Prima esercitazione del corso di Sistemi di Telecomunicazione 1 A.A Demodulazione di ampiezza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prima esercitazione del corso di Sistemi di Telecomunicazione 1 A.A Demodulazione di ampiezza"

Transcript

1 Prima esercitazione del corso di Sistemi di Telecomunicazione 1 A.A Demodulazione di ampiezza 29th October 2009 Abstract Lo studente deve implementare in MATLAB una funzione per la demodulazione di ampiezza. Il sistema dovrà essere implementato sia con i coefficienti dei filtri espressi in doppia precisione, sia con i coefficienti dei filtri quantizzati a 16 bit (usando sia l implementazione in forma diretta che in cascata). Contents 1 Descrizione del sistema Il segname modulato Schema di demodulazione Cosa deve fare lo studente 2.1 Interfaccia delle funzioni Consigli, avvertenze e altro Avvertenze Quantizzazione dei coefficienti Descrizione del sistema 1.1 Il segnale modulato Sia u : R R un segnale ottenuto sommando le versioni modulate di C segnali di interesse x i : R R, c = 0, 1,...,C 1. Più precisamente, il segnale u è definito come con C 1 u(t) := c=0 x c (t)cos(2π f c t) (1) f c = f 0 + c f (2) 1

2 Table 1: Parametri del sistema Descrizione Simbolo Valore Numero di canali C 9 Banda segnale utile B 4 khz Freq. primo canale f 0 70 khz Spaziatura tra canali f 10 khz Freq. camp. in ingresso F c 336 khz Freq. camp. in uscita F o 16 khz Freq. intermedia w i scelta dallo studente Figure 1: Esempio di trasformata di Fourier del segnale modulato u. (Frequenze normalizzate alla frequenza di campionamento) Per ipotesi ogni segnale x c è non negativo (cioè x c (t) 0 per ogni t R) e limitato in banda tra ±B, ossia f > B X c ( f) = 0 (3) dove X c : R C è la trasformata di Fourier di x c. La Fig. 1 mostra la trasformata di Fourier di un possibile segnale u con C = 4 canali. 1.2 Schema di demodulazione Uno schema del demodulatore è visibile in Fig. 2. Sia c il canale di interesse. Il funzionamento del demodulatore può essere descritto come segue Il demodulatore riceve in ingresso il segnale u d : Z R ottenuto campionando u con una frequenza di campionamento pari a F c, ossia, u d (n) = u(n/f c ) (4) 2

3 u d v c a c r c x c Z(1/Fc) w B B Z(1/Fo) int cos(2 pi d c n) Figure 2: Schema del demodulatore (a) (b) Figure 3: Esempio di costruzione di segnale a frequenza intermedia. Il grafico è relativo al caso con C = 4 canali e suppone che canale di interesse sia l ultimo. I segmenti rossi mostrano le bande di frequenza assegnate al segnale a frequenza intermedia; le curve verdi e blu rappresentano lo spettro mostrato in Fig. 1 traslato di ±d c. (a) Scelta corretta del valore della frequenza intermedia: un solo canale entra nella banda rossa. (b) Scelta scorretta del valore della frequenza intermedia: due canali entrano nella banda rossa. 3

4 Il segnale u d viene moltiplicato per cos(2πd c n), in modo da portare la banda di frequenze che contiene il canale di interesse attorno ad una frequenza intermedia w i. (Si veda la Fig. 3) Sia v c il risultato del prodotto per cos(2πd c n). Il segnale v c viene filtrato con un opportuno filtro passa-banda in modo da isolare il canale di interesse. Sia a c il risultato del filtraggio e si osservi che (nell ipotesi di filtro ideale) si ha ossia, a c è x c modulato con una sinusoide di frequenza w i. a c (n) = cos(2πw i n)x c (n) () Per demodulare a c senza bisogno di estrarre la portante, il segnale a c viene elaborato con la funzione non lineare { g(s) = s +s s se s 0 = (6) 2 0 se s < 0 ottenendo Poiché per ipotesi x c (n) 0, la (7) può essere riscritta dove r c (n) = g(a c (n)) = g(x c (n)cos(2πw i n)) (7) r c (n) = x c (n)g(cos(2πw i n)) = x c (n)p(n) (8) p(n) := g(cos(2πw i n)). (9) Dalla (8) deduciamo che la trasformata di Fourier di r c è la convoluzione tra la trasformata di Fourier di x c e la trasformata di Fourier di p, ossia R c ( f) = X c P( f) (10) L osservazione chiave è che poiché p è una funzione periodica con frequenza w i, la sua trasformata di Fourier è una sequenza di impulsi centrati intorno ai multipli di w i, ossia P( f) = α k δ( f kw i ) (11) k Z dove, in particolare, α 0 0 poiché p è sempre non negativo. Usando la (11) nella (10) si ottiene R c ( f) = α k X c ( f kw i ) k Z = α 0 X c ( f)+ k Z k 0 α k X c ( f kw i ) Dalla (12) si vede che il risultato dell elaborazione non lineare (7) contiene una copia α 0 X c ( f) del segnale che ci interessa, più copie modulate dello stesso segnale (i termini X c ( f kw i )). L ultimo passo consiste nell isolare X c da R c usando un opportuno filtro passa-basso. Infine, l uscita del passa-basso viene sottocampionata a F o. (12) 4

5 2 Cosa deve fare lo studente Lo studente deve 1. Completare il progetto del demodulatore determinando, ad esempio, la frequenza intermedia ed i coefficienti dei filtri. Per il progetto dei filtri lo studente può usare le tolleranze 1 δ P = δ A = Scrivere tre funzioni MATLAB implementanti lo schema di demodulazione in tre versioni diverse: (a) Una versione con i filtri con i coefficienti in virgola mobile. Il nome della funzione con questa versione saràdemodula. (b) Una versione con i filtri implementati usando la funzione filter di MATLAB, ma con i coefficienti approssimati a 16 bit. Il nome della funzione con questa versione sarà demodula_diretta. (c) Una versione con i filtri implementati usando la forma in cascata e dove ogni cella ha i coefficienti approssimati a 16 bit. Il nome della funzione con questa versione sarà demodula_cascata. 3. Provare le tre funzioni di decodifica sul segnale di prova fornito dal docente 4. Documentare e discutere sia la procedura di progetto che i risultati trovati. 2.1 Interfaccia delle funzioni La funzionedemodula avrà la seguente interfaccia dove output = demodula(input, canale) input è un vettore contenente il segnale u campionato a F c, ossia input(n) = u((n 1)T) ; T = 1/F c (13) canale è un intero compreso tra 0 e C 1 (estremi inclusi) e rappresenta il canale da demodulare output è un vettore contenente il segnale x canale campionato a F o. Le funzionidemodula_diretta edemodula_cascata avranno la stessa interfaccia didemodula, fatto salvo per il nome della funzione. 1 In altre parole, il modulo della risposta in frequenza dei filtri progettati dallo studente deve essere compreso tra 1 e 1 δ A in banda passante e deve essere non superiore a δ P in banda attenuata.

6 3 Consigli, avvertenze e altro 3.1 Avvertenze Attenzione alla scelta della frequenza intermedia: come risulta evidente dalla Fig. 3, se la frequenza intermedia non è scelta correttamente, può capitare che più di un canale entri nella banda del segnale a frequenza intermedia. Attenzione: come già detto a lezione, la spiegazione del demodulatore contiene un imprecisione; più precisamente, viene data per scontata una proprietà che non è detto sia sempre verificata. Lungi da essere un mero problema tecnico di dimostrazione, se detta proprietà non è verificata, il segnale ricostruito può risulatare essere molto distorto. Il problema può essere evitato scegliendo con cura i parametri del demodulatore. Suggerimento: il problema nasce perché il demodulatore lavora con segnali a tempo discreto, se il sistema fosse a tempo continuo il problema non si porrebbe. 3.2 Quantizzazione dei coefficienti Per capire cosa vuol dire quantizzare i coefficienti del filtro a 16 bit è conveniente pensare a come verrebbe implementato un filtro su un microprocessore dotato di aritmetica in virgola fissa a 16 bit. Su un tale dispositivo, sia i campioni del segnale che i coefficienti del filtro devono essere rappresentati con interi a 16 bit e somma e prodotto devono essere implementati usando le corrispondenti operazioni tra interi. La rappresentazione dei campioni con interi a 16 bit di solito non è un problema e di solito si riduce a cambiare l unità di misura usata per i campioni. Per esempio, in alcuni casi può essere sufficiente aggiustare il valore di riferimento di un eventuale ADC in modo tale che i campioni letti attraverso il convertitore siano compresi tra 2 1 e Per quanto riguarda i coefficienti del filtro, il trucco del cambio di unità non funziona più 2 e bisogna ricorrere ad un altro approccio. Una possibile soluzione è approssimare i coefficienti a k con numeri della forma â k = α k 2 l k (14) dove α k è un intero compreso tra 2 1 e e l k è un intero (solitamente positivo). All interno del programma scritto per il microcontrollore il coefficiente a k sarà rappresentato dalla coppia di interi (α k,l k ) e il prodotto y = â k x verrà implementato con un codice simile a int_16 alpha_k, ell_k, x, y; y = (alpha_k * x) >> ell_k; Si osservi come lo spostamento a destra di ell_k posizioni di alpha_k * x introduca l errore di calcolo associato al prodotto in virgola fissa. La scelta di α k e l k relativi ad un dato coefficiente a k è (leggermente) complicata dal fatto che per ogni a k possono esistere molte scelte possibili per α k e l k. Per esempio, π può essere approssimato come 2 Ad onor del vero, se il filtro è FIR, si possono moltiplicare tutti i coefficienti del filtro per un fattore di scala e compensare tale moltiplicazione all uscita del filtro. 6

7 π = π 0.14 (1a) π = π 0.14 (1b) π = π 0,108 (1c) π = π + 0,016 (1d) π = π (1e) Si osservi che non possiamo approssimare π con poiché il numero non è rappresentabile come intero con segno a 16 bit. Dalla (1) è facile vedere come la scelta migliore (nel senso che il coefficiente approssimato è più vicino al coefficiente vero ) sia quella per l = 13. Più in generale, possiamo dire che se fissiamo un valore di l k, la miglior approssimazione di a k è data da â k = 2 l k 2 l kak (16) }{{} α k e che il modulo â k a k dell errore di approssimazione sarà sempre non superiore 3 a 2 l k/2. Tale osservazione suggerirebbe di scegliere l k molto grande; purtroppo se scegliamo l k troppo grande possiamo ottenere un intero α k = 2 l ka k non rappresentabile con 16 bit. La ricetta per rappresentare a k con un intero a 16 bit è 1. Scegli per l k il più grande intero tale che 2. Scegli α k secondo la (16) 2 l k ak { 2 1, ,...,2 1 1} (17) 3. Il valore approssimato di a k è â k = α k 2 l k (18) 3 In effetti, la (16) è la quantizzazione di a k con passo 2 l k. 7

Note sull implementazione in virgola fissa di filtri numerici

Note sull implementazione in virgola fissa di filtri numerici Note sull implementazione in virgola fissa di filtri numerici 4 settembre 2006 1 Introduction Nonostante al giorno d oggi i processori con aritmetica in virgola mobili siano molto comuni, esistono contesti

Dettagli

Seconda esercitazione per il corso di Sistemi di Telecom. 1 AA 07 08

Seconda esercitazione per il corso di Sistemi di Telecom. 1 AA 07 08 Seconda esercitazione per il corso di Sistemi di Telecom. AA 7 8 3th October 27 Abstract Scopo dell esercitazione Scopo dell esercitazione è la scrittura di una funzione Matlab per la decodifica di un

Dettagli

Esercitazione N.1 per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Filtro notch e canna d organo

Esercitazione N.1 per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Filtro notch e canna d organo Esercitazione N.1 per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Filtro notch e canna d organo 5 ottobre 2006 1 Scopo dell esercitazione Quest esercitazione è divisa in due parti: simulazione di un tubo

Dettagli

Campionamento. Campionamento: problema

Campionamento. Campionamento: problema Posizione del problema uniforme Ricostruzione Teorema del campionamento Significato della formula di ricostruzione Sistema di conversione A/D sample & hold quantizzazione Sistema di conversione D/A : problema

Dettagli

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s.

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. ASB 17/01/12 (270) Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. A 0 T 2T 3T t - A Si consideri il segnale

Dettagli

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t).

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t). Cenni alla Modulazione di Ampiezza (AM) Nella modulazione di ampiezza, si trasmette il segnale v(t) = (V 0 + k I x(t)) cos (πf 0 t), dove x(t) è il segnale di informazione, con banda B, e f 0 è la frequenza

Dettagli

Banchi di filtri. Variazioni. Esempio di normalizzazione. Introduzione. Nomenclatura. The Ultimate Question. h 1 N ... N h 2. h M

Banchi di filtri. Variazioni. Esempio di normalizzazione. Introduzione. Nomenclatura. The Ultimate Question. h 1 N ... N h 2. h M Variazioni Oltre alla struttura regolare sono possibili altre strutture, per esempio h 3 Tali strutture sono sempre riconducibili alla struttura regolare 3 Q: Cos è un banco di filtri? Introduzione Esempio

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it Campionamento di segnali In MATLAB, qualunque segnale continuo è approssimato da una sequenza campionata. Si

Dettagli

Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Ritardo Frazionario

Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Ritardo Frazionario Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI Ritardo Frazionario 8 marzo 2009 Indice Scopo dell esercitazione A La struttura di Farrow B Norme per la consegna dell esercitazione

Dettagli

Conversione analogico-digitale

Conversione analogico-digitale Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2004-05 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

Campionamento e quantizzazione

Campionamento e quantizzazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Introduzione Il teorema di Shannon, o

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte F: Conversione A/D e D/A Lezione n F - 1:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte F: Conversione A/D e D/A Lezione n F - 1: ELETTRONIC II Prof. Dante Del Corso - Politecnico di Torino Parte F: Conversione /D e D/ Lezione n. 24 - F - 1: Rappresentazione di segnali Campionamento, quantizzazione Sistema di conversione /D - D/

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon. Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon. Il teorema di Shannon INGEGNERIA E ECNOLOGIE DEI SISEMI DI CONROLLO Prof. Carlo Rossi DEIS - Università di Bologna el: 5 934 email: crossi@deis.unibo.it Introduzione, o del campionamento, stabilisce la connessione esistente

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: carlo.rossi@unibo.it Introduzione Il teorema di Shannon, o del campionamento, stabilisce la connessione esistente tra i segnali fisici

Dettagli

Note su filtri digitali

Note su filtri digitali Progettazione nell'ambiente LPCXpresso Introduzione alla progettazione di sistemi embedded a microcontrollore Note su filtri digitali S. Salvatori - Microelettronica aprile 2016 (1 di 42) Sommario Perché

Dettagli

Progetto dei Sistemi di Controllo Digitali. Docente: Prof. Francesco Amato

Progetto dei Sistemi di Controllo Digitali. Docente: Prof. Francesco Amato Progetto dei Sistemi di Controllo Digitali Docente: Prof. Francesco Amato 1 Schema di un sistema di controllo digitale Controllore digitale r e A/D e* u* D/A u y Processo Sistema a empo-continuo Sistema

Dettagli

Analisi del Segnale per le Telecomunicazioni Seconda esercitazione di laboratorio

Analisi del Segnale per le Telecomunicazioni Seconda esercitazione di laboratorio Analisi del Segnale per le Telecomunicazioni Seconda esercitazione di laboratorio 24 aprile 2009 Indice 1 Descrizione breve 1 2 Compito dello studente 2 2.1 Interfaccia dicomprimi edecomprimi..............

Dettagli

Comunicazioni Elettriche Esercizi

Comunicazioni Elettriche Esercizi Comunicazioni Elettriche Esercizi Alberto Perotti 9 giugno 008 Esercizio 1 Un processo casuale Gaussiano caratterizzato dai parametri (µ = 0, σ = 0.5) ha spettro nullo al di fuori dellintervallo f [1.5kHz,

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Segnali in formato numerico Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono

Dettagli

Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono

Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono Elementi di informatica musicale Conservatorio G. Tartini a.a. 2001-2002 Sintesi del suono Ing. Antonio Rodà Sintesi del suono E neccessaria una tecnica di sintesi, ossia un particolare procedimento per

Dettagli

Aritmetica dei Calcolatori Elettronici

Aritmetica dei Calcolatori Elettronici Aritmetica dei Calcolatori Elettronici Prof. Orazio Mirabella L informazione Analogica Segnale analogico: variabile continua assume un numero infinito di valori entro l intervallo di variazione intervallo

Dettagli

Modello di sistema di comunicazione

Modello di sistema di comunicazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Modulazione A.A. 24-5 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di sistema di comunicazione

Dettagli

FONDAMENTI DI INFORMATICA

FONDAMENTI DI INFORMATICA FONDAMENTI DI INFORMATICA CENNI ELEMENTARI AL TEOREMA DEL CAMPIONAMENTO E SPETTRO DI UN SEGNALE Prof. Alfredo Accattatis Fondamenti di Informatica - Alfredo Accattatis 2 Vi ricordate la slide introdotta

Dettagli

Corso di Elaborazione Numerica dei Segnali Esame del 30 settembre 2005

Corso di Elaborazione Numerica dei Segnali Esame del 30 settembre 2005 Corso di Elaborazione Numerica dei Segnali Esame del 30 settembre 005 TOTALE PUNTI: 44 L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello

Dettagli

Il tema proposto può essere risolto seguendo due ipotesi:

Il tema proposto può essere risolto seguendo due ipotesi: Per la trattazione delle tecniche TDM, PM e Trasmissione dati si rimanda alle schede 41, 42, 43, 44, 45, 46, 47 e 48 del libro Le Telecomunicazioni del Prof. F. Dell Aquila. Il tema proposto può essere

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI Fondamenti di Segnali e Trasmissione Risposta in requenza e banda passante La risposta in requenza di un sistema LTI e la trasormata di Fourier

Dettagli

ELETTRONICA I - Ingegneria MEDICA. Conversione analogico-digitale. Analog to digital conversion (ADC)

ELETTRONICA I - Ingegneria MEDICA. Conversione analogico-digitale. Analog to digital conversion (ADC) ELETTRONICA I - Ingegneria MEDICA Conversione analogico-digitale Analog to digital conversion (ADC) ADC Catena di elaborazione dell informazione Condizionamento Elaborazione analogica (Filtraggio LP Amplificazione

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Modulazione A.A. 8-9 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di sistema di comunicazione

Dettagli

Modulazione PAM Multilivello, BPSK e QPSK

Modulazione PAM Multilivello, BPSK e QPSK Modulazione PAM Multilivello, BPSK e QPSK P. Lombardo DIET, Univ. di Roma La Sapienza Modulazioni PAM Multilivello, BPSK e QPSK - 1 Rappresentazione analitica del segnale Sia {b(n)} una qualsiasi sequenza

Dettagli

Segnali Numerici. Segnali Continui

Segnali Numerici. Segnali Continui Segnali Continui La descrizione dell andamento nel tempo di un fenomeno fisico è data da una funzione continua nel tempo (X) e nelle ampiezze (Y) Il segnale analogico è una serie continua di valori x e

Dettagli

ENS - Prima prova in itinere del 07 Maggio 2009 Tema A

ENS - Prima prova in itinere del 07 Maggio 2009 Tema A ENS - Prima prova in itinere del 7 Maggio 9 Tema A L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello di preparazione globale. I calcoli

Dettagli

7. Trasmissione Numerica in Banda Traslata

7. Trasmissione Numerica in Banda Traslata 1 INFO-COM Dpt. Dipartimento di Scienza e Tecnica dell Informazione e della Comunicazione Università degli Studi di Roma La Sapienza 7. Trasmissione Numerica in Banda Traslata TELECOMUNICAZIONI per Ingegneria

Dettagli

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni Rappresentazione digitale

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni Rappresentazione digitale Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. Anno Accademico 2008/2009 Docente: ing. Salvatore

Dettagli

Fondamenti di Internet e Reti. Antonio Capone, Matteo Cesana, Ilario Filippini, Guido Maier

Fondamenti di Internet e Reti. Antonio Capone, Matteo Cesana, Ilario Filippini, Guido Maier Fondamenti di Internet e Reti Antonio Capone, Matteo Cesana, Ilario Filippini, Guido Maier Fondamenti di Internet e Reti 7 Livello Fisico Antonio Capone, Matteo Cesana, Ilario Filippini, Guido Maier Fondamenti

Dettagli

Come rintracciarmi. Orario di ricevimento: Martedì dalle 9:00 alle 11:00. Telefono:

Come rintracciarmi. Orario di ricevimento: Martedì dalle 9:00 alle 11:00. Telefono: Come rintracciarmi Orario di ricevimento: Martedì dalle 9:00 alle :00 Telefono: 0432-55-827 e-mail: bernardini@uniud.it Pagina web: http://www.diegm.uniud.it/ bernardini/didattica/sis/ September 25, 2003

Dettagli

Laboratorio II, modulo Segnali a tempo discreto (cfr.

Laboratorio II, modulo Segnali a tempo discreto (cfr. Laboratorio II, modulo 2 2012017 Segnali a tempo discreto (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_0.pdf Luise, Vitetta, D Amico

Dettagli

CAMPIONAMENTO DI SEGNALI

CAMPIONAMENTO DI SEGNALI CAMPIONAMENTO DI SEGNALI Alla base della discretizzazione di un segnale sorgente continuo sono i due procedimenti distinti di discretizzazione rispetto al tempo, detto campionamento, e rispetto all'ampiezza,

Dettagli

NUMERI NATURALI: INTERVALLO DI VALORI RAPPRESENTABILI INFORMAZIONI NUMERICHE

NUMERI NATURALI: INTERVALLO DI VALORI RAPPRESENTABILI INFORMAZIONI NUMERICHE INFORMAZIONI NUMERICHE La rappresentazione delle informazioni numeriche è di particolare rilevanza Abbiamo già discusso i numeri naturali (interi senza segno) N = { 0,1,2,3, } Dobbiamo discutere come rappresentare

Dettagli

Rappresentazione binaria

Rappresentazione binaria Rappresentazione binaria Per informazione intendiamo tutto quello che viene manipolato da un calcolatore: numeri (naturali, interi, reali,... ) caratteri immagini suoni programmi... La più piccola unità

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line)

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Milano 30/11/07 Corso di Laurea in Ingegneria Informatica (Laurea on Line) Corso di Fondamenti di Segnali e Trasmissione Prima prova Intermedia Carissimi studenti, scopo di questa prima prova intermedia

Dettagli

Elaborazione numerica dei segnali

Elaborazione numerica dei segnali POLITECNICO DI TORINO Elaborazione numerica dei segnali Progetto di un filtro FIR Fiandrino Claudio Matricola: 138436 18 giugno 21 Relazione sul progetto di un filtro FIR Descrizione del progetto L obbiettivo

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson.

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson. La simulazione di sistemi analogici LTI per via digitale si è resa necessaria in quanto permette non solo la perfetta riproducibilità del fenomeno da studiare in situazioni ambientali anche molto diverse,

Dettagli

6. Trasmissione Numerica in Banda Base

6. Trasmissione Numerica in Banda Base 1 INFO-COM Dpt. Dipartimento di Scienza e Tecnica dell Informazione e della Comunicazione Università degli Studi di Roma La Sapienza 6. Trasmissione Numerica in Banda Base TELECOMUNICAZIONI per Ingegneria

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1 CAMPIONAMENTO E RICOSTRUZIONE Esercizio 1 Dato il segnale y(t), con trasformata di Fourier Y(f) rappresentata in figura, rappresentare lo spettro del segnale ottenuto campionando idealmente y(t) con a)

Dettagli

Rappresentazione binaria

Rappresentazione binaria Rappresentazione binaria Per informazione intendiamo tutto quello che viene manipolato da un calcolatore: numeri (naturali, interi, reali,... ) caratteri immagini suoni programmi... La più piccola unità

Dettagli

9. Sistemi di Modulazione Numerica in banda traslata. Modulo TLC:TRASMISSIONI Modulazione numerica in banda traslata

9. Sistemi di Modulazione Numerica in banda traslata. Modulo TLC:TRASMISSIONI Modulazione numerica in banda traslata 1 9. Sistemi di Modulazione Numerica in banda traslata Modulazione QAM (analogica) 2 Modulazione QAM (Quadrature Amplitude Modulation; modulazione di ampiezza con portanti in quadratura) è un tipo di modulazione

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 0/06/11 AA010011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea Specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Cenni alla sintesi di Circuiti TD Generalità sulle tecniche di progetto. Filtri

Dettagli

6 dbm, mentre il secondo ha una potenza di 3 dbm. Quale sarà la

6 dbm, mentre il secondo ha una potenza di 3 dbm. Quale sarà la DECIBEL, FILTRAGGIO, PROCESSI Esercizio 9 (sui decibel) Un segnale con potenza media di 0 dbm viene amplificato attraverso un dispositivo elettronico la cui H(f) è costante per ogni frequenza e pari a

Dettagli

CAMPIONAMENTO CATENA ELETTROACUSTICA DIGITALE, CAMPIONAMENTO, QUANTIZZAZIONE

CAMPIONAMENTO CATENA ELETTROACUSTICA DIGITALE, CAMPIONAMENTO, QUANTIZZAZIONE CAMPIONAMENTO CATENA ELETTROACUSTICA DIGITALE, CAMPIONAMENTO, QUANTIZZAZIONE Catena elettroacustica DIGITALE 2 Compressione/ Rarefazione dell aria Compressione/ Rarefazione dell aria ADC DAC Segnale elettrico

Dettagli

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft diunasequenzafinita: algoritmifft La TDF di una sequenza finita può essere calcolata utilizzando algoritmi, computazionalmente efficienti, quali gli algoritmi Fast Fourier Transform (FFT). L efficienza

Dettagli

IIS Ettore Majorana Via A. De Gasperi, Cesano Maderno (MB )

IIS Ettore Majorana Via A. De Gasperi, Cesano Maderno (MB ) RELAZIONE TECNICA DI LABORATORIO N 2 Alunno/i Marta Mattia Classe 4^IA Materia Telecomunicazioni Data 13/12/12 TITOLO: SCOPO: Modulatore AM e filtri Modulare un segnale sinusoidale, per poi demodularlo

Dettagli

SISTEMI ELETTRONICI. Ingegneria dell Informazione. Modulo D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI. D1- Sommatore :

SISTEMI ELETTRONICI. Ingegneria dell Informazione. Modulo D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI. D1- Sommatore : Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI D1- Sommatore :» confronto tra soluzioni analogiche e digitali» architetture digitali per il filtraggio

Dettagli

UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie. Tecnologie e strumentazione biomedica. Accenni sulla Trasformata di Fourier.

UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie. Tecnologie e strumentazione biomedica. Accenni sulla Trasformata di Fourier. UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie Tecnologie e strumentazione biomedica Accenni sulla Trasformata di Fourier Alberto Macerata Dipartimento di Ingegneria dell Informazione Fourier (1768-183)

Dettagli

Rappresentazione dei numeri. Rappresentazione di insiemi numerici mediante insiemi finiti di stringhe di bit Problemi:

Rappresentazione dei numeri. Rappresentazione di insiemi numerici mediante insiemi finiti di stringhe di bit Problemi: Argomenti trattati Rappresentazione dei numeri Calcoli in binario Rappresentazione di numeri naturali Rappresentazione di numeri relativi Rappresentazione di numeri reali (Virgola mobile) Rappresentazione

Dettagli

Analisi spettrale del rumore di fase

Analisi spettrale del rumore di fase 5 Analisi spettrale del rumore di fase In questo capitolo verranno illustrati i due metodi di analisi spettrale utilizzati per valutare la potenza del rumore da cui è affetta la portante sinusoidale. Come

Dettagli

2.2.5 Approssimazione di un segnale in una base biortogonale (segnali rettangolari) Esercizi proposti... 46

2.2.5 Approssimazione di un segnale in una base biortogonale (segnali rettangolari) Esercizi proposti... 46 Indice 1 Operazioni elementari, convoluzione, correlazione 1 1.1 Operazioni elementari........................ 1 1.1.1 Ribaltamento, traslazione, scalatura............ 1 1.2 Convoluzione.............................

Dettagli

Cristian Secchi.

Cristian Secchi. Ingegneria e Tecnologie dei Sistemi di Controllo Laurea Specialistica in Ingegneria Meccatronica MESSA IN SCALA DI ALGORITMI DIGITALI Tel. 0522 522235 e-mail: secchi.cristian@unimore.it Il Problema della

Dettagli

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA 1 Fondamenti di segnali Fondamenti e trasmissione TLC Campionamento e quantizzazione di un segnale analogico Si consideri il segnale x(t) campionato con passo

Dettagli

D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI. D3- Filtro a media mobile, Filtro FIR:

D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI. D3- Filtro a media mobile, Filtro FIR: Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI D3- Filtro a media mobile, Filtro FIR:» Definizione della struttura di un filtro a media mobile.»

Dettagli

Campionamento ideale e segnali a banda limitata campionamento la ricostruzione perfetta di un segnale analogico banda limitata

Campionamento ideale e segnali a banda limitata campionamento la ricostruzione perfetta di un segnale analogico banda limitata Campionamento ideale e segnali a banda limitata Il campionamento di una grandezza analogica è ottimale se non comporta perdita di informazioni, ovvero se è possibile ricostruire perfettamente la grandezza

Dettagli

01CXGBN Trasmissione numerica. parte 11: modulazione 2-PAM

01CXGBN Trasmissione numerica. parte 11: modulazione 2-PAM 0CXGBN Trasmissione numerica parte : modulazione 2-PAM PARTE 2: Modulazioni Numeriche 2 Modulazioni: introduzione Per ogni modulazione considereremo: Caratteristiche generali Costellazione (insieme di

Dettagli

Marco Listanti. Parte 4. DIET Dept

Marco Listanti. Parte 4. DIET Dept 1 Marco Listanti Lo strato t Fisicoi Parte 4 Modulazione numerica Canali passa-banda 2 0 f c W c /2 f c + W c /2 I canali passa-banda sono passanti per un intervallo di frequenze centrate intorno ad una

Dettagli

M149 - ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE. Indirizzo: ELETTRONICA E TELECOMUNICAZIONI CORSO DI ORDINAMENTO. Tema di: TELECOMUNICAZIONI

M149 - ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE. Indirizzo: ELETTRONICA E TELECOMUNICAZIONI CORSO DI ORDINAMENTO. Tema di: TELECOMUNICAZIONI M19 - ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE Indirizzo: ELETTRONICA E TELECOMUNICAZIONI CORSO DI ORDINAMENTO Tema di: TELECOMUNICAZIONI Testo valevole per i corsi di ordinamento e per i corsi del

Dettagli

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Primo Appello 26/2/2015

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Primo Appello 26/2/2015 Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico 204-205 Primo Appello 26/2/205 Quesiti relativi alla prima parte del corso (tempo max. 90 min). Calcolare: la trasformata z di x(n) = ( )

Dettagli

Profs. Roberto Cusani Francesca Cuomo

Profs. Roberto Cusani Francesca Cuomo 1 INFO-COM Dpt. Dipartimento di Scienza e Tecnica dell Informazione e della Comunicazione Università degli Studi di Roma La Sapienza Trasmissione Numerica in Banda Traslata TELECOMUNICAZIONI Profs. Roberto

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Esame del 7 Febbraio 2006

Corso di Fondamenti di Segnali e Trasmissione - Esame del 7 Febbraio 2006 Corso di Fondamenti di Segnali e Trasmissione - Esame del 7 Febbraio 6 Gli esercizi devono essere risolti solo sui ogli dei colori indicati. Per esiti e soluzioni si veda il sito web del corso: http://www.elet.polimi.polimi.it/dsp/courses/st.

Dettagli

I suoni Rappresentazione digitale

I suoni Rappresentazione digitale Università degli Studi di Palermo Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica Informatica per la Storia dell Arte Anno Accademico 2013/2014 Docente: ing. Salvatore Sorce I suoni

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del corso di Controllo digitale Corso di Laurea in Ingegneria Informatica e dell Informazione Università di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte IV Campionamento e ricostruzione

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione UANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA Fondamenti Segnali e Trasmissione Campionamento e quantizzazione di un segnale analogico Si consideri il segnale x(t) campionato con passo T c. Campioni del

Dettagli

Esercizio 1. Soluzione = V. u V. u mm. = u V S = = mm ±0.58 mm ( fc 2) Esercizio 2

Esercizio 1. Soluzione = V. u V. u mm. = u V S = = mm ±0.58 mm ( fc 2) Esercizio 2 Esercizio Si consideri un trasduttore di spostamento caratterizzato da una sensibilità costante pari a. V/mm e fondoscala pari a 5 V. La risoluzione è pari al % del FS. Si determini la misura corrispondente

Dettagli

ESERCITAZIONE. Uso dell accessorio calcolatrice per

ESERCITAZIONE. Uso dell accessorio calcolatrice per ESERCITAZIONE Uso dell accessorio calcolatrice per Passaggi fra basi diverse Aritmetica assoluta nelle dimensioni byte, word, Dword, Qword Complemento a 2 e in eccesso Cenni su floating point 1 numeri

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Recupero del 10 Settembre 2004

Corso di Fondamenti di Segnali e Trasmissione - Recupero del 10 Settembre 2004 Corso di Fondamenti di Segnali e Trasmissione - Recupero del 10 Settembre 2004 Gli esercizi devono essere risolti solo sui ogli dei colori indicati. Per esiti e soluzioni si veda il sito web del corso:

Dettagli

Elaborazione numerica dei segnali: analisi delle caratteristiche dei segnali ed operazioni su di essi. Mauro Biagi

Elaborazione numerica dei segnali: analisi delle caratteristiche dei segnali ed operazioni su di essi. Mauro Biagi Elaborazione numerica dei segnali: analisi delle caratteristiche dei segnali ed operazioni su di essi Mauro Biagi Outline Dall analogico al digitale Quantizzazione dell inormazione Trasormate di Fourier

Dettagli

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Seconda Prova Intermedia 4/2/2013

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Seconda Prova Intermedia 4/2/2013 Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico 0-0 Seconda Prova Intermedia 4//0 Quesiti relativi alla seconda prova in itinere (tempo max. h). (6 punti) Calcolare la H(z) Y (z)/x(z) associata

Dettagli

Laboratorio di Informatica

Laboratorio di Informatica per chimica industriale e chimica applicata e ambientale ESERCITAZIONE 2 Uso dell accessorio calcolatrice e conversione di numeri 1 Uso dell accessorio calcolatrice per Passaggi fra basi diverse Aritmetica

Dettagli

ELABORAZIONE NUMERICA DEI SEGNALI. E. Del Re Elaborazione Numerica dei segnali 1

ELABORAZIONE NUMERICA DEI SEGNALI. E. Del Re Elaborazione Numerica dei segnali 1 ELABORAZIONE NUMERICA DEI SEGNALI E. Del Re Elaborazione Numerica dei segnali 1 DIGITALIZZAZIONE DEI SEGNALI E. Del Re Elaborazione Numerica dei segnali 2 DIGITALIZZAZIONE DEI SEGNALI Conversione analogico

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni Contenuto dell unità A Informazioni logistiche e organizzative Applicazione di riferimento caratteristiche e tipologie di moduli Circuiti con operazionali reazionati amplificatori

Dettagli

Segnali analogici. Segnali aleatori. Segnali determinati Trasmissione ideale Trasmissione perfetta. Trasmissione imperfetta

Segnali analogici. Segnali aleatori. Segnali determinati Trasmissione ideale Trasmissione perfetta. Trasmissione imperfetta Segnali determinati Trasmissione ideale Trasmissione perfetta Segnali analogici 40 20 Segnali aleatori Trasmissione imperfetta Laboratorio di Segnali Segnali modulati Segnali tempo discreto e segnali in

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Esame del 21 Febbraio 2006

Corso di Fondamenti di Segnali e Trasmissione - Esame del 21 Febbraio 2006 Corso di Fondamenti di Segnali e Trasmissione - Esame del Febbraio 006 Gli esercizi devono essere risolti solo sui ogli dei colori indicati. Per esiti e soluzioni si veda il sito web del corso: http://www.elet.polimi.polimi.it/dsp/courses/st.

Dettagli

Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi

Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi Parte 1 Trasformata discreta di Fourier - DFT per segnali sinusoidali Si calcoli la trasformata discreta di Fourier (DFT) dei primi

Dettagli

Lezione A2 - DDC

Lezione A2 - DDC Elettronica per le telecomunicazioni Unità A: Amplificatori, oscillatori, mixer Lezione A.2 Filtri Specifica funzionale e parametri uso di strumenti CAD esempi di realizzazioni con AO tecniche SC 1 Contenuto

Dettagli

Homework 4 Corso di Fondamenti di Comunicazioni

Homework 4 Corso di Fondamenti di Comunicazioni Homework 4 orso di Fondamenti di omunicazioni nno ccademico 2003/2004 xx/yy/2003 Principi della Modulazione nalogica Esercizio (27*) Il segnale, modulato DSB, viene moltiplicato per una portante locale

Dettagli

Numeri con segno ed in virgola

Numeri con segno ed in virgola Numeri con segno ed in virgola Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 20 Marzo 2016 Obiettivi Complemento a due Numeri in virgola 2 Rappresentazione dei numeri In realtà,

Dettagli

8. Sistemi di Modulazione Numerica in banda-base. Modulo TLC:TRASMISSIONI Modulazione numerica in banda base

8. Sistemi di Modulazione Numerica in banda-base. Modulo TLC:TRASMISSIONI Modulazione numerica in banda base 1 8. Sistemi di Modulazione Numerica in banda-base Modulazione e Demodulazione numerica 2 sequenza numerica segnale analogico...0010111001... modulatore numerico x(t) sequenza numerica...0010011001...

Dettagli

PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FINITA (FIR) [Cap. 6] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali 1

PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FINITA (FIR) [Cap. 6] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali 1 PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FIITA (FIR) [Cap. 6] E. Del Re Fondamenti di Elaborazione umerica dei Segnali Considerazioni generali sul progetto di filtri numerici Specifiche di progetto Operazione

Dettagli

Introduzione ai Convertitori A/D Delta-Sigma

Introduzione ai Convertitori A/D Delta-Sigma Introduzione ai Convertitori A/D Delta-Sigma Lucidi delle lezioni di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Convertitori

Dettagli

Calcolo numerico e programmazione Rappresentazione dei numeri

Calcolo numerico e programmazione Rappresentazione dei numeri Calcolo numerico e programmazione Rappresentazione dei numeri Tullio Facchinetti 16 marzo 2012 10:54 http://robot.unipv.it/toolleeo Rappresentazione dei numeri nei calcolatori

Dettagli

Rappresentazione dell' informazione. Cenni, necessari per capire le caratteristiche dei tipi di dato e delle limitazioni dell'aritmetica del computer

Rappresentazione dell' informazione. Cenni, necessari per capire le caratteristiche dei tipi di dato e delle limitazioni dell'aritmetica del computer Rappresentazione dell' informazione Cenni, necessari per capire le caratteristiche dei tipi di dato e delle limitazioni dell'aritmetica del computer Cos'è l'informazione? Tutto quello che viene manipolato

Dettagli

La modulazione numerica

La modulazione numerica La modulazione numerica Mauro Giaconi 26/05/2009 trasmissione numerica 1 Principi di modulazione numerica 26/05/2009 trasmissione numerica 2 Modulazione numerica La modulazione trasla l informazione di

Dettagli

Serie di Fourier di segnali PWM

Serie di Fourier di segnali PWM Serie di Fourier di segnali PWM Ivan Furlan 1 14 settembre 2013 1 I. Furlan riceve il BSc in elettronica nel 2000 presso la SUPSI, ed il MSc in meccatronica nel 2009 presso il Politecnico di orino. Attualmente

Dettagli

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione p. 1 Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Dettagli