Scheda Esercitazione 4 (Homework)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Scheda Esercitazione 4 (Homework)"

Transcript

1 Scheda Eserciazione 4 (Homework) EAUT Prof. Giuseppe C. Calafiore 19 oobre 211 Modelli a empo coninuo e simulazioni Esercizio 1 (Il moore elerico in correne coninua) In Figura 1 è rappresenao lo schema di un moore elerico in correne coninua comandao in ensione di armaura v. In seguio all applicazione R i θ v E τ m β τ Figura 1: Moore elerico in correne coninua della ensione di comando v(), nel circuio di armaura si insaura una correne i(). Il moore genera quindi una coppia morice pari a τ m () =K τ i() dove K τ è una cosane che dipende dal moore. Tale coppia morice provoca la roazione dell asse moore, che è qui assuno essere un corpo rigido avene momeno di inerzia. angolo di roazione dell asse moore è θ(), menre la velocià angolare di roazione è ω() = dθ() d. = θ(). asse moore poggia su cuscinei, che inroducono un effeo di ario viscoso lineare avene coefficiene β. All albero moore è inolre connesso un carico, il cui effeo è modellizzao ramie la coppia di inerazione τ(), dea coppia di carico. Infine, la roazione dell asse provoca una ensione indoa E() nel circuio di armaura, che risula proporzionale alla velocià di roazione del moore: E() =K e ω(), dove K e è una cosane del moore (cosane elerica), e si ha ipicamene K e K τ, per cui semplificheremo nel seguio la noazione, assumendo K e = K τ. = K. equilibrio dinamico della pare elerica del moore è deao dalla equazione di Kirchoff di equilibrio delle ensioni alla maglia v() Ri() di() E() = (1) d menre l equilibrio dinamico della pare meccanica è deao dalla legge di Newon di equilibrio delle coppie τ m () τ() βω() = dω(). (2) d 1

2 1. Basandosi sulle equazioni fondamenali sopra riporae, deerminare le marici A, B, C, D di una rappresenazione in variabili di sao del moore, considerando [ ] v() u() = τ() come veore di ingresso, y() = ω() come uscia, ed il veore [ ] i() x() = ω() come sao del sisema. 2. Si assumano i segueni valori numerici per i parameri del moore =.1 Kgm 2 β =.1Nms K(= K e = K τ ) =.1 Nm/A R = 1Ω =.5H. Assumendo condizioni iniziali nulle sul sisema (i.e. x() = [ ] T ), disegnare con l aiuo di Malab: a) andameno dell uscia y() perv() =3 1() (gradino di ampiezza 3 Vol) e τ() =; b) andameno dell uscia y() perv() = eτ() =.5 1( 4) (gradino di ampiezza.5 Nm, applicao a parire dall isane = 4); c) andameno dell uscia y() quando sono preseni simulaneamene v() =3 1() eeτ() =.5 1( 4). Esercizio 2 (Uscia in posizione del moore elerico) Si consideri nuovamene il modello del moore elerico di cui al puno precedene. 1. Deerminare le marici A, B, C, D di una rappresenazione in variabili di sao del moore, considerando [ ] v() u() = τ() come veore di ingresso, la posizione angolare y() = θ() dell asse moore come uscia, ed il veore x() = i() θ() ω() come sao del sisema. 2. Supponendo di non avere disurbo dovuo alla coppia di carico (i.e. τ() = ) e supponendo che il sisema si rovi inizialmene a riposo (moore fermo, con condizioni iniziali nulle x() = ), simulare con l aiuo di Malab l andameno della posizione angolare dell albero moore a frone di un ingreso v() =1(). 2

3 Tracce per le soluzioni Soluzione 1 Dee x 1 = i ed x 2 = ω rispeivamene la prima e seconda componene del veore di sao (si noi che omeeremo spesso la dipendenza esplicia dal empo x 1 (), ec. quando quesa è ovvia dal coneso), dalla equazione (1) oeniamo ẋ 1 = 1 ( Rx 1 Kx 2 + v) menre dalla (2) oeniamo ẋ 2 = 1 (Kx 1 βx 2 τ). Considerando quindi il veore delle derivae emporali dello sao ẋ(). =[ẋ 1 () ẋ 2 ()] T avremo ẋ = [ R K K β ] [ 1 x + 1 y = [ 1 ] x + [ ] u dove y() =ω() rappresena l uscia del sisema ed u() =[v() τ()] T rappresena il veore degli ingressi. Inserendo i valori numerici dei parameri specificai al puno 2. dell esercizio, abbiamo in paricolare [ ] [ ] A = ; B = ; C = [ 1 ] ; D = [ ] e simulazioni richiese dal puno 2. dell esercizio sono quindi oenibili ramie la seguene sequenza di comandi Malab. Gli andameni risulani sono riporai nelle Figure 2, 3 e 4. Simulazioni moore DC (uscia in velocia ) close all clear all Parameri moore: =.1; bea=.1; K=.1; R=1; =.5; marici di sao A=[-R/ -K/; K/ -bea/]; B=[1/ ; -1/]; C=[ 1]; D=[ ]; definisci sisema MOTORE MOTORE=ss(A,B,C,D); Noa Bene: la prima componene u(1) del veore di ingresso u e la ensione v, menre la seconda componene u(2) rappresena la coppia di disurbo au. PUNTO 2.a): Simulazione delle rispose sull uscia per v()=3 1() e au()=. Condizioni iniziali nulle. ime=:.1:12; asse dei empi di simulazione (da a 12 secondi con passo.1 secondi. Y=sep(MOTORE,ime); calcola le sispose al gradino UNITARIO, su enrambi i canali di ingresso. Si veda l help del comando STEP: [Y] = STEP(SYS,T) reurns he oupu response Y. No plo is drawn on he screen. ] u 3

4 If SYS has NY oupus and NU inpus, and T=lengh(T), Y is an array of size [T NY NU] where Y(:,:,j) gives he sep response of he j-h inpu channel. figure(1) plo(ime,3*y(:,1,1)); ploa la risposa desideraa. ylabel( velocia angolare \omega() ) ile( Risposa agli ingressi: v()=3 1() e \au()= ); PUNTO 2.b): Simulazione delle rispose sull uscia per v()= e au()=.5 1(-4). Condizioni iniziali nulle. NB: la risposa al gradino au()=1() si rova conenua nel veore Y(:,1,2) calcolao in precedenza. Per l invarianza emporale del sisema, l uscia che ci ineressa e Y(:,1,2), pero riardaa nel empo di 4 secondi e scalaa di un faore.5. ind_4=max(find(ime <= 4)); yau=[zeros(ind_4,1);.5*y(1:end-ind_4,1,2)]; figure(2) plo(ime,yau); ploa la risposa desideraa. ylabel( velocia angolare \omega() ) ile( Risposa agli ingressi: v()= e \au()=.5 1(-4) ); PUNTO 2.c): Simulazione delle rispose sull uscia per v()=3 1() e au()=.5 1(-4). Condizioni iniziali nulle. NB: Il principio di linearia (sovrapposizione degli effei) ci dice che la risposa in quesa siuazione sara semplicemene la somma delle due precedeni rispose. figure(3) plo(ime,3*y(:,1,1)+yau); ploa la risposa desideraa. ylabel( velocia angolare \omega() ) ile( Risposa agli ingressi: v()=3 1() e \au()=.5 1(-4) ); Soluzione 2 Dee x 1 = i, x 2 = θ ed x 3 = ω rispeivamene le re componeni del veore di sao, dalla equazione (1) oeniamo ẋ 1 = 1 ( Rx 1 Kx 3 + v). Inolre, dalla idenià θ = ω abbiamo menre dalla (2) oeniamo ẋ 2 = x 3, ẋ 3 = 1 (Kx 1 βx 3 τ). Considerando quindi il veore delle derivae emporali dello sao ẋ() =[ẋ. 1 () ẋ 2 () ẋ 3 ()] T avremo R K 1 ẋ = 1 x + u K β 1 y = [ 1 ] x + [ ] u 4

5 .35 Risposa agli ingressi: v()=3 1() e τ()=.3.25 velocia angolare ω() Figura 2: Simulazione relaiva al puno 2.a) dove y() =θ() rappresena l uscia del sisema (posizione angolare dell asse moore) ed u() =[v() τ()] T rappresena il veore degli ingressi. Inserendo i valori numerici dei parameri specificai al puno 2. dell esercizio, oeniamo quindi A = ; B = 2 1 ; C = [ 1 ] ; D = [ ]. a simulazione richiesa dal puno 2. dell esercizio è quindi oenibili ramie la seguene sequenza di comandi Malab. andameno risulane è riporao in Figura 2. Da quesa simulazione si evince che il sisema risponde con un uscia non limiaa ad un ingresso limiao. Ne consegue che non è semplice far sposare l asse moore di un angolo assegnao agendo in modo banale sull ingresso v(). Quesa problemaica verrà sudiaa più ampiamene in seguio, quando si inrodurrà il conceo di conrollo in reroazione al fine di asservire l uscia del sisema ad un segnale di riferimeno assegnao. Simulazione moore DC (uscia in posizione) close all clear all Parameri moore: =.1; bea=.1; K=.1; R=1; =.5; marici di sao A=[-R/ -K/; 1; K/ -bea/]; B=[1/ ; ; -1/]; C=[ 1 ]; D=[ ]; definisci sisema MOTORE_pos MOTORE_pos=ss(A,B,C,D); PUNTO 2.: Simulazione delle rispose sull uscia per v()=1() e au()=. Condizioni iniziali nulle. ime=:.1:12; asse dei empi di simulazione 5

6 Risposa agli ingressi: v()= e τ()=.5 1( 4) velocia angolare ω() Figura 3: Simulazione relaiva al puno 2.b) Y=sep(MOTORE_pos,ime); figure(1) plo(ime,y(:,1,1)); ploa la risposa desideraa. ylabel( Posizione angolare \hea() ) ile( Risposa agli ingressi: v()=1() e \au()= ); 6

7 .3 Risposa agli ingressi: v()=3 1() e τ()=.5 1( 4) velocia angolare ω() Figura 4: Simulazione relaiva al puno 2.c) 1.4 Risposa agli ingressi: v()=1() e τ()= Posizione angolare θ() Figura 5: Andameno dell uscia θ() per ingresso v() = 1() 7

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Inroduzione e modellisica dei sisemi Modellisica dei sisemi eleromeccanici Principi fisici di funzionameno Moore elerico in correne coninua (DC-moor) DC-moor con comando di armaura DC-moor con comando

Dettagli

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino 2006 Cinemaica moo armonico Appuni di Fisica Prof. Calogero Conrino : definizione Il moo di un puno maeriale P è deo armonico se soddisfa le segueni condizioni: La raieoria è un segmeno. Le posizioni occupae

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

Lezione 1. Introduzione alle proprietà strutturali. F. Previdi - Controlli Automatici - Lez. 1 1

Lezione 1. Introduzione alle proprietà strutturali. F. Previdi - Controlli Automatici - Lez. 1 1 ezione. Inroduzione alle proprieà sruurali F. Previdi - Conrolli Auomaici - ez. F. Previdi - Conrolli Auomaici - ez. k x k y k u k x k x z G z z z z z z Qual è il «significao» di quesa cancellazione? Esempio:

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

Lezione 2. F. Previdi - Automatica - Lez. 2 1

Lezione 2. F. Previdi - Automatica - Lez. 2 1 Lezione 2. Sisemi i dinamici i i a empo coninuo F. Previdi - Auomaica - Lez. 2 Schema della lezione. Cos è un sisema dinamico? 2. Modellisica dei sisemi dinamici 3. Il conceo di dinamica 4. Sisemi dinamici

Dettagli

Circuito RC. Una resistenza R collegata ad una sorgente di tensione in una maglia circuitale limita il flusso di carica => V = RI

Circuito RC. Una resistenza R collegata ad una sorgente di tensione in una maglia circuitale limita il flusso di carica => V = RI Circuio Una resisenza R collegaa ad una sorgene di ensione in una maglia circuiale limia il flusso di carica => V = RI Un condensaore collegao ad una sorgene di ensione in una maglia circuiale immagazzina

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

Lezione 2. Sistemi dinamici a tempo continuo. F. Previdi - Fondamenti di Automatica - Lez. 2 1

Lezione 2. Sistemi dinamici a tempo continuo. F. Previdi - Fondamenti di Automatica - Lez. 2 1 Leione. Sisemi dinamici a empo coninuo F. Previdi - Fondameni di Auomaica - Le. Schema della leione. Cos è un sisema dinamico?. Modelli di sisemi dinamici 3. Il conceo di dinamica 4. Variabili di sao 5.

Dettagli

Controllo del pendolo inverso

Controllo del pendolo inverso Capiolo. INTRODUZIONE 5. Conrollo del pendolo inverso Esempio. Sia dao il seguene sisema fisico. y u() M V θ H m J mg L x Calcolare una reroazione dinamica dell uscia θ che sabilizzi il sisema nell inorno

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO)

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) 3 Capiolo STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) Un generico sisema è deo sabile se, ecciao da una qualsiasi funzione di enraa ale da essere sempre limiaa, risponde con una uscia

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n + a n d n y

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

Modello di una macchina in corrente continua

Modello di una macchina in corrente continua Modello di una macchina in correne coninua Consideriamo un moore in correne coninua con ecciazione indipendene, in generale per esso poremo scrivere le segueni relazioni: e( ) = K Φ ω( ) v dia ( ) ( )

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

Controllo ottimo LQ t.i. con azione integrale

Controllo ottimo LQ t.i. con azione integrale 1.. 1. 1 Conrollo oimo LQ.i. con azione inegrale Si è viso, nel caso empo-coninuo, che lo schema di conrollo soosane in cui K ff = [C(A BK 1 B 1, garanisce (nel caso il sisema reroazionao risuli sabile

Dettagli

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari TRASFORMAZIONE DEI SEGNALI SENZA MEMORIA: ZMNL (Zero-Memory Non Lineariy) g x( ) y = CON MEMORIA: Lineari (ra cui il Filraggio) Non Lineari L5/1 TRASFORMAZIONI SENZA MEMORIA (ISTANTANEE) y Limiazione dura

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

Prova Scritta di Robotica I B: preferibile per 5 crediti 12 Gennaio 2010

Prova Scritta di Robotica I B: preferibile per 5 crediti 12 Gennaio 2010 Prova Scria di Roboica I B: preferibile per 5 credii Gennaio Esercizio Si consideri il cammino caresiano paramerico x(s) p p(s) y(s) z(s) R cos s R sin s h s, s [, + ) dove R > e h >. Tale cammino è una

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L .9.8.7.6.5.4.3.. - 3 4 5 6 7 8 9 PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) 5 Seembre 6 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. La chiarezza e precisione

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione PARTE A A. Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come A2. L argomeno, espresso in radiani, del

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

Processi stocastici e affidabilità

Processi stocastici e affidabilità Processi socasici e affidabilià ω Dao un esperimeno casuale, si assuma di associare ad ogni ( ω ) esio ω una funzione x, di. Risula così definio un insieme di funzioni del empo, deo processo socasico,

Dettagli

PROBLEMA 1. Soluzione. ε = = =

PROBLEMA 1. Soluzione. ε = = = MOULO PROBLEMA 1 Una barra d acciaio di lunghezza l = m e sezione rasversale di area A = 50, è sooposa a una solleciazione di razione F = 900 da. Sapendo che l allungameno assoluo della barra è l = 1,5,

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 7-8 Ingegneria Meccanica - Edile - Informaica Eserciazione 7 CICUII I EGIME SIUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza

Dettagli

SISTEMI DINAMICI DEL PRIMO ORDINE

SISTEMI DINAMICI DEL PRIMO ORDINE SISTEMI DINAMICI DEL PRIMO ORDINE I sisemi dinamici del primo ordine sono sisemi dinamici SISO rappresenai da equazioni differenziali lineari e a coefficieni cosani del primo ordine (n=): dy() dx() a +

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

Controlli automatici

Controlli automatici Conrolli auomaici (Prof. Bascea) Prima appello Anno accademico 29/21 15 Febbraio 21 Cognome:... Nome:... Maricola:... Firma:... Avverenze: Il presene fascicolo si compone di 8 pagine (compresa la coperina).

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Circuiti del I ordine

Circuiti del I ordine ircuii del I ordine 9 Un circuio è deo del I ordine se coniene un solo elemeno dinamico, condensaore o induore, e per il reso è cosiuio da componeni elerici di ipo algebrico privi di memoria, ovvero generaori

Dettagli

Segnali e Sistemi. Proprietà dei sistemi ed operatori

Segnali e Sistemi. Proprietà dei sistemi ed operatori Segnali e Sisemi Un segnale è una qualsiasi grandezza che evolve nel empo. Sono funzioni che hanno come dominio il empo e codominio l insieme di ui i valori che può assumere la grandezza I sisemi rasformano

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

Esercitazione 08: Risposta in frequenza 11 maggio 2016 (3h)

Esercitazione 08: Risposta in frequenza 11 maggio 2016 (3h) maggio 6 (3h) Alessandro Viorio Papadopoulos alessandro.papadopoulos@polimi.i Fondameni di Auomaica Prof. M. Farina Tracciameno diagrammi di Bode Tracciare i diagrammi di Bode asinoici della risposa in

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

GENERATORE DI ONDE QUADRE REALIZZATO CON AMPLIFICATORE OPERAZIONALE A SINGOLA ALIMENTAZIONE

GENERATORE DI ONDE QUADRE REALIZZATO CON AMPLIFICATORE OPERAZIONALE A SINGOLA ALIMENTAZIONE LASSE : A E.T.A. 007-008 ALUNNO: Bovino Silvano GENERATORE DI ONDE QUADRE REALIZZATO ON AMPLIFIATORE OPERAZIONALE A SINGA ALIMENTAZIONE SOPO:onfrono ra la frequenza eorica e quella sperimenale del segnale

Dettagli

Forze dipendenti dalla velocità

Forze dipendenti dalla velocità Forze dipendeni dalla velocià Ario Viscoso Corpo in cadua libera in un fluido -> resisenza f R del mezzo In casi semplici (geomeria semplice, bassa velocià, assenza di urbolenze nel fluido) vale f R =

Dettagli

Geometria BAER A.A Foglio esercizi 1

Geometria BAER A.A Foglio esercizi 1 Geomeria BAER A.A. 16-17 Foglio esercii 1 Eserciio 1. Risolvere le segueni equaioni lineari nelle variabili indicae rovando una parameriaione dell insieme delle soluioni. a) + 5y = 3 nelle incognie, y.

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

0.1 Formula di Gauss e formula di Stokes

0.1 Formula di Gauss e formula di Stokes 1.1 Formula di Gauss e formula di Sokes Siano Ω un apero di R 3, F un campo veoriale definio su Ω, S una superficie la cui chiusura è conenua in Ω. Supponiamo inolre che in S si possano disinguere due

Dettagli

Prova Scritta di Robotica I A: preferibile per 6 crediti 12 Gennaio 2010

Prova Scritta di Robotica I A: preferibile per 6 crediti 12 Gennaio 2010 Prova Scria di Roboica I A: preferibile per 6 credii Gennaio Esercizio Si consideri il cammino caresiano paramerico p ps xs ys zs R cos s R sin s h s, s [, + dove R > e h >. Tale cammino è una spirale

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

Simulare un sistema dinamico

Simulare un sistema dinamico Simulare un sisema dinamico Serie di Taylor Daa una unzione, ed un puno 0 in cui la unzione sia noa assieme alle sue derivae, è possibile approssimare la unzione ramie serie di Taylor: 0 + ' 0 0 + '' 0

Dettagli

Il circuito RC Misure e Simulazione

Il circuito RC Misure e Simulazione Il circuio R Misure e Simulazione Laboraorio di Fisica - Liceo Scienifico G.D. assini Sanremo 8 oobre 8 E.Smerieri & L.Faè Progeo Lauree Scienifiche 6-9 Oobre - Sanremo he cosa verrà fao in quesa esperienza

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Compito di Fisica I, Ingegneria Informatica, 23/06/05

Compito di Fisica I, Ingegneria Informatica, 23/06/05 Compio di Fisica I, Ingegneria Informaica, 3/6/5 ) Un alalena lunga 3m, schemaizzabile come un asa rigida soile praicamene priva di massa, è incernieraa senza ario nel suo puno di mezzo a,5 m dal suolo.

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici Equilibrio e sabilià di sisemi dinamici Sabilià inerna di sisemi dinamici Sabilià inerna di sisemi dinamici Inroduzione allo sudio della sabilià Sabilià inerna di sisemi dinamici TC Sabilià inerna di sisemi

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta Poliecnico di Torino etem Esercizi Scheda N. 0 45 Fisica II Esercizi con soluzione svola Esercizio 0. Si consideri il circuio V R T R T V I V 0 Vols R 5 Ω R 0 Ω µf sapendo che per 0 T on T off 5 µs T off

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. emporale I Qualisar+ visualizzano simulaneamene

Dettagli

Meccanica Applicata alle Macchine compito del 17/ 2/99

Meccanica Applicata alle Macchine compito del 17/ 2/99 ompio 7//99 pagina Meccanica Applicaa alle Macchine compio del 7/ /99 A) hi deve sosenere l'esame del I modulo deve svolgere i puni e. B) hi deve sosenere l'esame compleo deve svolgere i puni, e 3. ) hi

Dettagli

FAM. dt = d2 x. . Le equazioni del MUA sono

FAM. dt = d2 x. . Le equazioni del MUA sono Serie 8: Soluzioni FAM C. Ferrari Esercizio Moo accelerao. Usando le definizioni oeniamo v = d d e a = dv d = d d v() = v( 0 )+a 0 ( 0 ) e a() = a 0.. Abbiamo v() = m/s+9,8m/s e a() = 9,8m/s. È un MRUA.

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA SISTEMI LTI Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso, l

Dettagli

Lezione 7. Esercizi sui. circuiti dinamici del I ordine

Lezione 7. Esercizi sui. circuiti dinamici del I ordine Lezione 7 Esercizi sui circuii dinamici del I ordine Lezioni di Eleroecnica per sudeni di Ingegneria Gesionale ideae e scrie da Lorenza ori con il conribuo di Vincenzo Paolo Loschiavo Eleroecnica per gesionali

Dettagli

Esercitazione del 10 Giugno 2009

Esercitazione del 10 Giugno 2009 Eserciazione del 10 Giugno 2009 Es. 1 - Pass Transisor 1) Deerminare la funzione logica realizzaa dal circuio in Fig. 1a). Il circuio è realizzao a pass ransisor: infai i ransisori hanno segnali sui drain/source,

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale Esercizi inroduivi ES Esprimere la correne i ( in ermini di fasore nei segueni re casi: a) = sin( ω ) b) = 0sin( ω π) c) = 8sin( ω + π / ) isulao: a) = ep( j) b) = 0 c) = 8 j ES aluare (in coordinae caresiane

Dettagli

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5 CAPO ROANE DI GALILEO FERRARIS. È noo che un solenoide percorso da correne elerica dà origine nel suo inerno a un campo magneico che ha come direzione quella del suo asse come mosrao in fig.. Se esso e

Dettagli

Affidabilità dei sistemi

Affidabilità dei sistemi dei sisemi Un sisema (o uno qualsiasi dei suoi componeni) può essere soggeo a sress casuali. Es: un fusibile in un circuio; una rave di acciaio soo carico; l ala di un aereo soo l influenza di forze Collasso

Dettagli

FISICA GENERALE I A.A Settembre 2012 Cognome Nome n. matricola

FISICA GENERALE I A.A Settembre 2012 Cognome Nome n. matricola FISI GENERLE I.. 0-0 9 Seembre 0 Voo: 9 credii 0 credii credii Esercizio n. Un auomobile di massa M frena, a parire dalla velocià iniziale v 0, fino ad arresarsi. Sapendo che, a causa del riscaldameno

Dettagli

Osservatore asintotico dello stato

Osservatore asintotico dello stato Osservaore asinoico dello sao Si consideri il sisema: x () = Ax () + Bu () y () = Cx () () Problema: Deerminare un disposiivo in grado di inseguire asinoicamene lo sao di un processo assegnao con modalià

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli. Si esprima la pare reale di x() = e ( +j) j, R nella forma Ae a cos(ω + ϕ) con A, a, ω, φ reali con A > e π < φ π. Svolgimeno. Applicando la

Dettagli

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2 Problema 2 B varia secondo la legge: B = k ( 2 +a 2 ) Soluzione 3 r con r R e con a e k posiive [a]=[s] a ha le dimensioni di un empo, perché deve poersi sommare con, affinché la formula abbia senso. [k]=

Dettagli

Analisi del funzionamento di un amplificatore retroazionato

Analisi del funzionamento di un amplificatore retroazionato Poliecnico di Milano 6-13/12/2018 Eleronica Analogica - Prof. Marco Sampiero Anno accademico 2018/2019 Analisi del funzionameno di un amplificaore reroazionao Calcolo eorico: Pare 1: Analisi dello sadio

Dettagli

Introduzione ai sistemi dinamici e al problema del controllo

Introduzione ai sistemi dinamici e al problema del controllo Inroduzione ai sisemi dinamici e al problema del conrollo Bruno Picasso Per sisema dinamico inendiamo un sisema di equazioni differenziali o, in senso lao, un fenomeno che viene descrio per mezzo di un

Dettagli

Ingressi Uscite I S I S T E M A U

Ingressi Uscite I S I S T E M A U PREMESSA n quesa lezione analizziamo l archieura dei sisemi di conrollo auomaico che permeono di enere soo conrollo le condizioni di un processo produivo al fine di oimizzare la qualià del prodoo. CONCETT

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

PROCESSI D URTO IN UNA DIMENSIONE

PROCESSI D URTO IN UNA DIMENSIONE 4/5 PROCESSI D URTO IN UNA DIMENSIONE 9/1 1 PROCESSI D URTO IN UNA DIMENSIONE Consideraa una paricella che si muove in un poenziale che si annulla per x ±, siamo ineressai a discuere paricolari soluzioni

Dettagli

Analisi delle reti con elementi dinamici

Analisi delle reti con elementi dinamici Principi di ingegneria elerica Lezione 9 a (pare A Analisi delle rei con elemeni dinamici ondensaore onnessioni di condensaori ondensaore Il condensaore è un bipolo caraerizzao da una relazione ensione-correne

Dettagli

Meccanica introduzione

Meccanica introduzione Meccanica inroduzione La meccanica e quella pare della Fisica che sudia il moo dei corpi. Essa e cosiuia dalla cinemaica e dalla dinamica. La dinamica si occupa dello sudio del moo e delle sue cause. La

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di elecomunicazioni - SEGNALI E SPERI Prof. Mario Barbera [pare ] Sruura della lezione Proprieà dei segnali Valore medio, valore efficace, poenza, energia rasformaa di Fourier e speri

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

T.E. del 5 febbraio Risultati. Autore: Dino Ghilardi

T.E. del 5 febbraio Risultati. Autore: Dino Ghilardi T.E. del 5 febbraio 2018. Risulai Auore: Dino Ghilardi 7 febbraio 2018 1 0.1 E1, T.E. del 05-02-2018, prof D Amore 0.1.1 Teso 0.1.2 Soluzione Puno 1: calcolo dell induanza. Riluanza di un ronco: R T =

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 10 Settembre 2008 Cognome Nome Matricola

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 10 Settembre 2008 Cognome Nome Matricola PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) Seembre 8 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. Scrivere le rispose ai singoli esercizi negli spazi

Dettagli

FISICA. Lezione n. 3 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano

FISICA. Lezione n. 3 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano Universià degli Sudi di Milano Facolà di Scienze Maemaiche Fisiche e Naurali Corsi di Laurea in: Informaica ed Informaica per le Telecomunicazioni Anno accademico 1/11, Laurea Triennale, Edizione diurna

Dettagli

Analisi del funzionamento di un amplificatore retroazionato

Analisi del funzionamento di un amplificatore retroazionato Poliecnico di Milano 12-19/01/2017 Eleronica Analogica - Prof. Marco Sampiero Anno accademico 2016/2017 Analisi del funzionameno di un amplificaore reroazionao Calcolo eorico: Pare 1: Analisi dello sadio

Dettagli

Soluzioni di reti elettriche lineari PAS Introduzione

Soluzioni di reti elettriche lineari PAS Introduzione Soluzioni di rei eleriche lineari PAS Inroduzione Domanda: Cosa sono le rei eleriche lineari in regime Periodico Alernao Sinusoidali PAS? Risposa: Sono rei lineari in cui i generaori hanno dipendenza dal

Dettagli

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo Accelerazione Il moo reilineo uniformemene accelerao è il moo di un puno sooposo ad

Dettagli

Generatore di clock mediante NE 555

Generatore di clock mediante NE 555 Generaore di clock mediane NE 555 onsideriamo la seguene figura inegrao NE555 è quello racchiuso dalla linea raeggiaa. i noa, all inerno dell inegrao, un lach di ipo R. Un lach di ipo R è un circuio sequenziale

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

Fisica Generale II Esercitazione E tutorato ESERCIZI CON SOLUZIONE

Fisica Generale II Esercitazione E tutorato ESERCIZI CON SOLUZIONE Fisica Generale Eserciazione E uorao 1-1 ESEZ ON SOUZONE 1. Un proone (q +e, m 1.67 1-7 kg) con una velocià iniziale v 4(16 m/s)i + 4(16 m/s)j enra in una zona dove vi è un campo magneico uniforme B. T

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

Laboratorio di Calcolo Numerico A.A. 2007/2008 II semestre

Laboratorio di Calcolo Numerico A.A. 2007/2008 II semestre Eserciazione 9 Corso di Laurea Triennale in Maemaica Laboraorio di Calcolo Numerico A.A. 7/8 II semesre Creare una carella dove verranno salvai i file creai nella sessione di lavoro. Appena enrai

Dettagli

Università del Sannio

Università del Sannio Uniersià del Sannio Corso di Fisica 1 Lezione 3 Cinemaica I Prof.ssa Sefania Peracca Corso di Fisica 1 - Lez. 3 - Cinemaica I 1 Cinemaica La cinemaica è quella branca della fisica che sudia il moimeno

Dettagli