Le soluzioni della prova scritta del 17 Dicembre 2014

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le soluzioni della prova scritta del 17 Dicembre 2014"

Transcript

1 L soluzo dlla prova scrtta dl 7 Dcmbr 04 Sa data la fuzo f a Trova l domo d f b Scrv, splctamt pr stso (o soo suffct dsg, qual soo gl trvall cu f è postva qull cu è gatva c Dtrma l vtual trszo co gl ass d Studa l comportamto d f agl strm dl suo domo, scrvdo l quazo d vtual astot; (gustfcar rsultat d lmtcalcola la drvata prma scrv, splctamt pr stso (o soo suffct dsg, qual soo gl trvall cu f è crsct qull cu è dcrsct, trovado l coordat d vtual massm o mm rlatv o flss a tagt orzzotal Calcola la drvata scoda scrv, splctamt pr stro (o soo suffct dsg, qual soo gl trvall cu f è covssa qull cu è cocava, trovado l coordat d vtual flss f Dsga u grafco approssmatvo d f scgldo opportuamt l sstma d rfrmto a Il domo è dato dall sm d tutt umr ral, dato ch pr qualsas umro s ha ch - è smpr dvrso da 0, qud la dvso 4 / - è smpr b dfta b Poché - > 0 pr og R, la frazo è postva s solo s -4 > 0, coè s solo s < 0 Prtato f( > 0 pr < 0 f( < 0 pr > 0 c Rsolvamo l sstma y 0 Sosttudo la scoda quazo lla prma s ott y 0, duqu ottamo u uca trszo co l ass y data dal puto d coordat (0,0 Rsolvamo l sstma y y 0 Sosttudo la scoda quazo lla prma s ott 0, ch è quvalt a -4 0, da cu 0 Qud ach co l ass v è l uca trszo (0,0 d Dobbamo rsolvr sgut du lmt: lm, lm Nl prmo lmt c mbattamo ua forma dtrmata /, ch rsolvamo utlzzado l Torma d d l Hosptal:

2 ( 4 ( 4 4 lm lm lm lm ( ( poché l domator td a La rtta y 0 è u astoto orzzotal Quato al scodo lmt, quato td a - l umrator td a d l domator td a 0 D cosguza lm 0 4 ( 4 4 ( 4( f ( ( 4( Poché, com dtto, è smpr postvo, s ha ch f > 0 > 0 > La fuzo è crsct ll trvallo (, dcrsct ll trvallo (-, Nl puto d ascssa v 4 è u mmo rlatvo, la cu ordata è f ( 4 Il mmo rlatvo è qud l puto d coordat (,-4 4( ( ( 4( f f 4 4 ( ( f > 0 > 0 < 0 < La fuzo è duqu covssa ll trvallo (-, 8 cocava (, Nl puto d ascssa c è u flsso, la cu ordata è f ( Duqu l flsso è 8 l puto d coordat, g

3 Calcolar l valor dll ara dlla rgo d pao comprsa tra l grafco dlla fuzo ( f, l ass l rtt Trovamo aztutto l ascssa dll trszo dl grafco d f co gl ass ch rcad ll trvallo, Rsolvamo duqu l sstma 0 y y da cu s rcava 0, coè oppur Qust ultma è l trszo ch rcad ll trvallo d ostro trss L ara ch dobbamo calcolar è duqu data da: A A A dov d A d A A tal f calcolamo sparatamt ua prmtva dlla fuzo f: c c d d d d Prtato: 3 d A 3 d A da cu: 4 6 A A A

4 3 S calcol la drvata dlla fuzo f arcta(s(3 6 cos(3 f (s(3 cos(3 (3 s (3 s (3 s (3

5 4 U allator vuol stablr s v è ua corrlazo tra lvll d tstostro prstazo A tal f croomtra tmpo mpgat d u atlta dlla gara d 00 m pa Prma d cascua corsa vgoo msurat lvll d tstostro I dat vgoo rassut lla sgut tablla: tstostro (g/dl tmpo (sc a Vrfcar ch, bas a qust dat, v è corrlazo lar tra lvll d tstostro tmpo d prcorrza d 00 mtr pa b Esprmr l tmpo prcorso fuzo d lvll d tstostro pr mzzo d ua fuzo lar a Calcolamo l coffct d corrlazo lar tra l du varabl lvll d tstostro tmpo d prcorrza Esso è dato dalla formula: La mda artmtca dlla du sr d dat è ( ( y ρ ( ( y Calcolamo ora tutt dat ch occorroo pr calcol covolt lla formula alto: y (tstostro (tmpo y ( (y ( (y Σ Duqu ρ ( ( y ( ( y ,97 Vsto ch l valor dl coffct d corrlazo lar è molto vco a -, v è duqu ua molto buoa corrlazo lar (gatva

6 Dovdo sprmr la varabl tmpo prcorso fuzo dlla varabl lvll d tstostro pr mzzo d ua fuzo lar, calcolamo la rtta d rgrsso lar avdo posto lvll d tstostro y tmpo prcorso Il coffct agolar d tal rtta è ( ( y 000 m ( Il trm oto q s può trovar sapdo ch tal rtta passa pr l barctro d dat, coè l puto d coordato (490,60: da cu Qud la fuzo lar crcata è: 490 m 60 q 430 q f Istruzo - Appo su tutt fogl a t cosgat l tuo om, cogom umro d matrcola rcosgal tutt al doct al trm dlla prova No possoo ssr utlzzat fogl dvrs da qull fort La durata dlla prova è d, or È obblgatoro tr spto og tlfoo cllular, smartpho o computr pr tutta la durata dl compto o sarà possbl uscr dall aula Lo svolgmto dll sam sotttd la lttura comprso dl Rgolamto Esam, prst sul sto dl corso; partcolar lo studt è cosapvol dlla csstà, caso d buo sto dlla prova, d suprar l Placmt Tst d Iformatca al massmo tro o oltr ao dalla data odra (s o gà suprato, pa l dovr rptr la prst prova Alcu formul cotrat l corso Formula rsolutva dll quazo d scodo grado a b c 0 (co b 4ac 0 b ± b 4ac a Logartm log a ( log a (y log a (y log a ( log a (y log a y log a ( log a ( log log b log a a b

7 Statstca Mda artmtca Mda podrata f fkk, f f dov f è la frquza (o l pso co cu compar l dato Mda gomtrca Varaza σ ( k, dov dota la mda Varaza podrata σ f fk Dvazo stadard σ varaza k f( Equazo rtta d rgrsso: y m q, co ( ( y σ m σ ( q m dov σ ( ( y (covaraza Coffct d corrlazo: ρ ( ( y ( ( y σ σ σ Drvat f f costat 0 α α α a l( log a ( s( cos( ta( a l(a loga ( cos( s( cos ( f g ( f ( g ( f g ( f ( f g f f ( f g g ( Itgrazo pr part: f Itgral c costat α (α - f ( d c α α a l( a a s( cos( cos l cos( s( ta( g d f f f d

L soluzon Data la funzon ln( ) f ( ) 3 a trova l domno d f b scrv, splctamnt pr stso, qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c dtrmna l vntual ntrszon con gl ass d studa l

Dettagli

Soluzioni. 1. Data la funzione. a) trova il dominio di f

Soluzioni. 1. Data la funzione. a) trova il dominio di f Soluzon Data la funzon a) trova l domno d f f ( ) + b) ndca qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c) dtrmna l vntual ntrszon con gl ass d) studa l comportamnto dlla funzon

Dettagli

Bisogna innanzitutto calcolare le variazioni annue: loro o per riassumere distribuzioni che hanno andamento

Bisogna innanzitutto calcolare le variazioni annue: loro o per riassumere distribuzioni che hanno andamento La mda omtrca Pr ua dstrbuzo utara d u carattr quattatvo d trm, la mda omtrca è dfta com: K usata pr sttzzar dat ch ha sso moltplcar fra loro o pr rassumr dstrbuzo ch hao adamto omtrco S applca pr dtrmar

Dettagli

Esame di Matematica e Abilità Informatiche - Settembre Le soluzioni

Esame di Matematica e Abilità Informatiche - Settembre Le soluzioni Esam d Matmatca Abltà Informatch - Sttmbr 03 L soluzon. Data la funzon f( ) a. trova l domno d f b. scrv, splctamnt pr stso, qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c. dtrmna

Dettagli

LE SOLUZIONI. [Per definizione la concentrazione di una soluzione è il rapporto

LE SOLUZIONI. [Per definizione la concentrazione di una soluzione è il rapporto LE SOLUZIONI. Una soluzon (d un crto soluto n un crto solvnt dl pso d kg è concntrata al 0%. Calcolar la quanttà d solvnt (n kg ch s dv aggungr alla soluzon pr ottnr una nuova soluzon, concntrata al 0%.

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Chimica e Tecnologie Farmaceutiche (raggruppamento A-L)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Chimica e Tecnologie Farmaceutiche (raggruppamento A-L) L soluzon dlla prova scrtta d Matmatca pr l corso d laura n Chmca Tcnolo Farmacutch raruppamnto A-L. Data la unzon a. trova l domno d b. scrv, splctamnt pr stso, qual sono l ntrvall n cu rsulta postva

Dettagli

Variabili aleatorie una variabile aleatoria ( v.a.)

Variabili aleatorie una variabile aleatoria ( v.a.) Varabl alator ua varabl alatora ( v.a.) ua applcazo ch assoca u umro ral [0,] ad og rsultato dllo spazo dgl vt gral og sprmto alatoro carattrzzabl tramt ua varabl alatora dscrta o cotua Varabl alator dscrt:

Dettagli

Le soluzioni della prova scritta di Matematica del 7 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 7 Febbraio 2014 L soluzon dlla prova scrtta d Matmatca dl 7 Fbbrao. Sa data la unzon ln ln a. Trova l domno d. b. Scrv, splctamnt pr stso, qual sono gl ntrvall n cu è postva qull n cu è ngatva c. Dtrmna l vntual ntrszon

Dettagli

LA MODA: Unità: è il valore della variabile X osservato il maggior numero di volte;

LA MODA: Unità: è il valore della variabile X osservato il maggior numero di volte; Apput d Statstca Socal Uvrstà Kor d Ea IDICI DI POSIZIOE O DI TEDEZA CETRALE Gl dc d poszo, o d tdza ctral, soo umr ch sprmoo la sts umrca d ua dstrbuzo ( ) statstca smplc d ua varabl X. I valor ossrvat

Dettagli

Definizione e proprietà dei numeri complessi

Definizione e proprietà dei numeri complessi umr complss Dfo proprtà d umr complss Rapprstao gomtrca d umr complss Espoal d u umro complsso Cougao d u umro complsso Radc -sm dll utà Dfo proprtà d umr complss U umro complsso é ua coppa ordata d umr

Dettagli

Le soluzioni della prova scritta di Matematica del 24 Aprile 2014

Le soluzioni della prova scritta di Matematica del 24 Aprile 2014 L soluzon dlla prova scrtta d Matmatca dl Aprl. Sa data la unzon 3 a. Trova l domno d b. Scrv, splctamnt pr stso non sono sucnt dsgnn, qual sono gl ntrvall n cu è postva qull n cu è ngatva c. Dtrmna l

Dettagli

Ciò infine permette di classificare le unità secondo una graduatoria di rango della distribuzione mediante la matrice R di uguale dimensione.

Ciò infine permette di classificare le unità secondo una graduatoria di rango della distribuzione mediante la matrice R di uguale dimensione. I mtod d sts Data ua matrc d dat comosta d rgh colo, dov rarsta l umro d utà trrtoral da classfcar (ad smo l 03 rovc rarsta l umro d dcator trrtoral. Il rocsso d lavorazo uò ssr così rarstato forma matrcal:

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Appunti sulle Equazioni Differenziali. Appunti sulle equazioni differenziali

Appunti sulle Equazioni Differenziali. Appunti sulle equazioni differenziali Apput sull Equazo Dffrzal Apput sull quazo dffrzal S chama quazo dffrzal u tpo partcolar d quazo fuzoal, lla qual la fuzo cogta compar sm ad alcu su drvat, ossa u quazo lla qual oltr all ormal oprazo algbrch

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Caso studio 4. La media geometrica. Esempio

Caso studio 4. La media geometrica. Esempio Caso studo 4 U vsttor dv dcdr s vstr l suo captal d 0.000 uro obblazo a tasso sso o a tasso varabl. Il tasso sso d trss ch l v proposto è dl 4% auo, pr u vstmto a 5 a. Pr l obblazo a tasso varabl l v vc

Dettagli

g ( x )dx e se ne dia l interpretazione geometrica.

g ( x )dx e se ne dia l interpretazione geometrica. ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 9 PIANO NAZIONALE INFORMATICA Problma Sia f la fuzio dfiita da Dov è u itro positivo....!! I. Si vrifichi ch la drivata di è:!. Si dica s la fuzio f ammtt

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO Ssso ordara sprmtal 8 9 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tma d: MATEMATICA Il caddato rsolva uo d du problm rspoda a 5 qust dl qustoaro. PROBLEMA Sa la

Dettagli

LIUC ebook. Analisi Matematica. Anna Maria Mascolo Vitale

LIUC ebook. Analisi Matematica. Anna Maria Mascolo Vitale LIUC Boo Aals Matmatca Aa Mara Mascolo Vtal LIUC Boo Aals Matmatca Aa Mara Mascolo Vtal LIUC Uvrstà Cattao Castllaza Aals matmatca Aa Mara Mascolo Vtal Coprght Uvrstà Carlo Cattao - LIUC Cso Mattott

Dettagli

Introduzione. La regressione logistica

Introduzione. La regressione logistica Aals statstca multvarata La rgrsso logstca Autor Alsado Lubsco Stfaa Mga Marla Pllat La rgrsso logstca Itroduzo S vuol dscrvr la rlazo d dpdza dl posssso d u attrbuto dcotomco da ua o pù varabl dpdt (X,

Dettagli

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1 ENUNCIATI DI ESAMI DI ANALISI MATEMATICA ENUNCIATI DI ESAMI DI ANALISI MATEMATICA Euciar dimostrar il torma di Lagrag Dir s è f ( ) applicabil alla fuzio ( ) ll itrvallo [,] motivado la risposta Euciar

Dettagli

ESERCIZI - PRIMA PARTE

ESERCIZI - PRIMA PARTE ESERCIZI - PRIM PRTE Gl src d cu s dca umr paa s tratt dal tst SSalsa Squllat Esrc d Matmatca vl d Zachll Prlmar prcp d du 6 a p 7 a p 6 7 8 9 a p 9 7 8 9 a p 8 a p a p Rslvr l sut dsqua: 6 6 Cct bmal

Dettagli

SOLUZIONI. risparmio totale = D altra parte la traccia di dice anche che: e 64 L = produzione. Pertanto si ha: Quindi si ha un risparmio del 9,902%.

SOLUZIONI. risparmio totale = D altra parte la traccia di dice anche che: e 64 L = produzione. Pertanto si ha: Quindi si ha un risparmio del 9,902%. SOLUZIONI. Il costo d un farmaco da banco pr un dtrmnato prncpo attvo è così suddvso: l 7,% pr la confzon, l 7,% pr la produzon d l rstant % pr l IVA. Dlla quota rlatva alla produzon, l 3% è dovuto all

Dettagli

Diodo: V D > 0. n p = N. p n0. x n. -x p 0. Figura 1

Diodo: V D > 0. n p = N. p n0. x n. -x p 0. Figura 1 CORREI E IOO Pr l calcolo dlla corrt l dodo rsza d ua tso d olarzzazo stra faccamo l sgut ots smlfcatv: 1. cotatt mtallo-smcoduttor co l zo d soo d to ohmco, ovvrosa ad ss è assocata ua caduta d tso roorzoal

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PRVA D ESAME SESSINE RDINARIA Lico scitifico comuicazio opzio sportiva Il cadidato risolva uo di du problmi rispoda a qusiti dl qustioario Durata massima dlla prova: 6 or È costito l uso dlla calcolatric

Dettagli

ln( t + ) dt, calcolare i punti critici di F(x) e

ln( t + ) dt, calcolare i punti critici di F(x) e Prova scritta di Aalisi Matmatica I (VO) or 6/0/0 ) Dfiizio di fuzio cotiua i u puto classificazio di puti di discotiuità Utilizzado la dfiizio dir pr quali valori di k è cotiua i =0 la sgut fuzio l 0

Dettagli

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con Prova scritta di Aalisi Matmatica A 4//4 (tutti) Illustrado tutti i passaggi, disgar il grafico dlla fuzio l f ( ),, (tutti) Dtrmiar l ara dlla porzio di piao ditata dall ass dll co dal grafico dlla fuzio

Dettagli

Abbiamo a disposizione i seguenti pattern appartenenti a tre classi A, B e C B C A

Abbiamo a disposizione i seguenti pattern appartenenti a tre classi A, B e C B C A RICONOSCIMENO DI FORME Mtod No Paramtrc pr la Classfcazo Suprvsoata Captolo 5 ESERCIZIO Abbamo a dsposzo sgut pattr appartt a tr class A, B C. A..3.7.4..0.6.9 B.7.4 C.4.5.6...4..0.8.6..3.5.9 C propoamo

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sstm olog dll Comuzo Complmt : sr trsformt d Fourr Formul d prostfrs L formul d prostfrs sprmoo l vlor d so o d somm d gol prodott d s d gol gol, vvrs: ( α β ) ( α ) ( β ) ( α ) ( β ) ( α β ) ( α ) ( β

Dettagli

Esercitazione 4 del corso di Statistica (parte 1)

Esercitazione 4 del corso di Statistica (parte 1) Eserctazoe 4 del corso d Statstca (parte ) Dott.ssa Paola Costat Febbrao 0 Eserczo Data la dstrbuzoe del carattere Reddto d cu all eserczo precedete se e msur l grado d cocetrazoe. La cocetrazoe d u carattere

Dettagli

ESERCIZI DI STATISTICA

ESERCIZI DI STATISTICA ESERCIZI DI STATISTICA Soluzo degl esercz sugl stmator putual. A cura d Nazareo Maro Soluzoe dell'eserczo. Trovamo, come prmo passo, la fuzoe d verosmglaza che è: L( f(x, {

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

La distribuzione Normale

La distribuzione Normale Matatca Fca cla 5G La dtrbuzo oral Fracco Fotaa otaa@lcorrar.t paga La dtrbuzo oral Mda dvazo tadard Codrao rultat pr ua varabl alatora. Il valor do ott co la da arttca d valor qut oo ugualt rqut ugualt

Dettagli

Caso studio 7. Concentrazione. Misurazione della concentrazione (distribuzione unitaria) 07/03/2016

Caso studio 7. Concentrazione. Misurazione della concentrazione (distribuzione unitaria) 07/03/2016 07/0/206 Caso studo 7 L OCSE la dsguaglaza: a ch puto è la ott? D Stfao Prr (rtcolo dspobl qu: http://www.coomapoltca.t/ prmo-pao/locs--la-dsguaglaza-a-ch-puto--la-ott/). Dopo la rcrca dl 2008 Growg Uqual[],

Dettagli

L equazione del reticolo cristallino

L equazione del reticolo cristallino Chmc sc supror Modulo L quzo dl rtcolo crstllo Srgo Brutt Rchmo d mtmtc: l sr d ourr U quluqu uzo () può ssr rpprstt spso d Tylor purchè l uzo () s drzbl - volt : ( )!... Nl cso cu ()=g() s u uzo prodc

Dettagli

APPUNTI DI STATISTICA DESCRITTIVA 2 Con applicazioni nell ambiente statistico R Versione preliminare agosto 2006

APPUNTI DI STATISTICA DESCRITTIVA 2 Con applicazioni nell ambiente statistico R Versione preliminare agosto 2006 APPUNTI DI TATITICA DECRITTIVA Co applcazo ll ambt statstco R Vrso prlmar agosto 006 Vttoro Colagrad TUDIO DELLE RELAZIONI TRA DUE CARATTERI TATITICI Nll aals d dat s è spsso trssat a studar s tra du carattr

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Esercizi 12/10/2007. oppure B 0. In modo del tutto analogo AB 0 se e solo se. oppure B 0 B 0. Studio del segno di una disequazione polinomiale.

Esercizi 12/10/2007. oppure B 0. In modo del tutto analogo AB 0 se e solo se. oppure B 0 B 0. Studio del segno di una disequazione polinomiale. Esercz 2/0/2007 Dsequazo Sego d u prodotto. Voglamo studare l sego d u prodotto d due umer real. I altr term vedere qual soo le codzo affché due umer real A e B soddsfo AB 0. Ragoamo come segue: rcoducamo

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N - Estrmo suprior d strmo ifrior di isimi Soluzioi Dato l isim A = { 7 arcta, N calcolar strmo suprior d strmo ifrior, spcificado s siao rispttivamt massimo miimo. Studiamo sparatamt pr pari d dispari.

Dettagli

Segnali e sistemi tempo discreto

Segnali e sistemi tempo discreto Trasformata di ourir Sgali sistmi tmpo discrto TEORIA DEI SEGALI LAUREA I IGEGERIA DELL IORAZIOE Sommario Sgali tmpo discrto priodici Sri di ourir Sgali tmpo discrto apriodici Trasformata di ourir Proprità

Dettagli

Trasformatore. Parte 2 Trasformatori trifase (versione del ) Trasformatore trifase (1)

Trasformatore. Parte 2 Trasformatori trifase  (versione del ) Trasformatore trifase (1) Trasformator Part 2 Trasformator trfas www.d.g.ubo.t/prs/mastr/ddattca.htm (vrso dl 0-11-2010) Trasformator trfas Pr trasfrr rga lttrca tra du rt trfas s possoo utlzzar tr trasformator moofas, ugual tra

Dettagli

1 - Numeri complessi. 1.0 Breve cronologia dei simboli Definizione e proprietà dei numeri complessi

1 - Numeri complessi. 1.0 Breve cronologia dei simboli Definizione e proprietà dei numeri complessi - um complss - Dfo poptà d um complss - Rappstao gomtca d um complss - Espoal d u umo complsso - Cougao d u umo complsso - Radc -sm dll utà I matmatca l voluo o s fao dstuggdo mod pcdt ch matao smp la

Dettagli

Problemi di routing di veicoli: 2 Modelli e rilassamenti per il TSP

Problemi di routing di veicoli: 2 Modelli e rilassamenti per il TSP Problm d routg d vcol: Modll rlassamt pr l TP Dal Vgo DEI, Uvrstà d Bologa dvgo@ds.ubo.t Problma dl Commsso Vaggator (TP) caso partcolar: dposto vcolo d capactà llmtata mmzzar l costo pr srvr tutt clt

Dettagli

CENNI SULL USO DEL METODO SIMBOLICO PER IL CALCOLO DELLA

CENNI SULL USO DEL METODO SIMBOLICO PER IL CALCOLO DELLA ENN SU USO DE METODO SMBOO PE AOO DEA SPOSTA N EGME PEMANENTE SNUSODAE DE UT osdramo u crcuo composo da ua r d lm lar pass com rssor, codsaor, duor a cu è applcao u graor d forza lromorc l qual forsc ua

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Matmatica cla Dail Ritlli ao accadmico 008/009 Lzio : Succssioi Sri gomtrica Esrcizi svolti. Provar ch: + ) /. Provar ch: + ) + ) 0. Provar ch: + 4. Provar ch 5. Provar ch + ) + ) 4

Dettagli

y = α + βx + ε Qui ci soffermeremo su un unica classe di modelli, detti modelli statistici lineari. Si veda la seguente figura:

y = α + βx + ε Qui ci soffermeremo su un unica classe di modelli, detti modelli statistici lineari. Si veda la seguente figura: Il problema della regressoe s poe quado l valore d ua varable aleatora y, chamata varable dpedete, è fuzoe d ua varable o aleatora x, chamata varable dpedete Qu c soffermeremo su u uca classe d modell,

Dettagli

La corrente i(t) che percorre l avvolgimento del trasformatore durante il transitorio è definita dalla seguente equazione: di dt

La corrente i(t) che percorre l avvolgimento del trasformatore durante il transitorio è definita dalla seguente equazione: di dt Cosruzo Elroach Corr d coro crcuo u rasforaor Sovracorr rasforaor Esaao qus au, odo slfcao, l org l cosguz dll sovracorr ch ossoo sollcar l avvolgo d u rasforaor dura u coro crcuo a ors dl scodaro. 1 -

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

MECCANISMI COMBINATI DI SCAMBIO TERMICO: Coefficiente Globale di Scambio Termico U

MECCANISMI COMBINATI DI SCAMBIO TERMICO: Coefficiente Globale di Scambio Termico U MECCANISMI COMBINAI DI SCAMBIO ERMICO: Coffct Global d Scambo rmco U All tro com all stro d u ambt possamo ar: a. Cozo tra l ara l part tra l ara ( a ) gl oggtt b. Irraggamto tra gl oggtt tra qust l part

Dettagli

EffePi Srl. Valore immobiliare: gestire ed amministrare per creare il valore degli immobili. EffePi S.r.l. Valore Immobiliare. EffePi S.r.l.

EffePi Srl. Valore immobiliare: gestire ed amministrare per creare il valore degli immobili. EffePi S.r.l. Valore Immobiliare. EffePi S.r.l. EffP Srl Valor mmoblar: gstr d ammstrar pr crar l valor dgl mmobl 1 Il Il U mmobl è u valor ch va prsrvato, curato, gstto matuto l tmpo. EffP è u azda ata pr forr srvz ch sostgoo l vostro. Il Valor dlla

Dettagli

FACOLTA DI INGEGNERIA. Corso di Fisica Tecnica Ambientale ESERCIZI SVOLTI CONDUZIONE

FACOLTA DI INGEGNERIA. Corso di Fisica Tecnica Ambientale ESERCIZI SVOLTI CONDUZIONE FO DI INGEGNERI orso d Fsa a tal ESERIZI SVOI ONDUZIONE Esrzo Esrzo Dtrar l flusso tro pr utà d suprf attravrsa rg prat ua lastra paa ooga dllo spssor d 8 o l du fa atut all tpratur d 9 =.9 /..9 9 85.8

Dettagli

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} = Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta

Dettagli

Statistica. Statistica descrittiva

Statistica. Statistica descrittiva Statstca La statstca rguarda la raccolta, prstazo, aals laborazo utlzzazo d dat umrc allo scopo d ffttuar frz, strapolazo, d forr dcazo dcsoal stuazo ch prstao u crto grado d alatortà. Essa è utlzzata

Dettagli

Analisi Matematica I Soluzioni del tutorato 4

Analisi Matematica I Soluzioni del tutorato 4 Corso di laura i Fisica - Ao Accadmico 07/08 Aalisi Matmatica I Soluzioi dl tutorato 4 A cura di David Macra Esrcizio ( i) Domiio di dfiizio: La fuzio o è dfiita s è tal ch l argomto sotto radic sia gativo,

Dettagli

I metodi di costruzione degli indici sintetici

I metodi di costruzione degli indici sintetici I mtod d costruzo dgl dc sttc Numros soo mtod dsobl r la sts d dcator lmtar. Gl alcatv ch costoo l calcolo d tal dc d sts soo soltamt lgat alla loro mlmtazo. Pr tal motvo, l cofroto tra rsultat ottut co

Dettagli

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ }

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ } Alcu cosidrazioi sulla dfiizio di limit Alcu cosidrazioi sui limiti di fuzioi Itori di u puto U itoro (complto) di u puto è u qualsiasi itrvallo aprto cui il puto apparti Esmpi: (,3) è u itoro di [,3)

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

03 FUNZIONI ELEMENTARI

03 FUNZIONI ELEMENTARI 03 FUNZIONI ELEMENTARI I qusto paragrafo dfiiamo l più usuali fuzioi di ua variabil, a partir dall quali, co l oprazioi algbrich la composizio di fuzioi, si ottrrao la maggior part dgli smpi ch icotrrmo.

Dettagli

pè via che, lì, la media è sempre eguale risurta che te tocca un pollo all'anno: Me spiego: da li conti che se fanno seconno le statistiche d'adesso

pè via che, lì, la media è sempre eguale risurta che te tocca un pollo all'anno: Me spiego: da li conti che se fanno seconno le statistiche d'adesso La varabltà L utlzzo d ua meda permette d stetzzare effcacemete l formazoe coteuta ua dstrbuzoe statstca dal puto d vsta dell testà del carattere. Tuttava la stes può essere eccessva, el seso s possoo

Dettagli

MECCANISMI COMBINATI DI SCAMBIO TERMICO: Coefficiente Globale di Scambio Termico U

MECCANISMI COMBINATI DI SCAMBIO TERMICO: Coefficiente Globale di Scambio Termico U MECCNISMI COMBINI DI SCMBIO EMICO: Coffct lobal d Scambo rmco U ll tro com all stro d u ambt possamo ar: a. Cozo tra l ara l part tra l ara ( a gl oggtt b. Irraggamto tra gl oggtt tra ust l part c. Coduzo

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 00/0 - Idc d dspersoe Sezoe d Epdemologa & Statstca Medca Uverstà degl Stud d Veroa La dspersoe o varabltà è la secoda mportate caratterstca d ua dstrbuzoe d dat. Essa

Dettagli

Soluzione Compito 19/09/2007

Soluzione Compito 19/09/2007 Soluzo omo 9/9/7 Prmo uo: alcolamo la cocrazo d carch rch a 53 K (8 : ( T G ( T ( T ( T, do: T 53 9 9 3 ( T ( 3 ( 53 ( 3,86,8 5, 3 3 T 53 9 9 3 ( T ( 3 ( 53 ( 3,86,,93 3 G (T,53,3 - T S ha rao:,53,3 53

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

SOLLECITAZIONI COMPOSTE

SOLLECITAZIONI COMPOSTE Sussidi didattici pr il corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì SOLLECITZIOI COPOSTE GGIORETO 14/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracsco Zaghì FLESSIOE DEVIT Si ha flssio dviata quado

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: ANALISI DI FOURIER Sgali mpo Discrti: - Ci alla rasormata di Fourir di ua squza - Rlazio co la CF - Codizio di Nyquist - Etto dl trocamto dl Sgal sulla F Cosidriamo ua squza x[]: l sguito cosidrrmo la

Dettagli

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

5 - IMPORTANTI LEGGI DI DISTRIBUZIONE

5 - IMPORTANTI LEGGI DI DISTRIBUZIONE 5 - IPORTATI LEGGI DI DISTRIBUZIOE 5.. Dstrbuo dscrt 5... Dstrbuo bomal (o d Broull) Pr trodurr la dstrbuo bomal s rcorr ad u smpo. Esmpo S suppoga ch tr prso (Fracsca, arco Vttora) scao cascua dalla propra

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Ellissi di densità costante. Distribuzione normale multivariata. Ellissoidi di isodensità. Esempio isodensità: X~N 2 (μ,σ) Consideriamo

Ellissi di densità costante. Distribuzione normale multivariata. Ellissoidi di isodensità. Esempio isodensità: X~N 2 (μ,σ) Consideriamo Dstrbuzoe ormale multvarata / f ( ) π = Σ exp ( )' ( ) μ Σ μ Ellss d destà costate Cosderamo c = % ' Σ % = ( μ)' Σ ( μ) S dca co N p (μ,σ) Relazoe tra ormale multvarata e ormale multvarata stadard N p

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2007 PIANO NAZIONALE INFORMATICA. Problema 1

ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2007 PIANO NAZIONALE INFORMATICA. Problema 1 ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 7 PIANO NAZIONALE INFORMATICA Problma Puo Pr sudiar la moooia dlla fuzio I g( ) g ( ) a la a la l a (a a ). Essdo, pr iposi, a >, occorr disigur i sgui

Dettagli

Esercitazione 3 del corso di Statistica (parte 1)

Esercitazione 3 del corso di Statistica (parte 1) Eserctazoe 3 del corso d Statstca parte ) Dott.ssa Paola Costat 7 Febbrao 0 Eserczo. A partre dalla dstrbuzoe class della varable Altezza rpartta 3 class equfrequet, calcolare medaa, prmo e terzo quartle.

Dettagli

Tassi Equivalenti. Benedetto Matarazzo

Tassi Equivalenti. Benedetto Matarazzo Tass Equval Bdo Maarazzo Corso d Maaca Fazara Rg fazar Oprazo fazar Irss Scoo Equvalz fazar Rg dll rss splc Rg dll rss coposo Rg dll rss acpao (scoo corcal Prcpal proprà d u qualsas rg fazaro Cofroo ra

Dettagli

Lezione 3. Omomorfismi di gruppi

Lezione 3. Omomorfismi di gruppi Lzio 3 Prrquisiti: Applicazioi tra isimi. Rlazioi di quivalza. Lzio. Omomorismi di gruppi I qusta lzio itroduciamo uo strumto util a corotar l struttur di gruppi distiti. Diizio 3. Siao (, (, gruppi. U'applicazio

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

CAP. 6 INFERENZA STATISTICA BAYESIANA

CAP. 6 INFERENZA STATISTICA BAYESIANA Corso d laura magstral SCIENZE STATISTICHE (Not ddattch) Bruo Chadotto Vrso 4 Cap 6 Ifrza statstca baysaa Itroduzo CAP 6 BAYESIANA N captol prcdt s è stata affrotata, modo quas sclusvo, la problmatca dll

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: AALISI DI FOURIER Sgali Tmpo Discrti: - Trasformata Discrta di Fourir -Squza priodica - Taratura dgli assi frquziali - TDF di ua squza fiita - Campioamto i Frquza - Algoritmi fft: srcitazioi Matlab -Zro

Dettagli

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione ESERCIZI SULLE SUCCESSIONI VALENTINA CASARINO Esrcizi pr il corso di Aalisi Matmatica, Iggria Gstioal, dll Iovazio dl Prodotto, Mccaica Mccatroica, Uivrsità dgli studi di Padova) ) Vrificar, attravrso

Dettagli

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da ESISTE UA OTEOLE DIFFEEA TA LE SOLUIOI DEI POLIEI E QUELLE DELLE OLECOLE PICCOLE DOUTA ALLA DIFFEEA DI DIESIOI TA LE OLECOLE POLIEICHE E QUELLE DEL SOLETE. Pr qusto motvo trattrmo l soluzon polmrch attravrso

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento Limit Ifrior pr l Ordiamto Ma quato può ssr fficit, i pricipio, u algoritmo di ordiamto? Algoritmi Struttur Dati (Mod. A) Limit Ifrior pr l Ordiamto Qusta è ua dll domad più ambizios itrssati ma ach ua

Dettagli

Analisi Matematica Lezione 30, 4 dicembre 2014 e x2 dx =

Analisi Matematica Lezione 30, 4 dicembre 2014 e x2 dx = Dpartmeto d Sceze Statstche Aals Matematca Lezoe 3, 4 dcembre 14 π e x dx = prof. Daele Rtell daele.rtell@ubo.t 1/3? rodotto d Walls π = =1 rmo passo: ( 1 + 1 ) = lm (()!!) ( 1)!!( + 1)!! I = π s x dx

Dettagli

Esercitazione 6 del corso di Statistica (parte 1)

Esercitazione 6 del corso di Statistica (parte 1) Eserctazoe del corso d Statstca parte Dott.ssa aola Costat 8 Marzo 0 Eserczo S ha motvo d rteere che u uovo farmaco A abba la propretà d abbassare l lvello d glcema el sague. I cascuo de pazet dabetc osservat,

Dettagli

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni Esrcitazioi di Calcolo dll Probabilità (4/4/) Soluzioi Esrcizio. Si trovi il valor dlla costat pr cui f, (>,

Dettagli

FONDAMENTI DI STATISTICA 1

FONDAMENTI DI STATISTICA 1 FONDAMENTI DI TATITICA Lug Musso () Vcza Torator () Poltcco d Mlao DICA Pazza Loardo da Vc, 3 33 Mlao Tl -399-65 Fa -399-66 -mal lugmusso@polmt () Poltcco d Mlao DICA Pazza Loardo da Vc, 3 33 Mlao Tl -399-65

Dettagli

Interferenza e diffrazione con gli esponenziali complessi. Nota

Interferenza e diffrazione con gli esponenziali complessi. Nota Intrfrnza dffrazon con gl sponnzal complss ota on s fanno commnt sul sgnfcato d rsultat ottnut, n su qullo dll pots d volta n volta assunt: lo scopo solo qullo d mostrar com funzon n pratca l formalsmo

Dettagli

MACCHINE ELETTRICHE - ESERCIZI 26 gennaio Elettrotecnica _ Energetica _ Elettrica V.O. _ 6 / 7 CFU _ 9 CFU _

MACCHINE ELETTRICHE - ESERCIZI 26 gennaio Elettrotecnica _ Energetica _ Elettrica V.O. _ 6 / 7 CFU _ 9 CFU _ MCCHNE ELETTCHE - ESECZ 6 gaio 9 Cogom Nom: Matricola: Elttrotcica _ Ergtica _ Elttrica.O. _ 6 / 7 CFU _ 9 CFU _ ESECZO N. oasio dlla prova a vuoto su di u trasformator moofas vgoo misurati i sguti valori:

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Facoltà di Economia - STATISTICA - Corso di Recupero a.a Prof.ssa G. Balsamo CONCETTI di BASE Carattere X [o A ] i = 1

Facoltà di Economia - STATISTICA - Corso di Recupero a.a Prof.ssa G. Balsamo CONCETTI di BASE Carattere X [o A ] i = 1 Facoltà d Ecooma - STATISTICA - Corso d Recupero a.a. 2012-13 Prof.ssa G. Balsamo CONCETTI d BASE Carattere X [o A ] caratterstca quattatva [o qualtatva] rappresetatva d u feomeo sottoposto ad dage Popolazoe

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO Sssio straordiaria 8 Lico di ordiamto ESAME DI STATO DI LICEO SCIENTIFICO Corso di ordiamto sssio straordiaria 8 Sssio straordiaria 8 Lico di ordiamto PROBLEMA Puto. Il passaggio pr A(-) comporta la codizio

Dettagli

Serie. 1. Studiare il carattere delle seguenti serie: e n n + e n. n 3 n2 n e n 2 sin 1 n n log n. e 1 n. ( 2 + sin n 4. n + 1. sin(sin 1 n ) 10) 11)

Serie. 1. Studiare il carattere delle seguenti serie: e n n + e n. n 3 n2 n e n 2 sin 1 n n log n. e 1 n. ( 2 + sin n 4. n + 1. sin(sin 1 n ) 10) 11) Sri. Studiar il carattr dll sguti sri: ) ) 3) 4) 5) 6) 7) 8) 9) 0) ) ) 3) =4 + ( ) 3 si log ( + si 4 + log λ, λ > 0 si(si )! ( si λ, λ R cos(π) . Stabilir pr quali valori dl paramtro ral λ covrg la sri

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli