Banchi di filtri. Variazioni. Esempio di normalizzazione. Introduzione. Nomenclatura. The Ultimate Question. h 1 N ... N h 2. h M

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Banchi di filtri. Variazioni. Esempio di normalizzazione. Introduzione. Nomenclatura. The Ultimate Question. h 1 N ... N h 2. h M"

Transcript

1 Variazioni Oltre alla struttura regolare sono possibili altre strutture, per esempio h 3 Tali strutture sono sempre riconducibili alla struttura regolare 3 Q: Cos è un banco di filtri? Introduzione Esempio di normalizzazione A: Un banco di filtri è qualcosa di questo tipo h ( ) 1 h h Banco di analisi h h h 3 h ( 4) 1 h h ( 3) 1 4 Questo è un banco di analisi con M canali sottocampionato di omenclatura Se M = il banco si dice criticamente campionato, se M > il banco si dice sovracampionato h h M The Ultimate Question La nostra domanda principale sarà È possibile ricostruire l ingresso di un banco di analisi a partire dalle sue uscite? (La risposta, come ben noto, è 4 ) 5

2 ma non è troppo facile? Un banco di filtri per il quale la risposta è certamente sì è il banco formato da filtri passa-basso e passa-banda ideali Esercizio suggerito Implementare con Matlab l approssimazione di un banco di filtri a 4 canali usando filtri FIR a 8 coefficienti Progettare un passa-basso h 0 FIR a 8 coefficienti (per esempio, usando remez) Costruire i filtri h i, i = 1,,3 modulando h 0, ossia h k (n) = W kn 4 h 0 (n) Scrivere le funzioni di analisi e sintesi e provare la fedeltà di ricostruzione Dov è il problema? 9 Perché non filtri ideali? I filtri passa-qualcosa ideali sono ideali vivono solo sulla carta e nel mondo delle idee In particolare Hanno risposta impulsiva infinita Sono instabili on hanno funzione di trasferimento razionale Analisi nel dominio della modulazione 7 e se progettassi dei buoni passa-qualcosa (con remez, per esempio?) Ci sono alcune controindicazioni Se voglio una buona approssimazione devo usare filtri lunghi costo computazionale Se voglio un basso costo computazionale devo usare filtri corti scarsa approssimazione In realtà vedremo che è possibile implementare banchi a ricostruzione perfetta usando anche filtri FIR molto corti (4 coefficienti) Il dominio della modulazione Consideriamo (per semplicità di notazione) il caso a due canali e concentriamoci su un singolo ramo di analisi+sintesi s 1 r 1 y 1 g 1 Si ottiene R 1 (z) = H 1 (z)x(z) filtraggio S 1 (z) = 1 ( R1 (z) + R 1 ( z) ) campiona + interpola Y 1 (z) = G 1 (z)s 1 (z) filtraggio 8 10

3 Il dominio della modulazione Ripetendo per l altro canale e sommando le uscite otteniamo Y (z) = A 0 (z)x(z) }{{} + A 1 (z)x( z) }{{} componente normale componente modulata A 0 (z) = G 1 (z) H 1 (z) + G (z) H (z) A 1 (z) = G 1 (z)h 1 ( z) + G (z)h ( z) Un primo, piccolo, risultato Q: Dato un banco di analisi a due canali con filtri FIR e h, per quali filtri di sintesi FIR il banco risulta senza aliasing? A: Dalla condizione A 1 (z) = 0 otteniamo G 1 (z)h 1 ( z) = G (z)h ( z) = C(z) C(z) deve essere un multiplo di L(z) = mcm(h 1 ( z),h ( z)), quindi G 1 (z) = L(z)D(z) H 1 ( z) D(z) è un polinomio arbitrario G (z) = L(z)D(z) H ( z) Analisi nel dominio della modulazione Commenti L uscita del banco a due canali contiene quindi due componenti 1 Una versione filtrata del segnale di ingresso A 0 (z)x(z) Una versione filtrata del segnale di ingresso moltiplicato per ( 1) n, A 1 (z)x( z) La componente A 1 (z)x( z) è una sorta di aliasing (componenti ad alta frequenza che finiscono in bassa) e può risultare particolarmente fastidioso Se A 1 (z) = 0 il banco si dice senza aliasing ed è equivalente ad un filtro Un primo, piccolo, risultato () Se i filtri g 1 e g sono scelti in modo da non avere aliasing la funzione di trasferimento complessiva risulta ( H1 (z)l(z) A 0 (z) = H 1 ( z) H (z)l(z) ) D(z) = F(z)D(z) H ( z) La funzione di trasferimento è quindi sempre multipla di F(z) (l insieme delle possibili funzioni di trasferimento è l ideale F(z) ) la ricostruzione perfetta con soli filtri FIR è possibile se e solo se F(z) ha inverso moltiplicativo è una costante 1 15 Il caso con M canali el caso di M canali, un procedimento analogo a quello appena visto, ci permette di dedurre Y (z) = M 1 X(WM k z)a k (z) k=0 M A k (z) = G m (z)h m (WM k z) m=1 el caso ad canali si dice che il banco è senza aliasing se A k (z) = 0 per k = 1,,M 1 13

4 Motivazione Banco di analisi nel dominio polifase L analisi nel dominio della modulazione è intuitiva, ma poco potente on è chiaro, per esempio, come progettare H 1 e H in modo da avere ricostruzione perfetta con filtri FIR Onde aggirare queste difficoltà è conveniente introdurre un nuovo strumento di analisi Raccogliendo tutti i canali in un unica espressione Y 1 Y Y M canale polifase H 1,0 H 1,1 H 1, 1 H =,0 H,1 H, 1 H M,0 H M,1 H M, 1 canale X 0 X 1 X 1 L azione del banco di analisi corrisponde quindi ad un prodotto matriciale nel dominio polifase polifase 1 19 Canale di analisi È ben noto che un filtraggio seguito da campionamento può essere implementato usando le componenti polifase y 1 y(n) = h k h k k=0 k (n) = (n + k) h k (n) = h(n k) Banco di analisi nel dominio polifase Forma di H(z) La matrice H ha M righe (una per ogni canale) e colonne (una per ogni componente polifase) Se il banco è criticamente campionato, H è quadrata Se il banco è sovracampionato, H è alta e stretta Attenzione: si noti il segno differente nelle due definizioni di componenti polifase 17 0 Canale di analisi nel dominio polifase el dominio delle trasformate zeta si ottiene o, in forma matriciale, 1 Y (z) = X k (z)h k (z) k=0 Y (z) = [ ] H 0 H 1 H 1 X 0 X 1 X 1 otazione Indicheremo con C e P,k gli operatori di campionamento e campionamento polifase (per segnali) È facile vedere che [C ](n) = (n) [P,k ](n) = (n + k) P,k = C τ k mentre se P,k è l operatore di campionamento polifase per filtri, P,k = C τk 18 1

5 Grazie alla relazione P,k = C τ k le componenti polifase di possono essere ottenute tramite lo schema mostrato a fianco ota: la trasformata polifase è un banco di filtri semplice z 0 z 1 z interpolazione+filtraggio tramite componenti polifase g y y k (n) = g k y k (n) = P,k y(n) = y(n + k) g k (n) = P,k g(n) = g(n + k) ota: per i filtri di sintesi si usa la stessa convenzione dei segnali 5 inversa 0 La trasformata polifase è invertibile 1 La sua inversa è un banco di sintesi semplice 1 z 0 z 1 z 1 L uscita complessiva è la somma delle uscite dei singoli canali g c,k = P,k g c el dominio zeta, in forma matriciale [ Y k (z) = M y k (n) = u c g c,k c=1 ] G 1,k G,k G M,k U 1 U U M 3 Un banco di analisi generico può sempre essere implementato come trasformata polifase+filtro MIMO z 0 z 1 z M 1 y 1 y H(z) y M La trasformata polifase è quindi il banco di filtri di analisi più primitivo Raccogliendo le componenti polifase dell uscita in un unico vettore Y 0 Y 1 Y 1 polifase canale G 0,1 G 0,1 G 0,M G 1,1 G 1,1 G 1,M = G,0 G,1 G, 1 G 1,1 G 1,1 G 1,M = prodotto matriciale nel dominio polifase polifase U 1 U U M ota: La matrice G è indicizzata in modo trasposto rispetto alla matrice H canale 4 7

6 Banco di analisi nel dominio polifase Forma di G(z) La matrice G ha righe (una per ogni componente polifase) e M colonne (una per ogni canale) Se il banco è criticamente campionato, G è quadrata Se il banco è sovracampionato, G è bassa e larga Se M = Ricostruzione perfetta 1 Il banco di analisi è invertibile se e solo se deth 0 L inversa ha soli filtri FIR se e solo se deth = αz n 3 La matrice polifase del banco di sintesi è G = H 1 Se M > 1 Il banco di analisi è invertibile se e solo se H ha rango pieno Ad ogni inversa sinistra di H corrisponde un banco di sintesi Se M < 1 La ricostruzione perfetta non è possibile 8 31 Un banco di sintesi generico può sempre essere implementato come filtro MIMO+trasformata polifase inversa u 1 z 0 u y G(z) z 1 u M z 1 La trasformata polifase inversa è quindi il banco di filtri di sintesi più primitivo 9 Analisi+Sintesi La cascata analisi+sintesi corrisponde ad un sistema MIMO dato dalla cascata di H(z) e G(z) el dominio polifase l azione della cascata è rappresentata dalla matrice G(z)H(z) Importante: Il segnale viene ricostruito esattamente se e solo se G(z)H(z) = I 30

Banchi ortogonali Casi importanti

Banchi ortogonali Casi importanti anchi ortogonali anchi ortogonali Casi importanti Trasformata a blocchi (JPEG, MPEG) anchi a due canali (JPEG 000) anchi modulati Trasformata di Fourier a blocchi (OFDM) anchi coseno-modulati (AC3, MUSICAM)

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon. Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon. Il teorema di Shannon INGEGNERIA E ECNOLOGIE DEI SISEMI DI CONROLLO Prof. Carlo Rossi DEIS - Università di Bologna el: 5 934 email: crossi@deis.unibo.it Introduzione, o del campionamento, stabilisce la connessione esistente

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: carlo.rossi@unibo.it Introduzione Il teorema di Shannon, o del campionamento, stabilisce la connessione esistente tra i segnali fisici

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Introduzione Il teorema di Shannon, o

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Ritardo Frazionario

Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Ritardo Frazionario Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI Ritardo Frazionario 8 marzo 2009 Indice Scopo dell esercitazione A La struttura di Farrow B Norme per la consegna dell esercitazione

Dettagli

Analisi di Fourier e campionamento d

Analisi di Fourier e campionamento d Analisi di Fourier e campionamento d Come esempio quadrature mirror filters si consideri da prima il semplice sistema in figura 6.17 dove i campioni con indice rispettivamente di indice pari x(2m) e indice

Dettagli

Prima esercitazione del corso di Sistemi di Telecomunicazione 1 A.A Demodulazione di ampiezza

Prima esercitazione del corso di Sistemi di Telecomunicazione 1 A.A Demodulazione di ampiezza Prima esercitazione del corso di Sistemi di Telecomunicazione 1 A.A. 2009-2010 Demodulazione di ampiezza 29th October 2009 Abstract Lo studente deve implementare in MATLAB una funzione per la demodulazione

Dettagli

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Primo Appello 26/2/2015

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Primo Appello 26/2/2015 Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico 204-205 Primo Appello 26/2/205 Quesiti relativi alla prima parte del corso (tempo max. 90 min). Calcolare: la trasformata z di x(n) = ( )

Dettagli

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =...

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =... Algebra/ Algebra Lineare, 230207 1 Un sistema di m equazioni lineari in n incognite x 1, x n aventi tutte termine noto nullo a i1 x 1 + a i2 x 2 + + a in x n = 0, i = 1,, m si dice omogeneo; ponendo x

Dettagli

Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti

Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti 4 Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti P-4.1: Dopo aver diviso per 0.5, cioè il coefficiente di, l equazione alle differenze finite data, si ottengono le strutture

Dettagli

Sistemi a campionamento variabile

Sistemi a campionamento variabile Sistemi a campionamento variabile Sottocampionatore di fattore M (decimatore) Figura 1: Sottocampionatore y D (n) = x(mn) Figura 2: Sequenza sottocampionata di passo 2 Sovracampionatore di fattore L (espansore)

Dettagli

VI test di autovalutazione di SEGNALI & SISTEMI

VI test di autovalutazione di SEGNALI & SISTEMI VI test di autovalutazione di SEGNALI & SISEMI. Sia u(t) t R un generico segnale di ingresso e si supponga che tale segnale venga prima campionato idealmente con frequenza di campionamento f c e successivamente

Dettagli

Seconda esercitazione per il corso di Sistemi di Telecom. 1 AA 07 08

Seconda esercitazione per il corso di Sistemi di Telecom. 1 AA 07 08 Seconda esercitazione per il corso di Sistemi di Telecom. AA 7 8 3th October 27 Abstract Scopo dell esercitazione Scopo dell esercitazione è la scrittura di una funzione Matlab per la decodifica di un

Dettagli

Banchi modulati 4. DFT a tempo breve (STFT) Motivazione. Motivazione. Trasformata di Fourier a blocchi. Motivazione (2)

Banchi modulati 4. DFT a tempo breve (STFT) Motivazione. Motivazione. Trasformata di Fourier a blocchi. Motivazione (2) Banchi modulati Banchi modulati DFT a tempo breve (STFT) Motivazione Motivazione La vera rogna con i banchi di filtri ortogonali è il progetto I banchi a due canali possono essere parametrizzati in termini

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Come rintracciarmi. Orario di ricevimento: Martedì dalle 9:00 alle 11:00. Telefono:

Come rintracciarmi. Orario di ricevimento: Martedì dalle 9:00 alle 11:00. Telefono: Come rintracciarmi Orario di ricevimento: Martedì dalle 9:00 alle :00 Telefono: 0432-55-827 e-mail: bernardini@uniud.it Pagina web: http://www.diegm.uniud.it/ bernardini/didattica/sis/ September 25, 2003

Dettagli

Elenco dei simboli 9. Prefazione 10

Elenco dei simboli 9. Prefazione 10 Indice Elenco dei simboli 9 Prefazione 10 1 Analisi nel dominio del tempo 11 1.1 Segnali tempo discreto... 11 1.1.1 Segnali notevoli tempo discreto... 13 1.1.2 Alcuni criteri di classificazione di segnali

Dettagli

Metodi di progetto per filtri IIR - Complementi

Metodi di progetto per filtri IIR - Complementi 7 Metodi di progetto per filtri IIR - Complementi 7.1 Rappresentazione di filtri IIR mediante sezioni passa-tutto Si considerino due funzioni di trasferimentog(z) eh(z) composte dalla somma e dalla differenza

Dettagli

Capitolo 4. Campionamento e ricostruzione

Capitolo 4. Campionamento e ricostruzione Capitolo 4 Campionamento e ricostruzione Sommario. In questo capitolo vengono richiamati brevemente i risultati fondamentali (teorema di Shannon e sue conseguenze) sul campionamento e la ricostruzione

Dettagli

Introduzione ai Convertitori A/D Delta-Sigma

Introduzione ai Convertitori A/D Delta-Sigma Introduzione ai Convertitori A/D Delta-Sigma Lucidi delle lezioni di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Convertitori

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del corso di Controllo digitale Corso di Laurea in Ingegneria Informatica e dell Informazione Università di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte IV Campionamento e ricostruzione

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

Note su filtri digitali

Note su filtri digitali Progettazione nell'ambiente LPCXpresso Introduzione alla progettazione di sistemi embedded a microcontrollore Note su filtri digitali S. Salvatori - Microelettronica aprile 2016 (1 di 42) Sommario Perché

Dettagli

Campionamento ideale e segnali a banda limitata campionamento la ricostruzione perfetta di un segnale analogico banda limitata

Campionamento ideale e segnali a banda limitata campionamento la ricostruzione perfetta di un segnale analogico banda limitata Campionamento ideale e segnali a banda limitata Il campionamento di una grandezza analogica è ottimale se non comporta perdita di informazioni, ovvero se è possibile ricostruire perfettamente la grandezza

Dettagli

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +.. Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s.

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. ASB 17/01/12 (270) Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. A 0 T 2T 3T t - A Si consideri il segnale

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

( e j2π ft 0.9 j) ( e j2π ft j)

( e j2π ft 0.9 j) ( e j2π ft j) Esercitazione Filtri IIR Es. 1. Si consideri il filtro dato dalla seguente equazione alle differenze y[n]+0.81y[n-2]=x[n]-x[n-2] - Determinare la funzione di trasferimento del filtro Eseguendo la Trasformata

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea Specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Cenni alla sintesi di Circuiti TD Generalità sulle tecniche di progetto. Filtri

Dettagli

ESAME DI ELAB. NUM. DEL SEGNALE (0/0) (21/07/2015) Cognome e Nome: Matricola: Lab: Convoluzione veloce tramite overlap-and-save

ESAME DI ELAB. NUM. DEL SEGNALE (0/0) (21/07/2015) Cognome e Nome: Matricola: Lab: Convoluzione veloce tramite overlap-and-save Convoluzione veloce tramite overlap-and-save Si consideri il filtro IIR stabile avente funzione di trasferimento H(z) = 1 1 1.2z 1 0.45z 2 e sia h : Z C la sua risposta impulsiva. Sia h N : Z C la versione

Dettagli

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Seconda Prova Intermedia 4/2/2013

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Seconda Prova Intermedia 4/2/2013 Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico 0-0 Seconda Prova Intermedia 4//0 Quesiti relativi alla seconda prova in itinere (tempo max. h). (6 punti) Calcolare la H(z) Y (z)/x(z) associata

Dettagli

Implementazione degli algoritmi.

Implementazione degli algoritmi. Implementazione degli algoritmi. 4.1. Introduzione. In questo capitolo sarà discussa l implementazione software per l ambiente MATLAB 6.1 che è stata fatta degli algoritmi di identificazione presentati

Dettagli

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson.

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson. La simulazione di sistemi analogici LTI per via digitale si è resa necessaria in quanto permette non solo la perfetta riproducibilità del fenomeno da studiare in situazioni ambientali anche molto diverse,

Dettagli

Lezione 11. Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale

Lezione 11. Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale Lezione Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale Matrici. Somma Date due matrici n x m, A = A ij e B = B ij, con i =,,,

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Esercitazione N.1 per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Filtro notch e canna d organo

Esercitazione N.1 per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Filtro notch e canna d organo Esercitazione N.1 per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Filtro notch e canna d organo 5 ottobre 2006 1 Scopo dell esercitazione Quest esercitazione è divisa in due parti: simulazione di un tubo

Dettagli

Nota: deg L P non è la potenza più grande di P(z). deg L P è interpretabile come l ampiezza del supporto di P

Nota: deg L P non è la potenza più grande di P(z). deg L P è interpretabile come l ampiezza del supporto di P Grado di un polinomio di Laurent (2) Definizione Lifting Definzione 2. Il grado del polinomio di Laurent non nullo è definito come deg L (P) = µ(p) λ(p). Se = 0, poniamo deg(p) =. Nota: deg L P non è la

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

Approssimazione ai minimi quadrati nel discreto

Approssimazione ai minimi quadrati nel discreto Approssimazione ai minimi quadrati nel discreto 1 È assegnato un insieme di m punti (x i, y i ), i = 1,..., m, che descrivono un certo fenomeno. Vogliamo trovare un polinomio p n (x) = c 0 + c 1 x +...

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Risposta in frequenza dei circuiti TD Rappresentazione nel dominio della frequenza,

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Argomento 12 Matrici

Argomento 12 Matrici Argomento 2 Matrici 2 Vettori di R n eoperazioni I Vettore di R n : x =(x i ) i=n =(x i ) n i=,conx i R componenti di x I R n = spazio dei vettori reali a n componenti = spazio vettoriale reale n-dimensionale

Dettagli

ALGEBRA LINEARE PARTE III

ALGEBRA LINEARE PARTE III DIEM sez Matematica Finanziaria Università degli studi di Genova Dicembre 200 Indice PREMESSA 2 GENERALITA 2 RAPPRESENTAZIONE DI UN SISTEMA LINEARE IN FORMA MATRI- CIALE 2 3 SOLUZIONE DI SISTEMI LINEARI

Dettagli

a a 1n A = a n1... a nn a 11 x a 1n x n = b 1 a n1 x a nn x n = b n ] sono determinati. 2- La matrice A = [ a ij

a a 1n A = a n1... a nn a 11 x a 1n x n = b 1 a n1 x a nn x n = b n ] sono determinati. 2- La matrice A = [ a ij Recupero. 2, Determinanti. 1. Determinanti Consideriamo una matrice A = a 11... a 1n.. a n1... a nn quadrata di ordine n ad elementi in R. Sappiamo che sono equivalenti la affermazioni 1- tutti i sistemi

Dettagli

Seminario. Wavelet. Seminario Wavelet [/50]

Seminario. Wavelet. Seminario Wavelet [/50] Seminario Wavelet Indice Fourier Transform Short-time Fourier Transform Continuous Wavelet Transform Discrete Wavelet Transform Applicazioni Fusione di immagini multirisoluzione Compressione Denoising

Dettagli

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe.

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe. Matrici triangolari [Abate, 32] Definizione Una matrice A = a ij ) R m,n si dice triangolare superiore se a ij = 0 per ogni i > j; triangolare inferiore se a ij = 0 per ogni i < j Lezioni 05 e 06 Una matrice

Dettagli

Progetto dei Sistemi di Controllo Digitali. Docente: Prof. Francesco Amato

Progetto dei Sistemi di Controllo Digitali. Docente: Prof. Francesco Amato Progetto dei Sistemi di Controllo Digitali Docente: Prof. Francesco Amato 1 Schema di un sistema di controllo digitale Controllore digitale r e A/D e* u* D/A u y Processo Sistema a empo-continuo Sistema

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

Le funzioni razionali

Le funzioni razionali CAPITOLO 3 Le funzioni razionali vedi Ahlfors, pag. 30, 3, 32 Definizione... Introduzione R(z) = P (z) Q(z) con P (z) e Q(z) due polinomi privi di zeri comuni. Siano β, β 2,..., β q gli zeri del polinomio

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

La matematica del CAD. Vettori e Matrici

La matematica del CAD. Vettori e Matrici La matematica del CAD Vettori e Matrici IUAV Disegno Digitale Camillo Trevisan I programmi CAD riducono tutti i problemi geometrici in problemi analitici: la proiezione di un punto su un piano viene, ad

Dettagli

Lezione del dove a 1, a n e b sono numeri reali assegnati, detti coefficienti e termine noto dell equazione;

Lezione del dove a 1, a n e b sono numeri reali assegnati, detti coefficienti e termine noto dell equazione; Le lezioni del 60 e 010 si riferiscono al Capitolo 1 Introduzione ai sistemi lineari Di seguito si elencano gli argomenti svolti, descrivendoli sinteticamente dando i riferimenti a tale capitolo, oppure

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

3x 2 = 6. 3x 2 x 3 = 6

3x 2 = 6. 3x 2 x 3 = 6 Facoltà di Scienze Statistiche, Algebra Lineare 1 A, GParmeggiani LEZIONE 7 Sistemi lineari Scrittura matriciale di un sistema lineare Def 1 Un sistema di m equazioni ed n incognite x 1, x 2, x n, si dice

Dettagli

Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui

Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t).

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t). Cenni alla Modulazione di Ampiezza (AM) Nella modulazione di ampiezza, si trasmette il segnale v(t) = (V 0 + k I x(t)) cos (πf 0 t), dove x(t) è il segnale di informazione, con banda B, e f 0 è la frequenza

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it Campionamento di segnali In MATLAB, qualunque segnale continuo è approssimato da una sequenza campionata. Si

Dettagli

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij Determinanti Sia data la matrice quadrata a... a n a a n =...... a... a n nn Chiamiamo determinante di il numero det o che ad essa viene associato. det = a a... a... a... a n n n... a nn Un generico elemento

Dettagli

Frame. Frame. Otteniamo il concetto di frame a partire da quello di base di Riesz facendo cadere l ipotesi di indipendenza lineare

Frame. Frame. Otteniamo il concetto di frame a partire da quello di base di Riesz facendo cadere l ipotesi di indipendenza lineare Frame Frame Otteniamo il concetto di frame a partire da quello di base di Riesz facendo cadere l ipotesi di indipendenza lineare Un frame è quindi un insieme di vettori φ i tali che esistono A > 0 e B

Dettagli

Compito di MD 13 febbraio 2014

Compito di MD 13 febbraio 2014 Compito di MD 13 febbraio 2014 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere con il lapis. Motivare

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

Determinante. Elisabetta Colombo. Determinante. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico ,

Determinante. Elisabetta Colombo. Determinante. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico , Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, 1 n=2 2 3 con le 4 n=2 n=2 con le Ad ogni matrice quadrata A = (a ij ) j=1...n i=1...n di ordine n si può associare

Dettagli

Lifting. Grado di un polinomio di Laurent. Grado di un polinomio di Laurent (2) Definizione. Motivazione

Lifting. Grado di un polinomio di Laurent. Grado di un polinomio di Laurent (2) Definizione. Motivazione Grado di un polinomio di Laurent Lifting Definzione 1. Se P(z) è un polinomio di Laurent non nullo con p A 0 e p B 0, indicheremo con λ(p) il più piccolo valore di k tale che z k ha coefficiente non nullo

Dettagli

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA CORSO DI GEOMETRIA DETERMINANTE AA 2018/2019 PROF VALENTINA BEORCHIA INDICE 1 Definizione induttiva di determinante 1 2 Caratterizzazione delle matrici quadrate di rango massimo 5 3 Regole di Laplace 6

Dettagli

Dispensa n.1. Sul legame tra autovalori della matrice A e poli della funzione di trasferimento

Dispensa n.1. Sul legame tra autovalori della matrice A e poli della funzione di trasferimento Dispensa n.1 Sul legame tra autovalori della matrice A e poli della funzione di trasferimento E dato un sistema lineare, avente un solo ingresso, una sola uscita e uno spazio di stato a dimensione n. Tale

Dettagli

Circuiti per la multimedialità

Circuiti per la multimedialità Università di Roma La Sapienza Laurea in Ingegneria delle Comunicazioni Circuiti per la multimedialità Raffaele Parisi Capitolo 2. Sintesi di circuiti a tempo discreto a partire da circuiti analogici.

Dettagli

Metodi di progetto per filtri IIR: soluzione dei problemi proposti

Metodi di progetto per filtri IIR: soluzione dei problemi proposti 7 Metodi di progetto per filtri IIR: soluzione dei problemi proposti P-7.: Usando il metodo dell invarianza all impulso, la funzione di trasferimento del filtro analogico viene trasformata in una funzione

Dettagli

Trasformata wavelet. 1 Introduzione. 2 Filtri wavelet di Daubechies

Trasformata wavelet. 1 Introduzione. 2 Filtri wavelet di Daubechies Trasformata wavelet Introduzione L pari della trasforamta di Fourier veloce (FFT), la trasformata wavelet discreta (DWT) è un operazione veloce e lineare che opera su un vettore di dati di lunghezza pari

Dettagli

Nozioni e Richiami di Algebra Lineare

Nozioni e Richiami di Algebra Lineare Nozioni e Richiami di Algebra Lineare Chiara Giusy Genovese Università di Bologna Scuola di Economia, Management e Statistica CLAMEP Statistica per l analisi dei dati 11 Novembre 2014 Indice Introduzione

Dettagli

Federica Gregorio e Cristian Tacelli

Federica Gregorio e Cristian Tacelli 1 Sistemi lineari Federica Gregorio e Cristian Tacelli Un sistema lineare m n (m equazioni in n incognite) è un insieme di equazioni lineari che devono essere soddisfatte contemporaneamente a 11 x 1 +

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Universitá di Trento. anno accademico 2005/2006

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Universitá di Trento. anno accademico 2005/2006 La trasformata Z (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata Z 1 / 33 Outline 1 La trasformata Z 2 Trasformazioni di

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Sui determinanti e l indipendenza lineare di vettori

Sui determinanti e l indipendenza lineare di vettori Sui determinanti e l indipendenza lineare di vettori 1 Si dice che m vettori v 1, v 2,,v m di R n sono linearmente indipendenti, se una loro combinazione lineare può dare il vettore nullo solo se i coefficienti

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

Controllo Digitale. Riassumendo. I sistemi di controllo digitale hanno alcuni vantaggi rispetto ai sistemi di controllo a tempo continuo:

Controllo Digitale. Riassumendo. I sistemi di controllo digitale hanno alcuni vantaggi rispetto ai sistemi di controllo a tempo continuo: Parte 12, 1 Motivazioni Parte 12, 2 I sistemi di controllo digitale hanno alcuni vantaggi rispetto ai sistemi di controllo a tempo continuo: Controllo Digitale Flessibilità del SW rispetto all HW Compatibilità

Dettagli

Problemi ai minimi quadrati

Problemi ai minimi quadrati Seminario di matematica applicata avanzata Problemi ai minimi quadrati Sanna Mirko Matricola: 44464 Ingegneria elettrica ed elettronica Indice Introduzione - Il problema dei minimi quadrati - I vari tipi

Dettagli

GE110 - Geometria 1. Prova in Itinere 2 27 Maggio 2010

GE110 - Geometria 1. Prova in Itinere 2 27 Maggio 2010 GE110 - Geometria 1 Prova in Itinere 2 27 Maggio 2010 COGNOME e NOME : Problema 1: Problema 2: Problema 3: 1 2 Problema 1. Nello spazio affine reale A 5 R si fissi il riferimento affine canonico, e siano

Dettagli

Lezione del 24 novembre. Sistemi lineari

Lezione del 24 novembre. Sistemi lineari Lezione del 24 novembre Sistemi lineari 1 Nelle lezioni scorse abbiamo considerato sistemi di equazioni lineari dei seguenti tipi: un equazione in un incognita; una, due o tre equazioni in due incognite;

Dettagli

Interpolazione polinomiale. Interpolazione polinomiale

Interpolazione polinomiale. Interpolazione polinomiale 1 Polinomiale Rappresentazione Lagrangiana Polinomio interpolante di Newton Errore nell interpolazione polinomiale 2 Approssimazione ai minimi quadrati nel discreto 1 Polinomiale Rappresentazione Lagrangiana

Dettagli

Matematica II

Matematica II Matematica II 29..0. Somma di due matrici. Siano m ed n due interi positivi fissati. Date due matrici A, B R m n di tipo m n, sommando a ciascun elemento di A il corrispondente elemento di B, si ottiene

Dettagli

Errata Corrige del testo Elementi di Algebra Lineare

Errata Corrige del testo Elementi di Algebra Lineare Errata Corrige del testo Elementi di Algebra Lineare A continuazione appaiono il numero di pagina e la riga +r (dall'alto verso il basso) oppure -r (dal basso verso l'alto) dove si fa una correzione del

Dettagli

Campionamento e quantizzazione

Campionamento e quantizzazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Esercitazione ENS sulle finestre (22 Aprile 2008)

Esercitazione ENS sulle finestre (22 Aprile 2008) Esercitazione ENS sulle finestre ( Aprile 008) D. Donno Esercizio : Separazione di due segnali Si consideri un segnale z(t) somma di due segnali x(t) e y(t) reali e di potenza simile, ciascuno con semi

Dettagli

Geometria BAER I canale Foglio esercizi 3

Geometria BAER I canale Foglio esercizi 3 Geometria BAER I canale Foglio esercizi 3 Esercizio. Discutere le soluzioni del seguente sistema lineare nelle incognite,, z al variare del parametro k. 3 + kz = k k + 3z = k k + z = Soluzione: Il determinante

Dettagli

SOLUZIONE della Prova TIPO F per:

SOLUZIONE della Prova TIPO F per: SOLUZIONE della Prova TIPO F per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli