORE

UNIVERSITA' DEGLI STUDI DI BOLOGNA. Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica STUDIO ED OTTIMIZZAZIONE DI UN AEROGENERATORE UNIVERSITA' DEGLI STUDI DI BOLOGNA Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia Tesi di

Dettagli

FONDAZIONE MALAVASI ISTITUTO TECNICO DEI TRASPORTI E LOGI- STICA

FONDAZIONE MALAVASI ISTITUTO TECNICO DEI TRASPORTI E LOGI- STICA FONDAZIONE MALAVASI ISTITUTO TECNICO DEI TRASPORTI E LOGI- STICA PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: MECCANICA MACCHINE DOCENTE: COLICA MARIA TERESA CLASSE: V SEZ. A /2019 A.S.2018 1.

Dettagli

ESAME DI AERODINAMICA 26/3/2008

ESAME DI AERODINAMICA 26/3/2008 ESAME DI AERODINAMICA 26/3/2008 Un ala finita viene investita da una corrente d aria con velocità 60 m/s. In una sezione dell ala la circolazione vale -0 m 2 /s e l incidenza indotta vale 0.5. La resistenza

Dettagli

Fondamenti di Infrastrutture Viarie

Fondamenti di Infrastrutture Viarie Politecnico di Torino Fondamenti di Infrastrutture Viarie Relazione esercitazioni. Anno Accademico 2011/2012 Corso di Fondamenti di Infrastrutture Viarie Professore: Marco Bassani Esercitatore: Pier Paolo

Dettagli

ORGANI DI ATTERRAGGIO

ORGANI DI ATTERRAGGIO Funzioni IMPIANTI E SISTEMI AEROSPAZIALI ORGANI DI ATTERRAGGIO Stazionamento Stabilità e controllo direzionale durante taxing/rullaggio Controllo del decollo Assorbimento energia cinetica in atterraggio

Dettagli

Teoria dell ala finita

Teoria dell ala finita Il fatto che un ala sia dotata di apertura finita fa si che alle estremità si generi un flusso di aria che dall intradosso va verso l estradosso. Tale flusso è indotto dalla differenza di pressione presente

Dettagli

Compito di Fisica Generale (Meccanica) 13/01/2014

Compito di Fisica Generale (Meccanica) 13/01/2014 Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella

Dettagli

IL DROOP NOSE OUTLINE:

IL DROOP NOSE OUTLINE: IL DROOP NOSE Supervisore: Dr.Prof.Carlo De Nicola Studente : OUTLINE: 1) Introduzione del dispositivo Droop nose 2) Alcuni esempi di velivoli che adottano il Droop nose 3) Applicazione del dispositivo

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Un angolo di un radiante equivale circa a: (a) 60 gradi (b) 32 gradi (c) 1 grado (d) 90 gradi (e) la domanda è assurda.

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE PER ELETTRONICA E TELECOMUNICAZIONI M. O. V. M. Don Giuseppe Morosini Programma Aero. e I.d.B.

ISTITUTO TECNICO INDUSTRIALE STATALE PER ELETTRONICA E TELECOMUNICAZIONI M. O. V. M. Don Giuseppe Morosini Programma Aero. e I.d.B. Situazione iniziale Cattedra di Aerotecnica ed impianti di bordo classe 5 Ae, a.s. 2011/2012 La classe è composta da 14 elementi. Il test d ingresso con i contenuti dei programmi degli anni precedenti

Dettagli

Teoria del volo dell elicottero

Teoria del volo dell elicottero Giovanni Di Giorgio Teoria del volo dell elicottero Aerodinamica Meccanica del volo Seconda edizione Dott. Ing. Giovanni Di Giorgio Teoria del volo dell elicottero Aerodinamica Meccanica del volo Seconda

Dettagli

Soluzioni Esercitazioni di Costruzioni Aeronautiche (Modulo VII Capitolo I)

Soluzioni Esercitazioni di Costruzioni Aeronautiche (Modulo VII Capitolo I) oluzioni Esercitazioni di Costruzioni Aeronautiche (Modulo VII Capitolo I) EERCITAZIONE N Tracciare i diagrammi di manovra e di raffica relativi al velivolo CENA52 secondo le norme JAR 23 al peso massimo.

Dettagli

PROGETTO DELLA PIANTA DELL ALA

PROGETTO DELLA PIANTA DELL ALA PROGETTO DELLA PIANTA DELL ALA Ci proponiamo ora di determinare le caratteristiche geometriche dell ala, ricordando che la superficie alare e l allungamento sono già stati determinati precedentemente (S

Dettagli

Esercizi di dinamica

Esercizi di dinamica Esercizi di dinamica Esercitazioni di Fisica LA per ingegneri - A.A. 2003-2004 M F1, m v0 α F2, M α F3 Esercizio 1 Un blocco di massa M = 1.20 kg (figura F1) si trova in equilibrio appoggiato su una molla

Dettagli

I carichi che vengono considerati in fase di progetto a cui il carrello è soggetto sono:

I carichi che vengono considerati in fase di progetto a cui il carrello è soggetto sono: CARRELLO Il carrello deve assolvere dei compiti importanti che sono: - assorbire l impatto al suolo durante l atterraggio del velivolo, e le sollecitazioni che si hanno durante il rullaggio del velivolo

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

FORZE E PRINCIPI DELLA DINAMICA (1/29)

FORZE E PRINCIPI DELLA DINAMICA (1/29) FORZE E PRINCIPI DELLA DINAMICA (1/29) una forza applicata ad un corpo, libero di muoversi, lo mette in movimento o lo arresta (effetto dinamico della forza); una forza, applicata ad un corpo vincolato,

Dettagli

8. PRESTAZIONI (Parte 2) Autonomie, Prestazioni generalizzate velivolo a getto, D.O.C (Costi diretti) e caretteristiche economiche di

8. PRESTAZIONI (Parte 2) Autonomie, Prestazioni generalizzate velivolo a getto, D.O.C (Costi diretti) e caretteristiche economiche di 8. PRESTAZIONI (Parte 2) Autonomie, Prestazioni generalizzate velivolo a getto, D.O.C (Costi diretti) e caretteristiche economiche di impiego i dei velivoli da trasporto t Equazione Breguet Prestazioni

Dettagli

Tipologie di aerei. Prendiamo in considerazione diverse tipologie di aeroplano, secondo le normative vigenti.

Tipologie di aerei. Prendiamo in considerazione diverse tipologie di aeroplano, secondo le normative vigenti. Tipologie di aerei. Prendiamo in considerazione diverse tipologie di aeroplano, secondo le normative vigenti. Figura 1 Prendiamo in considerazione la Figura 1., come si può' osservare l'aereo e' di tipo

Dettagli

MOTO NEL PIANO Esercizi numerici 1 Da un aereo che vola a 450 m/s in direzione orizzontale viene lasciato cadere un pacco di aiuti alimentari.

MOTO NEL PIANO Esercizi numerici 1 Da un aereo che vola a 450 m/s in direzione orizzontale viene lasciato cadere un pacco di aiuti alimentari. MOTO NEL PIANO Esercizi numerici 1 Da un aereo che vola a 450 m/s in direzione orizzontale viene lasciato cadere un pacco di aiuti alimentari. La quota dell aereo è 250 m. Qual è il tempo di volo del pacco?

Dettagli

Cap.10 DECOLLO. 50 ft 35 ft vel commerciali

Cap.10 DECOLLO. 50 ft 35 ft vel commerciali ap.0 DEOLLO a 50 ft 35 ft vel commerciali ap.0 DEOLLO ap.0 DEOLLO velocità di stallo conf. Di decollo stall minima velocità di controllo al suolo, indicata con mc minima velocità di controllo in aria,

Dettagli

Esercizi su similitudine ed analisi dimensionale

Esercizi su similitudine ed analisi dimensionale Esercizi su similitudine ed analisi dimensionale versione 0.3 1 Esercizio Il comportamento aerodinamico di una nuova vettura è caratterizzato dalla relazione fra due parametri adimensionali Π 1 = F Π 2

Dettagli

PROVE DI CERTIFICAZIONE VELIVOLO P92-JS (VLA) e P2000-RG(V.EL.)

PROVE DI CERTIFICAZIONE VELIVOLO P92-JS (VLA) e P2000-RG(V.EL.) DECOLLO DECOLLO Il riferimento JAR-VLA 51 (a), (b), (c) prevede che la distanza di decollo deve essere, su una superficie dura, asciutta e piana, non superiore a 500 m. La superficie utilizzata per condurre

Dettagli

CAP 2 Flussi viscosi e resistenza aerodinamica

CAP 2 Flussi viscosi e resistenza aerodinamica Corso di MECCANICA DEL VOLO Modulo Prestazioni CAP 2 Flussi viscosi e resistenza aerodinamica Prof. F. Nicolosi Prof. D. Coiro Corso di Meccanica del Volo (Prestazioni) - Prof. F. Nicolosi / Prof. D. Coiro

Dettagli

a) Fase di Rullaggio su di una pista in cemento ( = 0,04) all assetto di C Pott a Q dove

a) Fase di Rullaggio su di una pista in cemento ( = 0,04) all assetto di C Pott a Q dove Esercizio ----------------------------------------------------------------------------------------------------------------------------- --------------------- Determinare lo spazio di rullaggio, di manovra

Dettagli

Corso di PROGETTO GENERALE DEI VELIVOLI STIMA DEI PESI DI UN VELIVOLO. F. Nicolosi

Corso di PROGETTO GENERALE DEI VELIVOLI STIMA DEI PESI DI UN VELIVOLO. F. Nicolosi Corso di PROGET GENERALE DEI VELIVOLI STIMA DEI PESI DI UN VELIVOLO F. Nicolosi PROGET PRELIMINARE STIMA DEI PESI DETERMINAZIONE DEL PUN DI PROGET (superficie alare e spinta/potenza massima necessaria)

Dettagli

PROVA PARZIALE DEL 27 GENNAIO 2016

PROVA PARZIALE DEL 27 GENNAIO 2016 PROVA PARZIALE DEL 27 GENNAIO 2016 February 2, 2016 Si prega di commentare e spiegare bene i vari passaggi, non di riportare solo la formula finale. PROBLEMA 1) Due blocchi, collegati da uno spago privo

Dettagli

STATICA FORZE NEL PIANO

STATICA FORZE NEL PIANO MECCANICA E MACCHINE I MODULO - Capitolo Statica Forze nel piano Capitolo STATICA FORZE NEL PIANO Esercizio : Due forze, F = 330 N e F 2 = 250 N, sono applicate nel punto A e formano tra loro l'angolo

Dettagli

GITTATA MASSIMA DEGLI ELEMENTI ROTANTI... 2 CALCOLO DELLA GITTATA MASSIMA... 4

GITTATA MASSIMA DEGLI ELEMENTI ROTANTI... 2 CALCOLO DELLA GITTATA MASSIMA... 4 GITTATA MASSIMA DEGLI ELEMENTI ROTANTI... 2 CALCOLO DELLA GITTATA MASSIMA... 4 1 GITTATA MASSIMA DEGLI ELEMENTI ROTANTI La tecnologia costruttiva degli aerogeneratori è alquanto sofisticata e di chiara

Dettagli

Istituto Tecnico Settore Tecnologico Giulio Cesare Falco. Studio dell elica aeronautica Parte 3

Istituto Tecnico Settore Tecnologico Giulio Cesare Falco. Studio dell elica aeronautica Parte 3 Istituto Tecnico Settore Tecnologico Giulio Cesare Falco nuovo indirizzo in Trasporti e Logistica articolazione Costruzione del Mezzo opzione Costruzioni Aeronautiche Studio dell elica aeronautica Parte

Dettagli

MOTO CIRCOLARE UNIFORME

MOTO CIRCOLARE UNIFORME MOTO CIRCOLARE UNIFORME La velocita di un corpo puo variare in modulo (valore), ma anche in direzione e/o verso (e un vettore!) P 2 P 1 Un corpo si muove di moto circolare uniforme se percorre una circonferenza

Dettagli

STUDIO ED OTTIMIZZAZIONE DI UN AEROGENERATORE PER ALTA QUOTA

STUDIO ED OTTIMIZZAZIONE DI UN AEROGENERATORE PER ALTA QUOTA CORSO DI LAUREA IN INGEGNERIA MECCANICA Insegnamento: DISEGNO TECNICO INDUSTRIALE STUDIO ED OTTIMIZZAZIONE DI UN AEROGENERATORE PER ALTA QUOTA Tesi di laurea di: TIZIANO TRIOSCHI Relatore: Chiar.mo Prof.

Dettagli

Oggetto: deposito per recuperi classe 3^ T.L.

Oggetto: deposito per recuperi classe 3^ T.L. Oggetto: deposito per recuperi classe 3^ T.L. 1. FF L alunno presenta lacune gravi e diffuse sull intero programma svolto nel corso dell anno scolastico. Tali lacune potranno essere colmate se l interessato

Dettagli