1 - Numeri complessi. 1.0 Breve cronologia dei simboli Definizione e proprietà dei numeri complessi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 - Numeri complessi. 1.0 Breve cronologia dei simboli Definizione e proprietà dei numeri complessi"

Transcript

1 - um complss - Dfo poptà d um complss - Rappstao gomtca d um complss - Espoal d u umo complsso - Cougao d u umo complsso - Radc -sm dll utà I matmatca l voluo o s fao dstuggdo mod pcdt ch matao smp la loo lgttmtà vtà s fao costudo d uov uvs ch o globao pcdt o s collocao accato a ss I uov ss o atao ma qull vcch u bll smpo d coabtao ta vcch oat Ds Gudj - Il Toma dl Pappagallo 0 Bv coologa d smbol Golamo Cadao (50-576) : toduc Raffal Bombll (56-573): toduc l gol: ( ) ( ) ( ) ( ) Ré Dscats ( ) : toduc l om um mmaga Lohad Eul ( ) : toduc l smbolo p Kal Fdch Gauss ( ) : toduc l om um complss - Dfo poptà d um complss U umo complsso é ua coppa odata d um al: { } Eguaglaa somma podotto d copp d um complss soo dft da: - guaglaa: s - somma: { } { } { } - podotto: { } { } { } Valgoo l sgut poptà: - commutatvtà: - assocatvtà: ( ) ( ) ( ) ( ) Il umo complsso { 0 0 } god dlla poptà ch { 0 0 } { } { } p og umo complsso è qud l lmto dttà dlla somma E dtto l umo complsso o d è dcato co 0 Il umo complsso { 0 } god dlla poptà ch { 0 } { } { } p og umo complsso è qud l lmto dttà dl podotto E dtto l umo complsso uo d dcato co Ptato um complss soddsfao a tutt gl assom a cu soddsfao um al Ess fomao u copo l copo d um complss - dstbutvtà: ( )

2 Il gatvo d - è l umo complsso { - - } dato ch { - - } { } { 0 0 } If og umo complsso dvso da 0 ha u cpoco { u v } sptto all utà tal ch: { u v } { } { 0 } Cò mplca: u v v u 0 qud: u Il cpoco d v dcato co v somma sottao podotto dvso Rplogo dll quatto opao ' - ' ' ' { ' ' } (-') { - ' - ' } { ' ' ' - ' } ' ' ' - ' ' ' ' ' ' Il sottosm d um complss dl tpo { 0 } dcs l sottosm d um REALI Ifatt sso è chuso sptto all opao d somma podotto olt gatvo cpoco soo dat dal gatvo cpoco dl umo al Ptato o s fa ssua dsto ta qusto sottosm d l copo d um al Iolt s possoo cosda I um complss com u stso d um al Il sottosm d um complss dl tpo { 0 } dcs l sottosm d um IMMAGIARI Esso è chuso sptto alla somma mt l podotto d du um mmaga è u umo al dato ch: { 0 } { 0 } { - 0 } Il umo mmagao { 0 } god dlla poptà ch l suo quadato è gual al umo al { - 0} tal umo v dtto utà mmagaa d dcato co l smbolo S scv: L dttà { } { 0 } { 0 } { 0 } suggsc la sgut foma p um complss: OSSERVAZIOE - Tal otao pmtt d ott la gola p l podotto usado l gol p l podotto d bom la poptà d : L compot d vgoo dtt spttvamt la PARTE REALE la PARTE IMMAGIARIA d d dcat co R() Im() ' ( ( ' )( ' ' ) ' ) ( ' ' ' ) ' ' '

3 - Rappstao gomtca d um complss I um complss possoo ss post cospoda co put dl pao dtfcado la pat al d co l ascssa dl puto cospodt P la pat mmagaa d co l odata d P Valgoo l lao (coodat pola): P Cò pota a df l modulo d : la fas d cos ϑ ϑ acta( ) s ϑ 3 - Espoal d u umo complsso Dall pcdt lao sgu ch: (cos ϑ s ϑ ) dov s é posto p dfo: Valgoo l sgut lao: d olt: ϑ cos ϑ s ϑ ( ) ( )' ( ) ( ) ( ϑ ϑ ') ' Dmostao dlla fomula d dvao: Dmostao dlla fomula d fattoao: ( ϑ ϑ') cos( ϑ ϑ') s( ϑ ϑ') (cosϑ cosϑ' s s') (s cosϑ' cosϑ s') (cosϑ s)(cosϑ' s') ' La fomula d fattoao gustfca l uso dlla otao spoal Valgoo l sgut fomul: ( )' s cosϑ ( s cosϑ) ' ' ( ϑ ϑ ') ' ' ' 0 L pcdt fomul dfscoo l spoal d u umo mmagao L spoal d u umo complsso abtao può ss dfto usado la fomula d fattoao l spsso dll spoal d u umo mmagao pcdtmt todotta: sgu ch: ' ' ' ( ') ( ') ' (cos ' s ( ') )

4 Itptao gomtca dl podotto d u umo complsso p l spoal d u umo mmagao pochè s ha: ' ϕ ϕ ( ϑ ϕ ) sgu ch l umo complsso ha lo stsso modulo d ma è uotato sptto a d u agolo ϕ φ 4 - Cougao d u umo complsso Il complsso cougato d è dfto da: * l pao * è l smmtco d sptto all ass dll ascss ( *) * Valgoo l lao: * * ( *) l caso dll spoal d u umo mmagao s ha ( )* cosϑ s da cu s ottgoo l fomul d Eulo: cosϑ ( ) s ( ) 5 - Radc -sm dll utà L adc -sm dll utà soo dft com l soluo dll quao l campo al qusta quao ha solo la soluo s è dspa l soluo - s è pa l campo complsso ha smp soluo S s po: ss soo dat da: 0 s ottgoo a pat da mdat succssv otao dll agolo /

5 Vfca: p og to postvo s ha: ) ( L adc -sm dll utà soo appstat da put quspaat sul ccho d aggo 6 5 Toma - La somma dll adc -sm dll utà è o: 0 0 Dmostao - Dall dttà: ) )( ( s ott: da cu podo: s ott l toma

N = C. Lezione 1. Elettrostatica: forze elettriche e campo elettrico. Campo Elettrico. Azione del campo elettrico: Forze su cariche elettriche

N = C. Lezione 1. Elettrostatica: forze elettriche e campo elettrico. Campo Elettrico. Azione del campo elettrico: Forze su cariche elettriche lttostatca: foz lttch campo lttco Campo lttco è un campo d foz vttoal nllo spazo, coè una gandzza fsca con modulo dzon, funzon dlla poszon nllo spazo x, y, z to d Faaday-Maxwll zon dl campo lttco: Foz

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

LIUC ebook. Analisi Matematica. Anna Maria Mascolo Vitale

LIUC ebook. Analisi Matematica. Anna Maria Mascolo Vitale LIUC Boo Aals Matmatca Aa Mara Mascolo Vtal LIUC Boo Aals Matmatca Aa Mara Mascolo Vtal LIUC Uvrstà Cattao Castllaza Aals matmatca Aa Mara Mascolo Vtal Coprght Uvrstà Carlo Cattao - LIUC Cso Mattott

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

e k Queste sono funzioni oscillanti, periodiche di periodo N/k.

e k Queste sono funzioni oscillanti, periodiche di periodo N/k. Vr.. ot pr Aalisi di Fourir di Squz co l ausilio dl Matlab Cosidriamo ua squza ifiita priodica di priodo, x[t] tal pr cui x[t+t]x[t]. Pr rapprstar tal squza si possoo utilizzar fuzioi complss dl tipo jπ

Dettagli

Lezione 1. I numeri complessi

Lezione 1. I numeri complessi Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

Dispense. di Complementi di Struttura della Materia. M. De Seta

Dispense. di Complementi di Struttura della Materia. M. De Seta Dsps d Complmt d Stuttua dlla Mata M. D Sta Pat I - Appossmazo Fsca dlla Mata: La mata tutt l su fom (atom molcol macomolcol sold è composta da ucl d ltto tazo coulombaa. La gca Hamltoaa d u sstma d qusto

Dettagli

FACOLTA DI INGEGNERIA. Corso di Fisica Tecnica Ambientale ESERCIZI SVOLTI CONDUZIONE

FACOLTA DI INGEGNERIA. Corso di Fisica Tecnica Ambientale ESERCIZI SVOLTI CONDUZIONE FO DI INGEGNERI orso d Fsa a tal ESERIZI SVOI ONDUZIONE Esrzo Esrzo Dtrar l flusso tro pr utà d suprf attravrsa rg prat ua lastra paa ooga dllo spssor d 8 o l du fa atut all tpratur d 9 =.9 /..9 9 85.8

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

3) DIFFUSIONE DELLA LUCE E SPETTROSCOPIA RAMAN

3) DIFFUSIONE DELLA LUCE E SPETTROSCOPIA RAMAN DIFFUSION DLLA LU STTROSOIA RAAN La uso lla lu a pa u aomo quval al sgu posso (l aomo è l lvllo : (A Assobmo u oo quza vo oa k passaggo allo sao ao aua (sao al o msso u oo quza vo oa k. Oppu: (B msso u

Dettagli

Solidi assialsimmetrici - Dischi

Solidi assialsimmetrici - Dischi Sol assalsmmt - Dsh D ω s Caattsth sh Smmta assal Pao amtal smmta asso appoto spsso / amto Assza bush vaazo spsso Cah aal assalsmmt s

Dettagli

Trasformatore. Parte 2 Trasformatori trifase (versione del ) Trasformatore trifase (1)

Trasformatore. Parte 2 Trasformatori trifase  (versione del ) Trasformatore trifase (1) Trasformator Part 2 Trasformator trfas www.d.g.ubo.t/prs/mastr/ddattca.htm (vrso dl 0-11-2010) Trasformator trfas Pr trasfrr rga lttrca tra du rt trfas s possoo utlzzar tr trasformator moofas, ugual tra

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Esperienza n 8:Determinazione del calore specifico di un corpo

Esperienza n 8:Determinazione del calore specifico di un corpo Espz 8:Dzo dl lo spfo d u opo Spo: o Eul (N ol 4549 v.o.) v Noo (N ol 458656 v.o.) Sopo dll spz Qus spz h lo sopo d d l lo spfo d u opo vso l uso dl loo dll solz. Su ulzz P l'spz soo s ulzz sgu su: -U

Dettagli

Successioni e Progressioni

Successioni e Progressioni Successioi e Pogessioi Ua successioe è ua sequeza odiata di umei appateeti ad u isieme assegato: ad esempio, si possoo avee successioi di umei itei, azioali, eali, complessi Il pimo elemeto della sequeza

Dettagli

Errori a regime per controlli in retroazione unitaria

Errori a regime per controlli in retroazione unitaria Appunt d ontoll Autoatc Eo a g n sst n toazon Eo a g p contoll n toazon untaa... Eo a g nlla sposta al gadno (o d poszon)... Eo a g nlla sposta alla apa (o d vloctà)...3 Eo a g nlla sposta alla paabola

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO CMPI DI OZ CONSEVTIVI - ENEGI POTENZIE E POTENZIE EETTICO Camp Vettoal Defzoe: u campo vettoale è ua egoe dello spazo, cu og puto è defto u vettoe. Ta camp vettoal d patcolae teesse fsca v soo camp d foza

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

Introduzione. La regressione logistica

Introduzione. La regressione logistica Aals statstca multvarata La rgrsso logstca Autor Alsado Lubsco Stfaa Mga Marla Pllat La rgrsso logstca Itroduzo S vuol dscrvr la rlazo d dpdza dl posssso d u attrbuto dcotomco da ua o pù varabl dpdt (X,

Dettagli

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con

Prova scritta di Analisi Matematica 1 14/1/ (tutti) Determinare l area della porzione di piano delimitata dall asse delle x con Prova scritta di Aalisi Matmatica A 4//4 (tutti) Illustrado tutti i passaggi, disgar il grafico dlla fuzio l f ( ),, (tutti) Dtrmiar l ara dlla porzio di piao ditata dall ass dll co dal grafico dlla fuzio

Dettagli

3 - Trasformata di Fourier discreta Discrete Fourier Transform ( DFT)

3 - Trasformata di Fourier discreta Discrete Fourier Transform ( DFT) 3 - rasormata d orr dscrta Dscrt orr rasorm D - Dscrtzzazo dlla sr d orr - Dzo rortà dlla D - D d sgal traslat - U smo d D - ormla d vrso dlla D - Egaglaza d Parsval - D ral 3 - Dscrtzzazo dlla sr d orr

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014 Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto

Dettagli

RETROAZIONE A V. = segnale d ingresso del blocco dell amplificatore retroazionato. = segnale d uscita A = amplificatore β = rete di retroazione

RETROAZIONE A V. = segnale d ingresso del blocco dell amplificatore retroazionato. = segnale d uscita A = amplificatore β = rete di retroazione ETOZOE Un amplcat è sggtt a azn quand una pat dl sgnal d uscta vn ptat n ngss smmat algbcamnt al sgnal d ngss. n un amplcat taznat è psnt una t β (bta) d tazn ch pta n ngss una pat dl sgnal d uscta. l

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A SEDE DISTACCATA DI LATINA a.a. / Prova sritta di Aalisi Matmatia I - fbbraio Proff. B. CIFRA F. ILARI Compito A COGNOME...... NOME. Matr... Corso di Laura o o o Ambit Trritorio Risors Iformazio Maia firma

Dettagli

W T X X X' ( W T X X W X X' t X t X ( t X t X. t X t X t X t X X X T. t X t X ( t X t X W X X

W T X X X' ( W T X X W X X' t X t X ( t X t X. t X t X t X t X X X T. t X t X ( t X t X W X X 1 - o tamo ama ma daprè bale Pocaterra cpoe acorca o tamo ama ma orre ovete dre & ardo a lao Cude la voce etro le labrmore E veroe tmore E m fa duom vvo u muto ao. mor ce e tu vuo cel mo martre o pur tacca

Dettagli

Il concetto di Onda. sempio: onda del mare, onda sonora, ecc.

Il concetto di Onda. sempio: onda del mare, onda sonora, ecc. Il conctto d Onda Dfnzon gnal d onda: opata una ptubazon su una qualch gandzza fsca n una gon lmtata dllo spazo, s dc ch s ha un onda quando qusta ptubazon s popaga nll alt zon dllo spazo con vloctà modaltà

Dettagli

LEGENDA SIMBOLI NELLA COLONNA DEI TRENI

LEGENDA SIMBOLI NELLA COLONNA DEI TRENI LEGEND SMBOL NELL COLONN DE TREN s To Busss z To Euost tl lt Vlotà Q To Euost tl T To Euost Cty ~Svzo ffttuto o pullm g tusmo N To Pdolo dll Sotà Cslpo B To EuoCty svzo tzol duo D To EuoNght svzo tzol

Dettagli

CONTRATTO TRA PARTNER DI CANALE INDIRETTO - v. EM EA. 2 5. 0 4. 0 7 Pe r r e g i s t r a r s i c o m e Pa r t n e r d i Ca n a l e In d i r e t t o ( In d i r e c t Ch a n n e l Pa r t n e r ) d i Ci s

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

INGEGNERIA ELETTROTECNICA

INGEGNERIA ELETTROTECNICA Alma Mat Studoum Uvtà d Bologa DOTTORATO DI RICERCA IN INGEGNERIA EETTROTECNICA Cclo XXIV Stto Cocoual d affza: 9/E2 Stto Sctfco dcpla: ING-IND/32 CONTROO VETTORIAE GENERAIZZATO PER MACCHINE EETTRICHE

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

A. PARRETTA CORSO DI OTTICA APPLICATA A.A TEORIA DELLE SFERE INTEGRATRICI

A. PARRETTA CORSO DI OTTICA APPLICATA A.A TEORIA DELLE SFERE INTEGRATRICI . PRRTT CORSO D OTTC PPCT.. 0-0 TOR D SFR NTGRTRC TOR D SFR NTGRTRC RDNZ D UN DFFUSOR MBRTNO z e Radaza d u dusore lambertao e 0 e π M π π Dusore lambertao 0 cost 0 cos θ Flusso totale emesso: e π 0 Flusso

Dettagli

Progettazione di sistemi distribuiti

Progettazione di sistemi distribuiti Progttazion di sistmi distribuiti Valutazion dll prstazioni: cnni Prformanc Cosa vuol dir ch un sistma è più vloc di un altro? Tmpo di risposta (tmpo di scuzion): diffrnza tra T c, l'istant in cui un task

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali I etto Gndee scl: engono defnte dl loo loe numeco esemp: lunghe d un segmento, e d un fgu pn, tempetu d un copo, ecc. Gndee ettol engono defnte, olte che dl loo loe numeco, d un deone e d un eso esemp:

Dettagli

Diodo: V D > 0. n p = N. p n0. x n. -x p 0. Figura 1

Diodo: V D > 0. n p = N. p n0. x n. -x p 0. Figura 1 CORREI E IOO Pr l calcolo dlla corrt l dodo rsza d ua tso d olarzzazo stra faccamo l sgut ots smlfcatv: 1. cotatt mtallo-smcoduttor co l zo d soo d to ohmco, ovvrosa ad ss è assocata ua caduta d tso roorzoal

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO Ssso ordara sprmtal 8 9 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tma d: MATEMATICA Il caddato rsolva uo d du problm rspoda a 5 qust dl qustoaro. PROBLEMA Sa la

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

La distribuzione statistica doppia (o bivariata)

La distribuzione statistica doppia (o bivariata) Marlea Pllat - Semar d Statstca (SVIC) "Le dstrbuzo doppe" La dstrbuzoe statstca doppa (o bvarata) Se u seme d utà statstche s osservao gl stat d gradezza assut da due caratter e s ottee ua -pla statstca

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

Lezione 3: Segnali periodici

Lezione 3: Segnali periodici eoria dei segali Segali a poteza media fiita e coversioe A/D Lezioe 3: Aalisi i frequeza Esempio di calcolo 005 Politecico di orio eoria dei segali aalisi i frequeza Poteza media Sia dato u segale (t)

Dettagli

Appunti sulle Equazioni Differenziali. Appunti sulle equazioni differenziali

Appunti sulle Equazioni Differenziali. Appunti sulle equazioni differenziali Apput sull Equazo Dffrzal Apput sull quazo dffrzal S chama quazo dffrzal u tpo partcolar d quazo fuzoal, lla qual la fuzo cogta compar sm ad alcu su drvat, ossa u quazo lla qual oltr all ormal oprazo algbrch

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Decreto Consigliare 3 Ottobre 1921 N.37 che porta modifiche alla Legge Organi- ca e relativa Tabella di stipendi. Art. 1.

Decreto Consigliare 3 Ottobre 1921 N.37 che porta modifiche alla Legge Organi- ca e relativa Tabella di stipendi. Art. 1. Dc C 3 Ob 1921 N37 ch mdfch L O- c v Tb d d A 1 - G um dc ququ zchè cu d d b d umb d u dcm ququ d vz cqu ququ fm d 'um cmm d'18 d L Oc G um ququ dc d 1 A 1910 vz c qud u b d d d uv b; cd 1910 qud u cu

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Solidi assialsimmetrici - Dischi

Solidi assialsimmetrici - Dischi Sol assalst - Dsh Caattsth sh Sta assal Pao atal sta D ω s

Dettagli

Calcolo a scorrimento viscoso di componenti meccanici

Calcolo a scorrimento viscoso di componenti meccanici Cacoo a scoimto viscoso di compoti mccaici Sottopodo u povio ad ua vata tmpatua ad u caico costat tmpo, i sso si viichà ua domazio pogssiva pmat. La domazio aumta oostat ch a tsio imaga costat tmpo Povio

Dettagli

STATI COERENTI IN MECCANICA QUANTISTICA

STATI COERENTI IN MECCANICA QUANTISTICA UNIVERSITÀ DEGLI STUDI DI BARI FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN FISICA TESI DI LAUREA IN FISICA TEORICA STATI COERENTI IN MECCANICA QUANTISTICA Rlao: Ca.mo Pof. Loado ANGELINI Lauado:

Dettagli

A.A Ingegneria Gestionale 2 appello del 11 Luglio 2016 Soluzioni - Esame completo

A.A Ingegneria Gestionale 2 appello del 11 Luglio 2016 Soluzioni - Esame completo FISI.. 5-6 Igg Gsl ppll dl Lugl 6 Sluz - s pl. U h d s p l d u D su d du l plll DL gu d u sz d gg 5 l sgu sg: l h, l ll vlà ss vk/h, l pù d pssl dlz d dul 9/s p ps l uv u vlà s d h s l d L v dll g l sl

Dettagli

Capitolo 11 Regressione con variabile dipendente binaria

Capitolo 11 Regressione con variabile dipendente binaria Capitolo Rgrssio co variabil dipdt biaria.. (a) La statistica t pr il cofficit di Expric è 0,03/0,009 3,44, sigificativa al livllo dll %. (b) z 0,72 0,030,022; (,022) 0,847 Matthw (c) z 0,72 0,03 0 0,72;

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

CAMPIONATO ITALIANO DI SOCIETA Serie A/B 2014

CAMPIONATO ITALIANO DI SOCIETA Serie A/B 2014 LÀ VL V VH 113/115 00189 M tecvolo@federbocce.it DD M ZL FX 06.99331369 M L D erie /B 2014 D: G ocietà: ocietà: Maager igor: MB Maager igor: M-U DVDUL M-U M-U M-U M-U M-U QUD M-U M-U FF D D GV MB M-U DVDUL

Dettagli

Modelli MILP per il Supply Chain Design

Modelli MILP per il Supply Chain Design Corso d Progettazoe e Gestoe della Supply Cha (PGSC) Facoltà d Igegera Modell MILP per l Supply Cha Desg Ig. Toaso Ross Uverstà C. Cattaeo LIUC Cetro d Rcerca sulla Logstca GLI STRUMENTI PER LA CONFIGURAZIONE.

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

DISTRIBUITED BRAGG REFLECTOR (DBR)

DISTRIBUITED BRAGG REFLECTOR (DBR) UNIVERSIT EGLI STUI I ESSIN FCOLT I INGEGNERI CORSO I LURE IN INGEGNERI ELETTRONIC ISTRIUITE RGG REFLECTOR R) R ISTRIUITE RGG REFLECTOR) Stuttua : mezzo eodco a stat N coe d stat d mateale delettco; Gl

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

Risposta in Frequenza

Risposta in Frequenza Risposta i Frquza Ipdza L ipdza di u bipolo è il uro coplsso dato dal rapporto tra il fasor tsio il fasor corrt: jφ V V V V j( ΦV ΦI ) Z = = I I jφ L attza è il uro coplsso: Z Y soo i gral fuzioi dlla

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni Sri umrich sri di fuzioi Sri Numrich Covrgza Putual di Sri di Fuzioi Suto- Il lavoro coti la risoluzio di alcui srcizi sullo studio dl carattr di sri umrich sulla covrgza putual di sri di fuzioi. Gli srcizi

Dettagli

CAP. 6 INFERENZA STATISTICA BAYESIANA

CAP. 6 INFERENZA STATISTICA BAYESIANA Corso d laura magstral SCIENZE STATISTICHE (Not ddattch) Bruo Chadotto Vrso 4 Cap 6 Ifrza statstca baysaa Itroduzo CAP 6 BAYESIANA N captol prcdt s è stata affrotata, modo quas sclusvo, la problmatca dll

Dettagli

NT il minimo valore positivo delle soluzioni della si dice periodo fondamentale o più semplicemente periodo

NT il minimo valore positivo delle soluzioni della si dice periodo fondamentale o più semplicemente periodo Cptolo III SEGALI A TEMPO DISCRETO III. Sgl prodc. U sgl s( T ) s dc prodco s sstoo tr postv tl ch, pr og, s bb: (III..) s( T ) = s( T + T ) Co l cso d sgl tpo cotu, s suo ultpl soddsfo l (III..). Dtto

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica Una Esprinza di Trattamnto ACUDETOX Antifumo in Fabbrica Rmo ANGELINO Dirttor SC Dipndnz Patologich - ASL 10 Pinrolo TO, Antonio POTOSNJAK I.P. SC Dipndnz Patologich - ASL 10 Pinrolo TO Prmssa La rlazion

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Dinamica dei sistemi di punti Forze interne ed esterne

Dinamica dei sistemi di punti Forze interne ed esterne Daca de sste d put Foze tee ed estee Cosdeao put ateal d assa: teaget ta loo e co l ueso esteo,...,,..., La foza F agete sull -eso puto è data dalla sultate delle foze estee aget sul puto F e delle foze

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Lezione 18. Orbite e cicli di una permutazione.

Lezione 18. Orbite e cicli di una permutazione. Lezoe 8 Peequst: Lezo 4, 7. Obte e ccl d ua pemutazoe. I questa lezoe toducamo, pe u'abtaa pemutazoe, la cosddetta decomposzoe ccl dsgut, che e vela la stuttua, agevolado la detemazoe del suo peodo e della

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Urti su scale diverse. m 1 m 2. tra particelle α Ν. t 4 ms. meteor-crater m. F r 21. r risultato di un contatto fisico

Urti su scale diverse. m 1 m 2. tra particelle α Ν. t 4 ms. meteor-crater m. F r 21. r risultato di un contatto fisico Ut uto: eeto solato el quale ua oza elataete tesa agsce e u teo elataete bee su due o ù co cotatto ta loo [aossazoe ulsa: tascuo oze estee] sultato d u cotatto sco F F sultato d ua teazoe ta atcelle eteo-cate

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli