Esercizi sulla CONVOLUZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sulla CONVOLUZIONE"

Transcript

1 Esrcizi sulla CONVOLUZIONE 1

2 INTRODUZIONE Si ricorda ch la convoluzion ra du sgnali x(), rali o complssi, indicaa simbolicamn com: C xy () = x() * è daa indiffrnmn dall du sprssioni: C xy () = C xy () = x()y( - )d x( - )d Dalla prima si passa alla sconda con un smplic cambiamno di variabili ( - = ' ). La convoluzion è un opraor linar, com è facil dimosrar applicando la dfinizion, pr cui s = u() + v() si ha: C xy () = x() * (u() + v()) = C xu() + C xv () Qusa proprià è molo uil pr smplificar il calcolo di convoluzioni di sgnali dcomponibili nlla somma di sgnali più smplici. E' anch facil dimosrar ch s è noa la C xy (), la convoluzion ra x( - 0 ) y( - 1 ) val C xy ( ). Infai: + + x( - 0 )y( )d = x()y( )d =C xy (- 1-0 ) - - Pr calcolar una convoluzion nl dominio dl mpo bisogna succssivamn sguir l sguni oprazioni: 1) Invrir l'ass di rapprsnazion di uno di du sgnali [Si passa cioè da x() a x( -) oppur da a y( -)]; 2) sul sgnal il cui ass è sao invrio oprar una raslazion ch è ngaiva quando avvin vrso sinisra posiiva quando avvin vrso dsra; 3) calcolar il prodoo ra il sgnal raslao l'alro non raslao; 4) calcolar l'ara dl prodoo. 2

3 Esrcizio n.1 Calcolar la convoluzion ra i sgnali : x() = rc 1 ( - 1/2) = rc 2 ( - 2/2) ssndo 1 più piccolo di 2. I du sgnali sono riporai nlla figura 1.1 x() 12 Fig.1.1 Com sopra riporao, la prima oprazion da far è qulla di invrir l'ass di uno di du sgnali, ad smpio x() (Fig.1.2). x( - ) 1 2 Fig.1.2 Succssivamn si dv raslar x (-); è vidn ch raslazioni ngaiv, cioè vrso sinisra, fanno si ch non vi siano inrvalli di mpo in cui i du sgnali x ( -) siano 3

4 conmporanamn prsni; quso implica ch il loro prodoo è smpr nullo quindi pr minor di zro C xy () è smpr nulla. La figura 1.3 mosra la siuazion sisn pr raslazioni posiiv minori di 1. x( - ) Fig.1.3 Gli srmi di ingrazion dll'ingral di convoluzion saranno allora 0 prano si scrivrà : C xy () = d 0 = La convoluzion crsc linarmn raggiungndo pr = 1 il valor 1. Pr comprso ra 1 2 si può facilmn ossrvar com il valor dlla convoluzion rimanga cosan; infai, indipndnmn dal valor di, la duraa dlla sovrapposizion di du sgnali rangolari riman 1 prano il valor dlla convoluzion è 1. Succssivamn pr raslazioni comprs ra 2 (2 + 1) si ralizza la siuazion dscria in fig In quso caso si scrivrà: C xy ( ) = 2 1 d = ( ) Pr valori di ancora maggiori si ralizza nuovamn la siuazion inizial di sgnali non sovrapposi quindi la convoluzion è nulla. 4

5 x( - ) Fig.1.4 In dfiniiva si ha: C xy () = 0 pr 0 pr > (1 + 2) C xy () = C xy () = 1 pr 0 < 1 pr 1 < 2 C xy () = (2 + 1 ) pr 2 < (1 + 2) L andamno dlla convoluzion è riporao nlla fig.1.5 Si può ossrvar, quso val in gnral, ch l'inrvallo di mpo in cui la convoluzion è divrsa da 0 dura la somma dgli inrvalli in cui sono divrsi da 0 i sgnali convolui. x() * 2 1 1/ Fig.1.5 Si dic ch l'impuso di fig.1.5 ha una duraa 2 in quano convnzionalmn si assum com duraa di un impulso il mpo ch passa ra l'isan in cui, nl mpo di salia, si raggiung un 5

6 valor ch è il 50% di qullo final qullo, nl mpo di discsa, in cui si raggiung lo ssso valor. Il mpo di salia qullo di discsa sono in quso caso nrambi uguali a 1. Un sgnal a forma rapzoidal è prano onuo com convoluzion di du sgnali rangolari di cui uno dura quano il mpo di salia (1) il scondo quano dura lo ssso impulso rapzoidal (2). Nl caso paricolar in cui in cui 1 sia ugual a 2 (si indica con il valor comun), il rapzio dgnra in un riangolo di bas 2 alzza ; la duraa convnzional - com sopra dfinia - è ancora (fig.1.6). x() * /2 2 Fig.1.6 Simbolicamn quso sgnal si indica com ri ( - ), ssndo ri ( ) un sgnal riangolar di ampizza uniaria cnrao nll'origin. 6

7 Esrcizio n.2 Calcolar la convoluzion ra i sgnali : x() = ( /1) rc 1 ( - 1/2) = rc 2 ( - 2/2) ssndo 1 più piccolo di 2. I du sgnali sono riporai nlla figura 2.1 x() 12 Fig.2.1 La prima oprazion da far è smpr qulla di invrir l'ass di uno di du sgnali, anch in quso caso x() (Fig.2.2). x(- ) 1 2 Fig.2.2 Succssivamn si dv raslar x (-); l raslazioni ngaiv, anch in quso caso, fanno si ch non vi siano inrvalli di mpo in cui i du sgnali x ( -) siano conmporanamn prsni; allora il loro prodoo è nullo quindi pr minor di zro C xy () è smpr nulla. La figura 2.3 mosra la siuazion sisn pr raslazioni posiiv minori di 1. 7

8 x( - ) Fig.2.3 La rgion in cui nrambi i sgnali non sono nulli è qulla comprsa ra 0. Gli srmi di ingrazion dll'ingral di convoluzion saranno allora 0 : C xy () = ( - )d Pr risolvr facilmn quso ingral si può ossrvar ch sso non è alro s non l'ara di un riangolo di bas alzza / 1; la sua ara prano val 2 /21 quso è allora il valor dlla convoluzion nll'inrvallo di mpo in sam. La convoluzion crsc in modo parabolico raggiungndo pr = 1 il valor 1/2. nch adsso pr comprso ra 1 2 si può facilmn ossrvar com il valor dlla convoluzion rimanga cosan; infai, indipndnmn dal valor di, la duraa dlla sovrapposizion di du sgnali rangolari riman 1(fig.2.4) prano il valor dlla convoluzion è 1/2. 8

9 x( - ) Fig.2.4 Succssivamn pr raslazioni comprs ra 2 (2 + 1) si ralizza la siuazion dscria in fig In quso caso si scrivrà 2 C xy () = 1 ( - )d 1 1 x( - ) Fig.2.5 Si può ossrvar ch, in quso caso, il calcolo dll'ingral di convoluzion coincid con il calcolo dll'ara dl rapzio rangolo di alzza (2 + 1 ), bas maggior bas minor ( 2)/1 (pr calcolar al valor basa ricorrr alla similiudin di riangoli). 9

10 llora l'ingral di convoluzion val: C xy () =(2 + 1 )[( 2)/1+1]/2 = ΑΒ[1 2 ( 2) 2 ]/21 La convoluzion assum il valor 1/2 pr = 2 val 0 pr = Pr valori di ancora maggiori si ralizza nuovamn la siuazion inizial di sgnali non sovrapposi quindi la convoluzion è nulla. In dfiniiva si ha: C xy () = 0 pr 0 pr > (1 + 2) C xy () = 2 /21 C xy () = 1/2 pr 0 < 1 pr 1 < 2 Tal andamno è riporao nlla fig.2.6 C xy () = ΑΒ[1 2 ( 2) 2 ]/21 pr 2 < (1 + 2) x() * 1/ Fig.2.6 Si può ancora ossrvar ch l'inrvallo di mpo in cui la convoluzion è divrsa da 0 dura la somma dgli inrvalli in cui sono divrsi da 0 i sgnali convolui. 10

11 Esrcizio n.3 Calcolar la convoluzion ra i sgnali : x() = - a ( - 0) u-1 ( - 0 ) = - b ( - 1) u-1 ( - 1 ) a, b sono du quanià posiiv con a>b. I du sgnali sono riporai nlla fig x() 0 1 Fig.3.1 Com al solio bisogna invrir l'ass di uno di du sgnali prima di oprar l raslazioni. (fig.3.2). x( - ) _ 0 1 Fig.3.2 In quso caso è facil ossrvar com raslazioni ngaiv conducono ad una convoluzion nulla, ma quso risulao si oin anch pr raslazioni posiiv infriori a In nrambi i casi x( ) non sono mai conmporanamn divrsi da 0. Pr valori di maggiori di la convoluzion non è nulla (Fig.3.3). 11

12 x( - ) _ 0 _ sarà daa dalla sprssion: C xy () = Fig b ( - 1) - a( - - 0) d 1 ch dà: C xy () = b 1 + a( 0 - ) ( a - b) d quindi: C xy () = b 1 + a( 0 - ) 1 ( a - b) (a-b)(- 0 + ) - (a-b) 1 ch può ssr modificao com: C xy () = (a-b) -b(- 0-1 ) - -a(- 0-1 ) Nl caso in cui 0 1 fossro nrambi nulli si avrbb il risulao: C xy () = (a-b) -b - -a Si può vrificar com la prsnza di rmini di riardo 0 1 causa una raslazion di dlla convoluzion calcolaa pr riardi nulli, com indicao nll'inroduzion. 12

13 La fig.3.4 rapprsna il risulao dlla convoluzion pr = 8, a =2, b =1, 0 1 nulli. Fig.3.4 Nl caso in cui i cofficini a b fossro ra loro uguali l du prcdni formul, ponndo smplicmn b = a, ci porrbbro a form indrmina. Con normali oprazioni di limi si oin: C xy () = (- 0-1 ) -a(- 0-1 ) : C xy () = -a Qus formul valgono pr > > 0 rispivamn ssndo nulla la convoluzion pr valori di mpo ngaivi. La fig.3.5 rapprsna il risulao dlla convoluzion nl caso a =b =1 ancora ugual a 8. 13

14 Fig.3.5 Esrcizio n.4 Calcolar la convoluzion ra i sgnali : x() = rc ( - /2) = [rc ( - 5/2) rc ( - 7/2)] I du sgnali sono riporai nlla figura 4.1 x() Fig.4.1 Pr risolvr facilmn al problma si può ricorrr a quano indicao nll'inroduzion circa la linarià dll'oprazion convoluzion. llora: 14

15 x() * = rc ( - /2) * [rc ( - 5/2) rc ( - 7/2)] = = 2 {rc ( - /2) * rc ( - 5/2) + rc ( - /2) * rc ( - 7/2)} Dall'srcizio 1 possiamo ricavar l'sprssion dlla convoluzion ra du rangoli ch dà: rc ( ) * rc ( ) = ri ( ) Tnndo cono dlla rgola di raslazionsi oin allora in conclusion: C xy () = 2 {ri ( - 3) - ri ( - 4)} La fig.4.2 illusra C xy (). x() * Quso srcizio consn di dar un cririo smplic di soluzion di problmi ch raino la convoluzion di sgnali ch abbiano in comun la cararisica di ssr cosruii su impulsi rangolari dlla sssa duraa. par, infai, il riardo ch com do nll inroduzion Fig

16 Esrcizio n.5 Calcolar la convoluzion ra i sgnali : x() = rc ( - /2) = ( - ) rc ( - /2) I du sgnali sono riporai nlla figura 5.1 x() Fig.5.1 nch ora è facil ossrvar ch pr minor di zro C xy () è smpr nulla. Pr 0 < si ha la siuazion dscria in figura 5.2. y( -) x() _ + Si ha allora: C xy () = Fig.5.2 (- +) d = 0 16

17 = (-) = Pr < 2 si ha invc la siuazion dscria in figura 5.3. x() y( -) _ + la convoluzion divna: Fig.5.3 C xy () = 2 - (- +) d = (x - + ) x dx = = (2 -)3 3 + (-) (2 -)2 2 Pr valori di supriori la convoluzion orna ad ssr nulla. Si può ossrvar ch C xy () val 3 /3. Il risulao dlla convoluzion è riporao nlla fig.5.4 pr = 2. Fig

18 Esrcizio n.6 Calcolar la convoluzion ra i sgnali : x() = rc ( - /2) = cos (2 π f ) pplicando la dfinizion di convoluzion si può scrivr: quindi anch : + C xy () = rc ( - /2) cos (2 π f( - )) d 0 - C xy () = cos (2 π f ( -))d = 2 π f 2 π f( -) -2 π f cos x dx = = 2 π f sin (2 π f( -)) + sin (2 π f) Uilizzando no formul goniomrich si può ancora scrivr: = 2 π f sin (2 π f)cos (2 π f) +(1- cos (2 π f)) sin(2 π f) = = 2 π f M cos(2 π f + φ) con M = 2-2 cos(2 π f) = 2 sin (π f) φ = g-1 cos(2 π f) - 1 sin (2 π f) = g -1-2sin 2 (π f) 2sin (π f)cos (π f) = g -1 cos2 (π f) -sin 2 (π f) - 1 2sin (π f)cos (π f) f) = - g-1sin(π cos (π f) = - π f = Si può ossrvar com la convoluzion ra una sinusoid un impulso rangolar sia ancora una sinusoid dlla sssa frqunza con ampizza fas modifica. Quso è vro qualunqu sia la forma dl sgnal x(). 18

19 Esrcizio n.7 Calcolar la convoluzion ra i sgnali : x() = ri ( ) = u 0 ( θ) ov u 0 è un alro simbolo con cui è indicaa la funzion impulso di Dirac. Pr dfinizion la convoluzion è: Cxy() = + - ri ( ) u0( - - θ ) d Tnndo cono dll proprià campionarici dlla funzion di Dirac si oin facilmn: C xy () = ri ( - θ) L impulso di Dirac ha rascinao il sgnal con cui è convoluo nl suo puno di applicazion. S è θ nullo si può ossrvar com la convoluzion dl sgnal con l impulso di Dirac coincid col sgnal ssso. x() * u 0 ( ) = x() Rispo all opraor prodoo di convoluzion l impulso di Dirac cnrao rapprsna l lmno uniario. Esrcizio n.8 Calcolar la convoluzion ra i sgnali : x() = j2 f 1 rc () = j2 f 2 rc () Si considri inizialmn il caso in cui l du frqunz siano uguali: f 1 = f 2 = F dalla dfinizion di convoluzion si ha: C xy () = + j2 F rc ( ) j2 F( ) rc ( )d ch può ssr riscria com: C xy () = j2 F + rc ( ) rc ( )d Si raa allora dl prodoo ra la sinusoid complssa a frqunza F la convoluzion dl rangolo di duraa cnrao nll origin con s ssso. 19

20 Ricordando il risulao dll srcizio 1, nl caso di du rangoli di ugual duraa nndo cono ch, in quso caso, i du rangoli sono cnrai nll origin si ha: C xy () = j2 F ri () La convoluzion è cioè, un sgnal complsso a inviluppo riangolar: C xy () = ri () la cui fas varia linarmn nl mpo. Quso risulao può ssr gnralizzao nl snso ch s si dv calcolar la convoluzion ra du sgnali dl ipo: x() = j2 F g() = j2 F h() la convoluzion sarà: C xy () = j2 F C gh () Nl caso, invc, in cui l du frqunz siano divrs, la convoluzion si scriv com: + C xy () = j2 f 1 rc ( ) j2 f 2 ( ) rc ( )d cioè: + C xy () = j2 f 2 j2 (f 1 f 2 ) rc ( )rc ( )d Pr raslazioni posiiv di, pr qullo ch riguarda i du rangoli, si ha la siuazion dscria in figura 8.1, ssndo la raslazion posiiva di froni dll impulso -/2 + /2 y( ) /2 + Fig.8.1 L ingral di convoluzion divna, pr comprso ra 0 : C xy () = j2 f 2 /2 j2 (f 1 f 2 ) /2 d 20

21 ch dà: C xy () = j2 f 2 j2 (f 1 f 2 ) /2 j2 (f 1 f 2 )( /2) j2 (f 1 f 2 ) analogamn si opra pr raslazioni ngaiv onndo la siuazion di fig /2 /2 + y( ) /2 + Fig. 8.2 L ingral di convoluzion divna, in quso caso ( si ricordi ch è ngaivo) pr comprso ra 0: C xy () = j2 f 2 /2+ /2 j2 (f 1 f 2 ) d ch dà: C xy () = j2 f 2 j2 (f 1 f 2 )( /2+) - j2 (f 1 f 2 ) /2 j2 (f 1 f 2 ) La convoluzion è nulla pr >. Com si può ossrvarl iposi di divrsià dll frqunz rnd il problma molo mno gsibil da un puno di visa analiico. 21

Esercizi sulla CONVOLUZIONE INTRODUZIONE. x(t)y( τ - t)dt. x(τ - t)y(t)dt

Esercizi sulla CONVOLUZIONE INTRODUZIONE. x(t)y( τ - t)dt. x(τ - t)y(t)dt INTRODUZIONE Si ricorda ch la convoluzion ra du sgnali x() y(), rali o complssi, indicaa simbolicamn com: C xy () = x() * y() è daa indiffrnmn dall du sprssioni: Esrcizi sulla CONVOLUZIONE C xy () = C

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 6/7 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

Integrale di sin t/t e varianti

Integrale di sin t/t e varianti Ingral di sin / variani Annalisa Massaccsi dicmbr Ingral di sin / In rifrimno all s. 7 dl VII gruppo di srcizi, com già viso ad srciazion, vogliamo dimosrar ch sin / d R. Ossrvazion. Ossrviamo innanziuo

Dettagli

Autovalori complessi e coniugati

Autovalori complessi e coniugati Auovalori complssi coniugai Noazioni A A α ω ω α λ λ λ α + jω, λ α jω, maric ad lmni rali α + jω, maric diagonal ad lmni complssi α jω L du marici A A hanno gli sssi auovalori λ, λ. aa una gnrica maric

Dettagli

Corsi di Laurea in Fisica, Fisica ed Astrofisica

Corsi di Laurea in Fisica, Fisica ed Astrofisica Corsi di Laura in Fisica, Fisica d Asrofisica Analisi A.A. 007-008 - Foglio 1 1.1. Esrcizio. Sudiar la coninuià in R dlla funzion sn(x y) x + y s y > 0, y ln(1 + x ) s y 0. La funzion è chiaramn coninua

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione Educnica.i Calcolo di ii Calcola i sguni ii risolvndo l vnuali form di indrminazion Esrcizio no. Esrcizio no. Soluzion a pag.8 Soluzion a pag.8 [ ] Esrcizio no. Esrcizio no. Esrcizio no. lg Esrcizio no.6

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 7/8 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI Univrsià Carlo Caano Inggnria gsional nalisi mamaia aa 7/8 PRIMITIVE E INTEGRLI DEFINITI ESERCIZI CON SOLUZIONE Calolar i sguni ingrali indfinii: ) d ; ) d ; ) d ; ) os sin d ; 6 ) d SOLUZIONI ) La funzion

Dettagli

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1]

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1] Compio di Mamaica sul problma di Cauch sull quazioni diffrnziali ordinari dl º ordin [] Esrcizio Spigar la formulazion, il significao com si procd alla risoluzion dl problma di Cauch pr EDO dl º ordin

Dettagli

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche Facolà di Economia Equazioni diffrnziali Linari d Applicazioni Economich prof. EQUAZIONI DIFFERENZIALI LINEARI APPLICAZIONI ECONOMICHE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LINEARI Quso ipo di quazioni

Dettagli

Corso di Analisi: Algebra di Base. 3^ Lezione

Corso di Analisi: Algebra di Base. 3^ Lezione Corso di Analisi: Algbra di Bas ^ Lzion Disquazioni algbrich. Disquazioni di. Disquazioni di. Disquazioni faoriali. Disquazioni biquadraich. Disquazioni binomi. Disquazioni fra. Sismi di disquazioni. Allgao

Dettagli

Determinare il dominio di una funzione

Determinare il dominio di una funzione Drminar il dominio di una funzion CHE COSA SONO LE FUNZON. Una funzion = f( è una rlazion ch lga du grandzz (variabili: la variabil vin chiamaa variabil indipndn, mnr la variabil dipndn. Pr smpio la rlazion

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Mamaica cla Danil Rilli anno accadmico 8/9 Lzion : Ingrali Esrcizi svoli. Provar, usando il cambio di variabil ch:. Dimosrar ch. Ingrando pr pari dimosrar ch + = + = 6 sin(π) = π Svolgimno.

Dettagli

Appendice Analisi in frequenza dei segnali

Appendice Analisi in frequenza dei segnali Appndic Analisi in rqunza di sgnali - Appndic Analisi in rqunza di sgnali - Sgnali priodici Sviluppo in sri di Fourir Un sgnal è priodico nl mpo quando si rip ogni scondi. Si vda, com smpio, il sgnal in

Dettagli

Istituzioni di Matematica I (Chimica) canale A-L 14 febbraio 2014 Soluzioni

Istituzioni di Matematica I (Chimica) canale A-L 14 febbraio 2014 Soluzioni Esrcizio. Isiuzioni di Mamaica I (Chimica) canal A-L 4 fbbraio 204 i) Si sudi la funzion Soluzioni f(x) = arcan ( log x x ) s n disgni il grafico, solo pr por rispondr all sguni domand: ii) pr quali α

Dettagli

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base Lzion 5 (BAG cap. 4) L aspaiv: nozioni di bas Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il asso di inrss in rmini di mona è do asso di inrss nominal Il asso di inrss in rmini di bni è

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO.

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO. DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO Sia A un apro di : sis un vor ab, al ch,, f A Prso, A si dic ch f è diffrnziabil in,, 0, 0 0 0 f f a b 0 si pon df, a, b f Si dimosra ch a, b,, quindi

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Laurea triennale in BIOLOGIA A. A

Laurea triennale in BIOLOGIA A. A Laura rinnal in BIOLOGIA A. A. 3-4 4 CHIMICA Vn 8 novmbr 3 Lzioni di Chimica Fisica Cinica chimica: razioni paralll razioni conscuiv Effo dlla mpraura sulla cosan di vlocià Prof. Anonio Toffoli Chimica

Dettagli

Segnali e sistemi nel dominio della frequenza

Segnali e sistemi nel dominio della frequenza oria di sgnali Sgnali sismi nl dominio dlla rqunza EORIA DEI SEGNALI LAUREA IN INGEGNERIA DELL INORMAZIONE Sommario Sgnali mpo coninuo priodici Sri di ourir Sgnali mpo coninuo apriodici rasormaa di ourir

Dettagli

Analisi Matematica 3 (Fisica e Astronomia) Esercizi sulle equazioni differenziali ordinarie lineari

Analisi Matematica 3 (Fisica e Astronomia) Esercizi sulle equazioni differenziali ordinarie lineari Analisi Mamaica Fisica Asronomia Esrcizi sull quazioni diffrnziali ordinari linari Risolvr i sguni problmi sull quazioni diffrnziali linari a Risolvr x y y in du modi Vi sono soluzioni dfini su uo R? b

Dettagli

Teoria dei Sistemi - A.A. 2003/2004

Teoria dei Sistemi - A.A. 2003/2004 ANAISI ODAE DEI SISTEI INEARI A TEPO CONTINUO Dr. Crisian Scchi ARSconrol ab Univrsià di odna Rggio Emilia Il movimno di un sisma TI & ( A( + Bu( y( C( + Du( Formula di agrang ( A A( τ + Bu( τ dτ A I +

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Sistemi lineari a tempo continuo. Un sistema lineare analogico, in generale tempo variante, caratterizzato da una risposta

Sistemi lineari a tempo continuo. Un sistema lineare analogico, in generale tempo variante, caratterizzato da una risposta Capiolo V SISTEMI LIERI CO IGRESSI LETORI Sisi linari a po coninuo V. - Cararizzazion nl doinio dl po. Un sisa linar analogico, in gnral po arian, cararizzao da una risposa ipulsia daa da h (, ) rasfora

Dettagli

Circuiti dinamici. Introduzione. (versione del ) Circuiti resistivi e circuiti dinamici

Circuiti dinamici. Introduzione.   (versione del ) Circuiti resistivi e circuiti dinamici ircuii dinamici nroduzion www.di.ing.unibo.i/prs/masri/didaica.m (vrsion dl --3) ircuii rsisivi circuii dinamici ircuii rsisivi: circuii formai solo da componni rsisivi l quazioni dl circuio cosiuiscono

Dettagli

Corso di Macroeconomia

Corso di Macroeconomia Corso di Macroconomia LE ASPETTATIVE: NOZIONI DI BASE. Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao

Dettagli

Lezione 11. Controllo predittivo a minima varianza. F. Previdi - Controlli Automatici - Lez. 11 1

Lezione 11. Controllo predittivo a minima varianza. F. Previdi - Controlli Automatici - Lez. 11 1 Lion. onrollo prdiivo a minima variana F. Prvidi - onrolli uomaici - L. Schma dlla lion. Inroduion. smpio splicaivo 3. smpio splicaivo 4. Soluion dl problma gnral (modlli RMX) F. Prvidi - onrolli uomaici

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

Modello AD-AS. Mercato del lavoro. Mercato dei beni. Mercati finanziari

Modello AD-AS. Mercato del lavoro. Mercato dei beni. Mercati finanziari Modllo AD-AS Mrcao dl lavoro Equilibrio di mdio priodo su Mrcao di bni Mrcai finanziari.b. A un dao asso di disoccupazion corrispond un dao livllo dlla produzion (assumndo funzion di produzion =): U u

Dettagli

Induzione magnetica. Capitolo. 1. Autoinduzione

Induzione magnetica. Capitolo. 1. Autoinduzione Capiolo nduzion magnica B. Auoinduzion La forza lromoric indoa rapprsna il lavoro pr unià di carica svolo dall forz ch gnrano la corrn indoa. Essa è lgaa alla variazion dl flusso magnico F concanao al

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Sistemi dinamici lineari del 1 ordine

Sistemi dinamici lineari del 1 ordine Appuni di onrolli Auomaici Simi dinamici linari dl ordin Inroduzion... ipoa al gradino uniario... ipoa alla rampa... Empio...3 Empio...4 INTODUZIONE Si dfinic ima (lmnar) dl primo ordin un ima (linar mpo-invarian)

Dettagli

Spettro di densità di potenza e rumore termico

Spettro di densità di potenza e rumore termico Spro di dnsià di ponza rumor rmico lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- roprià sprali: rasormaa di Fourir RSFORM DI FOURIR NI-RSFORM DI FOURIR S s

Dettagli

SVOLGIMENTO. 2 λ = b S

SVOLGIMENTO. 2 λ = b S RELAZIONE Dimnsionar sol d anima dl longhron d il rivsimno dl bordo di aacco, in una szion disan 4 m dalla mzzria, pr un ala monolonghron di un vlivolo avn l sguni cararisich: - pso oal W 4700 N - suprfici

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T No il k:\scuola\corsi\corso isica\ond\oscillaori aronico sorzao orzaodoc Crao il 5// 87 Dinsion il: 86 b ndra Zucchini Elaborao il 5// all or 885, salao il 5// 87 sapao il 5// 88 Wb: hp://digilandrioli/prozucchini

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi 4. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Formule generali di carica e scarica dei condensatori in un circuito RC

Formule generali di carica e scarica dei condensatori in un circuito RC Formul gnrali di aria saria di ondnsaori in un iruio A ura di ugnio Amirano onnuo dll ariolo:. Inroduzion........ 2 2. aria saria di un ondnsaor..... 2 3. Formula gnral pr nsioni fiss..... 4 4. Formula

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

P.M. Azzoni, Strumenti e misure per l ingegneria meccanica - copyright 2006, Hoepli, Milano.

P.M. Azzoni, Strumenti e misure per l ingegneria meccanica - copyright 2006, Hoepli, Milano. Capiolo 4 No sull amplificaor oprazional 7 4. NOTE ULL AMPLIFICATORE OPERAZIONALE 4. LIMITI FIICI DELL AMPLIFICATORE OPERAZIONALE Il comporamno dll amplificaor a circuio chiuso, dscrio ni capioli prcdni,

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1

ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1 ESERCITAZIONE N 12 SIMULAZIONE DI UN SISTEMA DI ATTESA M/M/1 Toria dll cod La oria dll cod comprnd lo sudio mamaico dll cod o sismi d'asa. La formazion dll lin di asa è un fnomno comun ch si vrifica ogni

Dettagli

Introduzione alla Trasformata di Fourier

Introduzione alla Trasformata di Fourier Corso di Laura Magisral in Chimica A.A. 3-4 Sproscopi Magnich Inroduzion alla Trasformaa di Fourir La Trasformaa di Fourir è usaa in moli divrsi campi: dalla analisi di sgnali lrici, alla analisi dll immagini

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Criteri basati sullo stato di deformazione!massima deformazione normale (Poncelet-de St. Venant-Grashof)

Criteri basati sullo stato di deformazione!massima deformazione normale (Poncelet-de St. Venant-Grashof) Critri dirttamnt basati sullo stato di tnsion!massima tnsion normal (Ranin-Lamé-Navir)!Massima tnsion tangnzial (Trsca-Gust)!Curva dlla rsistnza intrinsca (Coulomb-Mohr)!Massima tnsion tangnzial ottadral

Dettagli

Capitolo 8. La curva di Phillips, il tasso naturale di disoccupazione e l inflazione

Capitolo 8. La curva di Phillips, il tasso naturale di disoccupazione e l inflazione Capiolo 8. La curva di Phillips, il asso naural di disoccupazion l inflazion 1. Inflazion, inflazion asa disoccupazion Inflazion disoccupazion ngli Sai Unii, 1900-1960. = (1931 1939) Duran il priodo 1900-1960,

Dettagli

Lezione 6. Stabilità e matrice A nei sistemi LTI. F.Previdi - Fondamenti di Automatica - Lez. 6

Lezione 6. Stabilità e matrice A nei sistemi LTI. F.Previdi - Fondamenti di Automatica - Lez. 6 Lzion 6. Sabilià maric A ni imi LTI F.Prvidi - Fondamni di Auomaica - Lz. 6 Schma dlla lzion A. Sudio dlla maric pr. Tormi ulla abilià di imi LTI. Rgion di ainoica abilià. Criri di abilià baai ulla maric

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo VIII. Il tasso naturale di disoccupazione e la curva di Phillips. Capitolo VIII.

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo VIII. Il tasso naturale di disoccupazione e la curva di Phillips. Capitolo VIII. Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips 1. Inflazion,

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga L tranformazioni canonic nlla mccanica quantistica P. Jordan a Gottinga (ricvuto il 27 april 926) Vin data una dimostrazion d una congttura avanzata da Born, Hisnbrg dall autor, c la trasformazion canonica

Dettagli

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario. LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Il candidao risolva uno di du problmi 5 di qusii scli nl qusionario. N. D Rosa, La prova di mamaica pr il lico PROBLEMA Sia daa una circonfrnza

Dettagli

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2 LIITI Limit inito in un punto Limit ininito in un punto 3 Limit inito all ininito 4 Limit ininito all ininito 5 Limiti da dstra da sinistra Nota bn 6 Esmpi di ripilogo Nota bn 7 Limit pr ccsso pr ditto

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progo i cinghi rapzoiali L cinghi rapzoiali sono uilizza rqunmn pr la rasmission i ponza Vanaggi Basso coso Smplicià i insallazion Capacià i assorbir vibrazioni orsionali picchi i coppia Svanaggi Mancanza

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI CORSO DI LAUREA IN INFORMATICA APPLICATA PRECORSO DI MATEMATICA ESERCIZI SULLE EQUAZIONI ESPONENZIALI Esrcizio 1: Risolvr la sgunt quazion x+ = x+1. Svolgimnto: Dividndo il primo il scondo mmbro pr x+1

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI TORMA I RIUZION GLI INTGRALI IN U IMNSIONI S è misurabil f : è limitata continua, valgono l sgunti proprità: s A è un dominio normal risptto all ass, cioè,, con continu A a b pr ogni a, b, allora la funzion

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25].

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25]. Politcnico di Bari L3 in Inggnria Elttronica Esam di Analisi Matmatica I A.A. 008/009-0 fbbraio 009. Dtrminar i numri complssi z ch soddisfano l quazion ( z 9) (z iz 0 i ) = 0. I numri conplssi ch soddisfano

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

Generazione di distribuzioni di probabilità arbitrarie

Generazione di distribuzioni di probabilità arbitrarie Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Ingral Indinio l Anidrivaa Il prosso invrso dlla drivazion si hiama ingrazion. Noa la variazion isanana di una grandzza p.s. la vloià è nssario sapr om si ompora al grandzza isan pr isan p.s. la posizion.

Dettagli

Massa M. dt Il modello dinamico del sistema nel dominio del tempo continuo è espresso dal secondo principio della dinamica: j.

Massa M. dt Il modello dinamico del sistema nel dominio del tempo continuo è espresso dal secondo principio della dinamica: j. EEI E: AA E ZATE VI Un carrllo di massa è riidamn collao ad uno smorzaor iscoso, ralizzao rami un pison c si muo un cildro connn dl liquido cararizzao dal coffic di iscosià, c produc l ffo di una forza

Dettagli

Diagonalizzazione delle forme quadratiche

Diagonalizzazione delle forme quadratiche Diagonaliaion dll form uadraich Illusrrmo ora du modi pr diagonaliar una forma uadraica (o uivalnmn una forma bilinar Modo dl complamno dl uadrao Quso modo consis in una succssion di passaggi algbrici

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Analisi Matematica I Soluzioni del tutorato 3

Analisi Matematica I Soluzioni del tutorato 3 Corso di lur in Fisic - Anno Accdmico 07/08 Anlisi Mmic I Soluzioni dl uoro 3 A cur di Dvid Mcr Esrcizio ( i) Dominio di dfinizion: L funzion h un problm in, mnr d è dfini pr ogni lro. Quindi, il dominio

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Dispense del corso di Processi e Impianti Chimici. Corso di Laurea Specialistica in Chimica Industriale. Docente Guido Sassi

Dispense del corso di Processi e Impianti Chimici. Corso di Laurea Specialistica in Chimica Industriale. Docente Guido Sassi Dispns dl corso di rocssi Ipiani hiici orso di Laura Spcialisica in hiica Indusrial Docn Guido Sassi Facolà di Scinz Maaich Fisich Naurali Univrsià di Torino aori 3 aori oogni isori con razioni coplss...

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli