[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione"

Transcript

1 Educnica.i Calcolo di ii Calcola i sguni ii risolvndo l vnuali form di indrminazion Esrcizio no. Esrcizio no. Soluzion a pag.8 Soluzion a pag.8 [ ] Esrcizio no. Esrcizio no. Esrcizio no. lg Esrcizio no.6 sin cos Esrcizio no.7 Soluzion a pag.8 [ ] Soluzion a pag.8 Soluzion a pag.9 [ ] Soluzion a pag.9 Soluzion a pag.9 ( sin ) [ ] Esrcizio no.8 Esrcizio no.9 sin sin Soluzion a pag.9 [ ] Soluzion a pag.

2 Educnica.i Calcolo di ii Esrcizio no. 8 Soluzion a pag. [ ] Esrcizio no. Esrcizio no. lg lg Esrcizio no. Soluzion a pag. Soluzion a pag. Soluzion a pag. Esrcizio no. Soluzion a pag. Esrcizio no. ( ) Esrcizio no.6 sin cos Esrcizio no.7 sin Esrcizio no.8 sin Soluzion a pag. Soluzion a pag. [ non sis] Soluzion a pag. [ ] Soluzion a pag. [ ]

3 Educnica.i Calcolo di ii Esrcizio no.9 sin Esrcizio no. sin Esrcizio no. Soluzion a pag. Soluzion a pag. Soluzion a pag. sin sin6 Esrcizio no. Soluzion a pag. sin [ ] Esrcizio no. Soluzion a pag. sin g [ ] Esrcizio no. Soluzion a pag. sin g [ ] Esrcizio no. Soluzion a pag. cos [ ] Esrcizio no.6 Soluzion a pag. cos Esrcizio no.7 Soluzion a pag.6 cos [ ]

4 Educnica.i Calcolo di ii Esrcizio no.8 Soluzion a pag.6 sin g Esrcizio no.9 Soluzion a pag.6 sin sin Esrcizio no. Soluzion a pag.6 g cos 6 Esrcizio no. Soluzion a pag.6 cos cos sin π Esrcizio no. Soluzion a pag.7 g cg [ ] π Esrcizio no. Soluzion a pag.7 g cg π Esrcizio no. Soluzion a pag.7 cos cos sin 8 Esrcizio no. Soluzion a pag.7 cos

5 Educnica.i Calcolo di ii Esrcizio no.6 Soluzion a pag.7 g sin Esrcizio no.7 Soluzion a pag.8 sin cos [ 8] Esrcizio no.8 Soluzion a pag.8 sin sin cos sin Esrcizio no.9 Soluzion a pag.8 sin g sin [ ] Esrcizio no. Soluzion a pag.8 π sin cos Esrcizio no. Soluzion a pag.9 cos cos sin Esrcizio no. Soluzion a pag.9 ( sin cos )( cos ) [ ] Esrcizio no. Soluzion a pag.9 sin [ ]

6 Educnica.i Calcolo di ii 6 Esrcizio no. Soluzion a pag.9 Esrcizio no. Soluzion a pag.9 Esrcizio no.6 Soluzion a pag. [ ] Esrcizio no.7 Soluzion a pag. [ ln ] Esrcizio no.8 Soluzion a pag. ln( ) [ ] Esrcizio no.9 Soluzion a pag. ln( ) Esrcizio no. Soluzion a pag. [ ln ] Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. 6 6

7 Educnica.i Calcolo di ii 7 Esrcizio no. Soluzion a pag. lg( ) sin ( ) Esrcizio no. Soluzion a pag. cos lg( g ) Esrcizio no. Soluzion a pag. cos cos 7 Esrcizio no.6 Soluzion a pag. Esrcizio no.7 ( ) / Soluzion a pag. [ ] Esrcizio no.8 Esrcizio no.9 Soluzion a pag. 7 ln Soluzion a pag.6 ( ) [ ] Esrcizio no.6 Soluzion a pag.6 (sin cg ) [ ] 7

8 Educnica.i Calcolo di ii 8 Esrcizio no.:soluzion prsna la forma indrminaa si raccogli al numraor al dnominaor gli raccoli fuori dalla sssa parnsi al numraor al dnominaor sono infinii dllo ssso ordin pr si possono smplificar fra loro. Esrcizio no.:soluzion pr ch nd a da sinisra al dnominaor avrmo com dir un po più di. pr cui scrivrmo:, Esrcizio no.:soluzion anch in quso caso raccogliamo la al numraor al dnominaor. Pr ssr più prcisi, possiamo noar ch: Esrcizio no.:soluzion 8

9 Educnica.i Calcolo di ii 9 Esrcizio no.:soluzion lg nd alla forma ch non è indrminaa, dao ch quival a g ( ) ( ) si può, dunqu, scrivr:. Esrcizio no.6:soluzion sin cos Esrcizio no.7:soluzion ( sin ) In quso caso, il problma è dao dal fao ch Noiamo ch ( sin ) sin sin non sis. bisogna qui ricordarsi dl i novol sin pr cui scrivrmo: ( sin ) sin Esrcizio no.8:soluzion si raa di una forma di indrminazion. Noiamo ch ( ) quindi pr l sprssion ( ) ( ) ( ) ( ) 9

10 Educnica.i Calcolo di ii Esrcizio no.9:soluzion sin sin sin Com già viso pr il prcdn caso ci si avval dl i novol sin sin sin sin Esrcizio no.:soluzion 8 Sosiundo il valor 8 8 Dcomponiamo il numraor con la rgola di uffini: possiamo scrivr 8 ( )( ) Il dnominaor vin ridoo con la formula dl rinomio: ± 9 8 ± quindi.. / 8 ( )( ) ( )( )

11 Educnica.i Calcolo di ii Esrcizio no.:soluzion Si ossrva com ch è una forma di indrminazion. Al dnominaor abbiamo: ( )( ) ( )( )( ) pr cui: ( ( )( ) )( ) ( )( ) Esrcizio no.:soluzion lg lg Sapndo ch lg il i dao palsa una forma di indrminazion. In quso è convnin usar lo ssso modo dll funzioni razionali fra: si raccogli il rmin ch nd al. lg lg lg lg lg lg Esrcizio no.:soluzion forma di indrminazion.

12 Educnica.i Calcolo di ii Esrcizio no.:soluzion forma di indrminazion. Usando lo ssso modo dll srcizio prcdn ricordandosi ch: s > s quindi nl nosro caso prché s <

13 Educnica.i Calcolo di ii Esrcizio no.:soluzion ( ) ( ) Vin, in quso caso, ffuaa la razionalizzazion, quindi, l sprssion: ( ) ( ) ( ) avrmo: ( ) S invc il i foss sao: ( ) Esrcizio no.6:soluzion sin cos Dao ch sin non sis com cos coninuano ad oscillar fra -. Si dduc: dao ch al ndr di ad i du rmini sin cos non sis

14 Educnica.i Calcolo di ii Esrcizio no.7:soluzion sin forma di indrminazion. sin icordando il i novol sin sin Esrcizio no.8:soluzion Si avrbb: sin forma di indrminazion S pnsiamo all form di duplicazion si ha sin sin cos pr cui: sin sin cos sin cos Esrcizio no.9:soluzion sin forma di indrminazion Qui l arificio sa nl porr pr sosiuzion dao ch pr sin sin sin Esrcizio no.:soluzion sin Anch qui ponndo forma di indrminazion dao ch pr sin sin sin

15 Educnica.i Calcolo di ii Esrcizio no.:soluzion sin sin6 pr l form di duplicazion sin sin6 sin sin ( ) sin sin cos cos Esrcizio no.:soluzion sin pr l form di duplicazion sin sin cos sin cos Esrcizio no.:soluzion sin sin sin g g g g sin dao ch cos Esrcizio no.:soluzion sin g sin cos sin g cos g Esrcizio no.:soluzion cos ( cos )( cos ) cos ( cos ) ( cos ) sin sin sin ( cos ) ( cos ) Esrcizio no.6:soluzion cos ( cos )( cos ) cos ( cos ) ( cos ) sin ( cos ) sin ( cos ) ( )

16 Educnica.i Calcolo di ii 6 Esrcizio no.7:soluzion cos sin sin Esrcizio no.8:soluzion sin g sin g Esrcizio no.9:soluzion sin sin sin sin Esrcizio no.:soluzion g g ( cos ) g ( cos ) cos ( cos )( cos ) cos g ( cos ) sin sin cos ( cos ) ( cos ) ( ) 6 sin cos Esrcizio no.:soluzion cos π cos sin (cos sin ) π cos π cos sin sin (cos sin )(cos sin ) π (cos sin ) 6

17 Educnica.i Calcolo di ii 7 Esrcizio no.:soluzion cos icordiamoci ch cg quindi: g sin sin sin cos g cos cos π cg cos sin cos π π sin sin sin π cos Esrcizio no.:soluzion sin g cos π cg cos π sin sin π cos g π π sin cos cos sin cos sin Esrcizio no.:soluzion cos cos sin cos ( cos ) ( cos ) cos ( cos ) cos ( cos )( cos ) ( cos ) ( ) 8 Esrcizio no.:soluzion cos cos cos cos sin cos sin cos sin cos Esrcizio no.6:soluzion sin sin g sin cos sin cos sin sin ( cos ) cos cos sin ( cos )( cos ) sin ( cos ) cos ( cos ) cos ( cos ) sin sin cos ( cos ) sin sin cos ( cos ) cos ( cos ) ( ) 7

18 Educnica.i Calcolo di ii 8 Esrcizio no.7:soluzion sin sin cos cos cos cos Esrcizio no.8:soluzion sin cos cos (cos ) sin cos cos cos 8 sin sin cos sin cos sin cos sin sin ( sin ) cos ( sin ) ( sin )( cos ) sin sin ( sin )( cos )( cos ) ( sin )( cos ) sin ( cos ) sin ( cos ) ( sin )sin ( sin ) ( ) sin ( cos ) ( cos ) ( ) Esrcizio no.9:soluzion sin sin sin g sin sin sin sin cos sin cos cos sin cos cos ( cos ) cos ( cos ) sin ( cos ) ( cos )( cos ) ( cos ) cos ( cos ) ( ) sin Esrcizio no.:soluzion π π sin cos sin (sin ) ( sin ( sin )( sin ) sin (sin ) π ( sin )( sin ) sin π ( sin ) π sin sin ( sin π ( sin sin cos ) ) ) ( ) ( sin ) π ( sin )( sin ) π sin (sin ) sin ( sin )( sin ) 8

19 Educnica.i Calcolo di ii 9 Esrcizio no.:soluzion cos cos cos ( cos ) cos ( cos ) sin cos ( cos )( cos ) cos ( cos ) Esrcizio no.:soluzion ( ( sin cos )( cos ) cos sin ( ) cos ) ( ( ) ( cos ) cos ) sin Esrcizio no.:soluzion sin Sosiundo avrmo ch pr il i divna allora: sin sin Esrcizio no.:soluzion prsna forma di indrminazion smplifichiamo: ( )( ) ( ) ( )( ) ( ) Esrcizio no.:soluzion prsna forma di indrminazion smplifichiamo ( ( ) )( ) ( ) 9

20 Educnica.i Calcolo di ii Esrcizio no.6:soluzion prsna forma di indrminazion procdiamo ( ) Esrcizio no.7:soluzion prsna forma di indrminazion poniamo noando ch pr si ha / s vogliamo avvalrci dl i novol a ln a avrmo: ln ln ln Esrcizio no.8:soluzion ln( ) prsna forma di indrminazion ln( ) ci avvaliamo dl i novol poniamo noando ch pr si ha ln( ) ln( ) ln( ) /

21 Educnica.i Calcolo di ii Esrcizio no.9:soluzion ln( ) prsna forma di indrminazion ln( ) ln( ) ln( ) Il primo i è risolvibil com si è già viso ponndo: noando ch pr si ha quindi ln( ) ln( ) ln( ) / Pr il scondo i ossrviamo: basa dunqu risolvr il i poso h h con h pr h h h / h h h quso pr la validià dl i novol: quindi: di consgunza ln( )

22 Educnica.i Calcolo di ii Esrcizio no.:soluzion Si raa di una forma indrminaa dl ipo ; poniamo pr cui: pr si ha avvalndosi dl i novol a ln a si ha: ln Esrcizio no.:soluzion prsna forma di indrminazion ponndo si ha pr, pr cui quso pr il i novol

23 Educnica.i Calcolo di ii Esrcizio no.:soluzion Dopo avr noao ch il i è nlla forma procdiamo: ( ) ( ) ponndo il scondo i è riconducibil a pr cui: ( ) ( ) La forma ch appar è riconducibil al i novol ( ) 6 a a da cui Esrcizio no.:soluzion lg( ) sin ( ) Vi è una forma indrminaa procdiamo: lg( ) sin ( lg( ) ) sin ( ) abbiamo il prodoo: lg( ) sin oprando pr sosiuzion si ha: lg( ) sin pr cui si dduc: lg( ) sin ( )

24 Educnica.i Calcolo di ii Esrcizio no.:soluzion cos lg( g ) Ovviamn, la forma è indrminaa, rami il solio arificio, oniamo: cos g cos g g lg( g ) g lg( g ) ora: sin g prché com si ha g g cos g su ha pr ffo dlla forma lg( g ) lg( ) lg( ) cos di consgunza: lg( g ) Esrcizio no.:soluzion cos cos forma indrminaa raccoglindo a faor comun: cos cos cos cos Esrcizio no.6:soluzion Si raa di una forma di indrminazion dl ipo considrazion il i novol: sosiuisco dobbiamo nr in riman ch pr

25 Educnica.i Calcolo di ii Esrcizio no.7:soluzion ( ) / Pur ssndo anch qusa una forma sosiuisco pr si ha / ( ) pr il i novol Esrcizio no.8:soluzion anch qui poniamo pr si ha. ( ) il dnominaor amm radici in campo ral. 7 6 ± da cui l sprssion / ( ) ( )( ) ( ) ( 7 ) ( ) ( 7 ) ln ln ( 7 ) 7 7 abbiamo solo usao il i novol a ln a

26 Educnica.i Calcolo di ii 6 Esrcizio no.9:soluzion ( ) prsna forma di indrminazion ( ) ( ) quso prché ci si pova arrivar anch inuiivamn, riconoscndo ch è un infinio di ordin suprior rispo a. Esrcizio no.6:soluzion (sin cg ) prsna forma di indrminazion ; l sprssion: sin cg sin cos g cos sin cos sin cos 6

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI Univrsià Carlo Caano Inggnria gsional nalisi mamaia aa 7/8 PRIMITIVE E INTEGRLI DEFINITI ESERCIZI CON SOLUZIONE Calolar i sguni ingrali indfinii: ) d ; ) d ; ) d ; ) os sin d ; 6 ) d SOLUZIONI ) La funzion

Dettagli

Corso di Analisi: Algebra di Base. 3^ Lezione

Corso di Analisi: Algebra di Base. 3^ Lezione Corso di Analisi: Algbra di Bas ^ Lzion Disquazioni algbrich. Disquazioni di. Disquazioni di. Disquazioni faoriali. Disquazioni biquadraich. Disquazioni binomi. Disquazioni fra. Sismi di disquazioni. Allgao

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 7/8 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

Esercizi sulla CONVOLUZIONE INTRODUZIONE. x(t)y( τ - t)dt. x(τ - t)y(t)dt

Esercizi sulla CONVOLUZIONE INTRODUZIONE. x(t)y( τ - t)dt. x(τ - t)y(t)dt INTRODUZIONE Si ricorda ch la convoluzion ra du sgnali x() y(), rali o complssi, indicaa simbolicamn com: C xy () = x() * y() è daa indiffrnmn dall du sprssioni: Esrcizi sulla CONVOLUZIONE C xy () = C

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche Facolà di Economia Equazioni diffrnziali Linari d Applicazioni Economich prof. EQUAZIONI DIFFERENZIALI LINEARI APPLICAZIONI ECONOMICHE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LINEARI Quso ipo di quazioni

Dettagli

Integrale di sin t/t e varianti

Integrale di sin t/t e varianti Ingral di sin / variani Annalisa Massaccsi dicmbr Ingral di sin / In rifrimno all s. 7 dl VII gruppo di srcizi, com già viso ad srciazion, vogliamo dimosrar ch sin / d R. Ossrvazion. Ossrviamo innanziuo

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

Autovalori complessi e coniugati

Autovalori complessi e coniugati Auovalori complssi coniugai Noazioni A A α ω ω α λ λ λ α + jω, λ α jω, maric ad lmni rali α + jω, maric diagonal ad lmni complssi α jω L du marici A A hanno gli sssi auovalori λ, λ. aa una gnrica maric

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO.

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO. DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO Sia A un apro di : sis un vor ab, al ch,, f A Prso, A si dic ch f è diffrnziabil in,, 0, 0 0 0 f f a b 0 si pon df, a, b f Si dimosra ch a, b,, quindi

Dettagli

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1]

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1] Compio di Mamaica sul problma di Cauch sull quazioni diffrnziali ordinari dl º ordin [] Esrcizio Spigar la formulazion, il significao com si procd alla risoluzion dl problma di Cauch pr EDO dl º ordin

Dettagli

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI CORSO DI LAUREA IN INFORMATICA APPLICATA PRECORSO DI MATEMATICA ESERCIZI SULLE EQUAZIONI ESPONENZIALI Esrcizio 1: Risolvr la sgunt quazion x+ = x+1. Svolgimnto: Dividndo il primo il scondo mmbro pr x+1

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi 4. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Mamaica cla Danil Rilli anno accadmico 8/9 Lzion : Ingrali Esrcizi svoli. Provar, usando il cambio di variabil ch:. Dimosrar ch. Ingrando pr pari dimosrar ch + = + = 6 sin(π) = π Svolgimno.

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

Laurea triennale in BIOLOGIA A. A

Laurea triennale in BIOLOGIA A. A Laura rinnal in BIOLOGIA A. A. 3-4 4 CHIMICA Vn 8 novmbr 3 Lzioni di Chimica Fisica Cinica chimica: razioni paralll razioni conscuiv Effo dlla mpraura sulla cosan di vlocià Prof. Anonio Toffoli Chimica

Dettagli

Determinare il dominio di una funzione

Determinare il dominio di una funzione Drminar il dominio di una funzion CHE COSA SONO LE FUNZON. Una funzion = f( è una rlazion ch lga du grandzz (variabili: la variabil vin chiamaa variabil indipndn, mnr la variabil dipndn. Pr smpio la rlazion

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T No il k:\scuola\corsi\corso isica\ond\oscillaori aronico sorzao orzaodoc Crao il 5// 87 Dinsion il: 86 b ndra Zucchini Elaborao il 5// all or 885, salao il 5// 87 sapao il 5// 88 Wb: hp://digilandrioli/prozucchini

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Corso di Macroeconomia

Corso di Macroeconomia Corso di Macroconomia LE ASPETTATIVE: NOZIONI DI BASE. Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao

Dettagli

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base Lzion 5 (BAG cap. 4) L aspaiv: nozioni di bas Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il asso di inrss in rmini di mona è do asso di inrss nominal Il asso di inrss in rmini di bni è

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Analisi Matematica 3 (Fisica e Astronomia) Esercizi sulle equazioni differenziali ordinarie lineari

Analisi Matematica 3 (Fisica e Astronomia) Esercizi sulle equazioni differenziali ordinarie lineari Analisi Mamaica Fisica Asronomia Esrcizi sull quazioni diffrnziali ordinari linari Risolvr i sguni problmi sull quazioni diffrnziali linari a Risolvr x y y in du modi Vi sono soluzioni dfini su uo R? b

Dettagli

Induzione magnetica. Capitolo. 1. Autoinduzione

Induzione magnetica. Capitolo. 1. Autoinduzione Capiolo nduzion magnica B. Auoinduzion La forza lromoric indoa rapprsna il lavoro pr unià di carica svolo dall forz ch gnrano la corrn indoa. Essa è lgaa alla variazion dl flusso magnico F concanao al

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

Modello AD-AS. Mercato del lavoro. Mercato dei beni. Mercati finanziari

Modello AD-AS. Mercato del lavoro. Mercato dei beni. Mercati finanziari Modllo AD-AS Mrcao dl lavoro Equilibrio di mdio priodo su Mrcao di bni Mrcai finanziari.b. A un dao asso di disoccupazion corrispond un dao livllo dlla produzion (assumndo funzion di produzion =): U u

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

Sistemi lineari a tempo continuo. Un sistema lineare analogico, in generale tempo variante, caratterizzato da una risposta

Sistemi lineari a tempo continuo. Un sistema lineare analogico, in generale tempo variante, caratterizzato da una risposta Capiolo V SISTEMI LIERI CO IGRESSI LETORI Sisi linari a po coninuo V. - Cararizzazion nl doinio dl po. Un sisa linar analogico, in gnral po arian, cararizzao da una risposa ipulsia daa da h (, ) rasfora

Dettagli

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3.

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3. OPERATORI DIFFERENZIALI IN COORDINATE POLARI Indic 1. Gradint in coordinat polari 1 2. Laplaciano in coordinat polari 3 3. Esrcizi 4 1. Gradint in coordinat polari Sia f una funzion di class C 1 dfinita

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

Diagonalizzazione delle forme quadratiche

Diagonalizzazione delle forme quadratiche Diagonaliaion dll form uadraich Illusrrmo ora du modi pr diagonaliar una forma uadraica (o uivalnmn una forma bilinar Modo dl complamno dl uadrao Quso modo consis in una succssion di passaggi algbrici

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Circuiti dinamici. Introduzione. (versione del ) Circuiti resistivi e circuiti dinamici

Circuiti dinamici. Introduzione.   (versione del ) Circuiti resistivi e circuiti dinamici ircuii dinamici nroduzion www.di.ing.unibo.i/prs/masri/didaica.m (vrsion dl --3) ircuii rsisivi circuii dinamici ircuii rsisivi: circuii formai solo da componni rsisivi l quazioni dl circuio cosiuiscono

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 4 Parità dei tassi d interesse IS-LM in economia aperta

ECONOMIA POLITICA II - ESERCITAZIONE 4 Parità dei tassi d interesse IS-LM in economia aperta CONOMIA POLITICA II - SRCITAZION 4 Parià i assi inrss IS-LM in conomia apra srcizio Suppon ch all sro il asso i inrss sia l 5.5% ch l aual asso i cambio nominal sia pari a.5. a) Nl caso in cui ci si aspi

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Appendice Analisi in frequenza dei segnali

Appendice Analisi in frequenza dei segnali Appndic Analisi in rqunza di sgnali - Appndic Analisi in rqunza di sgnali - Sgnali priodici Sviluppo in sri di Fourir Un sgnal è priodico nl mpo quando si rip ogni scondi. Si vda, com smpio, il sgnal in

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Sistemi dinamici lineari del 1 ordine

Sistemi dinamici lineari del 1 ordine Appuni di onrolli Auomaici Simi dinamici linari dl ordin Inroduzion... ipoa al gradino uniario... ipoa alla rampa... Empio...3 Empio...4 INTODUZIONE Si dfinic ima (lmnar) dl primo ordin un ima (linar mpo-invarian)

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progo i cinghi rapzoiali L cinghi rapzoiali sono uilizza rqunmn pr la rasmission i ponza Vanaggi Basso coso Smplicià i insallazion Capacià i assorbir vibrazioni orsionali picchi i coppia Svanaggi Mancanza

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo VIII. Il tasso naturale di disoccupazione e la curva di Phillips. Capitolo VIII.

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo VIII. Il tasso naturale di disoccupazione e la curva di Phillips. Capitolo VIII. Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips Capiolo VIII. Il asso naral di disoccpazion la crva di Phillips 1. Inflazion,

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Modello di Einstein. Stato eccitato. Stato fondamentale

Modello di Einstein. Stato eccitato. Stato fondamentale Modllo di Einsin Il modllo di Einsin dscriv in manira fnomnoloica d a livllo microscopico i procssi di l inrazion ra la r..m. maria ch porano ai fnomni di assorbimno d mission radiaiva. Il sisma modllo

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Matmatica cla Dail Ritlli ao accadmico 008/009 Lzio : Succssioi Sri gomtrica Esrcizi svolti. Provar ch: + ) /. Provar ch: + ) + ) 0. Provar ch: + 4. Provar ch 5. Provar ch + ) + ) 4

Dettagli

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione ESERCIZI SULLE SUCCESSIONI VALENTINA CASARINO Esrcizi pr il corso di Aalisi Matmatica, Iggria Gstioal, dll Iovazio dl Prodotto, Mccaica Mccatroica, Uivrsità dgli studi di Padova) ) Vrificar, attravrso

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero )

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero ) ESERCITAZIONI 7-8- 9- STUDI DI FUNZIONI A) Esrcizi svolti. Studiar il dominio d il comportamnto agli strmi dl dominio dll sgunti funzioni. Calcolarn splicitamnt vntuali asintoti orizzontali o vrticali.

Dettagli

di disequazioni lineari

di disequazioni lineari Capitolo Disquazioni Esrcizi sistmi di disquazioni linari Toria p. 68 L disquazioni l loro soluzioni Pr ciascuna dll sgunti disquazioni, invnta un problma ch possa ssr risolto con la disquazion stssa.

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lzion 21 (BAG cap. 19) Rgimi di cambio Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il capiolo si occupa Aggiusamno nl mdio priodo d ffi di una svaluazion Crisi dl asso di cambio Tasso di

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

Compito sugli integrali definiti e impropri (1)

Compito sugli integrali definiti e impropri (1) Compito sugli intgrli dfiniti impropri () Esrcizio Clcolr i sgunti intgrli dfiniti: () () d d ; Esrcizio Stilir s i sgunti intgrli impropri convrgono d, in cso ffrmtivo, scrivr qul vlor: () () d ; d Esrcizio

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.matfilia.it SESSIONE SUPPLETIVA 8 - PROBLEMA f k () = k ln() g k () = k, k > ) L invrsa di y = k ln() si ottin nl sgunt modo: y k = ln(), y k =, da cui, scambiando con y, y = g k () = k Quindi l invrsa

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

Capitolo 8. La curva di Phillips, il tasso naturale di disoccupazione e l inflazione

Capitolo 8. La curva di Phillips, il tasso naturale di disoccupazione e l inflazione Capiolo 8. La curva di Phillips, il asso naural di disoccupazion l inflazion 1. Inflazion, inflazion asa disoccupazion Inflazion disoccupazion ngli Sai Unii, 1900-1960. = (1931 1939) Duran il priodo 1900-1960,

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Teoria dei Sistemi - A.A. 2003/2004

Teoria dei Sistemi - A.A. 2003/2004 ANAISI ODAE DEI SISTEI INEARI A TEPO CONTINUO Dr. Crisian Scchi ARSconrol ab Univrsià di odna Rggio Emilia Il movimno di un sisma TI & ( A( + Bu( y( C( + Du( Formula di agrang ( A A( τ + Bu( τ dτ A I +

Dettagli

Esercizi 3 Geometria lineare nello spazio

Esercizi 3 Geometria lineare nello spazio Esrcizi 3 Gomtria linar nllo spazio Ngli srcizi ch sguono si suppon fissato un sistma di rifrimnto (SdR) nllo spazio. S la bas (dllo spazio vttorial di vttori libri) di tal SdR è indicata con (i, j, k),

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

METODO DI NEWTON Esempio di non convergenza

METODO DI NEWTON Esempio di non convergenza METODO DI NEWTON S F(x) è C 2 si sa ch (x R k ) F(x+h) = F(x) + F(x) t h + 1/2 h t H(x)h +o( h 3 ) d una stima possibil dl punto di minimo è data da x# = x - H(x) -1 F(x) dov H(x) è la matric hssiana in

Dettagli

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017 I PPELLO (& II ESONERO) DI SEGNLI E SISTEMI 05 giugno 017 Esrcizio 1. [+ punti] SOLO PER CHI SOSTIENE L PROV COMPLET Si considri il modllo ingrsso/uscita LTI causal dscritto dalla sgunt quazion diffrnzial:

Dettagli

Esame di Metodi Matematici per l Ingegneria Secondo appello. 28 Febbraio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Secondo appello. 28 Febbraio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A Esam di Mtodi Matmatici pr l Inggnria Scondo appllo. 8 Fbbraio 17 A.A. 16/17. Prof. M. Bramanti Tma A Cognom: Nom N matr. o cod. prsona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domand di toria rispondr

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

La Trasformata di Laplace. Pierre-Simon Laplace

La Trasformata di Laplace. Pierre-Simon Laplace a Traformaa di aplac Pirr-Simon aplac 749-827 a Traformaa di Eulro onhard Eulr Eulro 707-783 Dfinizion Si dfinic raformaa di aplac dlla funzion f la funzion F coì dfinia: Dov σjωσj2πf. 0 F { f } f d Dfinizion

Dettagli

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè:

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè: 78 ( ) Funzion 6: f( ) arcsnln + (funzion trascndnt) CAMPO DI ESISTENZA Poiché l argomnto dl logaritmo natural è una quantità smpr positiva, basta imporr ch l argomnto dll arcosno sia comprso tra d, cioè:

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

ESERCIZI SULLA CONVEZIONE

ESERCIZI SULLA CONVEZIONE Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

0.06 100 + (100 100)/4 (100 + 2 100)/3

0.06 100 + (100 100)/4 (100 + 2 100)/3 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ PROVA CONCLUSIVA DI MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Trovar una prima approssimazion dl tasso di rndimnto a scadnza

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x Matmatica pr l Economia (A-K) Matmatica Gnral 9 april (pro. M. Biscglia) Traccia A. Dtrminar s possibil un punto di approssimaion con un rror dll quaion nll intrvallo.. Data la union.. Studiar la union

Dettagli

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali Complmnti sull applicazioni dlla trasformata di ourir alla risoluzion di prolmi pr quazioni a drivat parziali Marco Bramanti March, 00 Nll applicazioni all quazioni a drivat parziali, spsso una funzion

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

La tabella presenta 4 casi ed i relativi differenziali di rendimento tra un investimento in Dollari ed uno in Euro:

La tabella presenta 4 casi ed i relativi differenziali di rendimento tra un investimento in Dollari ed uno in Euro: MONETA E FINANZA INTERNAZIONALE Lzion 3 ARBITRAGGIO SUI TASSI DI INTERESSE Invsimno sro domanda di valua sra Disinvsimno rischio di cambio prché rndimno ral dipnd da R La ablla prsna 4 casi d i rlaivi

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

Calore specifico del gas perfetto di Bose

Calore specifico del gas perfetto di Bose Calor spcifico dl gas prftto di Bos L. P. 7 April Il calcolo dl calor spcifico di un gas prftto di Bos prsnta dgli asptti tcnici intrssanti. Dfiniamo la funion polilog g α (), pr α > < mdiant la sri g

Dettagli