Analisi Matematica I Soluzioni del tutorato 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi Matematica I Soluzioni del tutorato 3"

Transcript

1 Corso di lur in Fisic - Anno Accdmico 07/08 Anlisi Mmic I Soluzioni dl uoro 3 A cur di Dvid Mcr Esrcizio ( i) Dominio di dfinizion: L funzion h un problm in, mnr d è dfini pr ogni lro. Quindi, il dominio di dfinizion è \ { } Simmri: f ( ) ( ) ( ) ±f () quindi l funzion non è nè pri nè dispri. Coninuià: s l funzion è coninu prchè prodoo di un funzion linr (ch è coninu) dll composizion di un sponnzil ( coninu) di un funzion rzionl fr ( ch è coninu dov è dfini, cioè dov non si nnull il dnominor) Diffrnzibilià: Clcolimo l driv di f : d d f () ( + ) d d d d ( + ) ( + ) + d ( + ) ( + ) d + + ch è dfini nch ss pr ogni, quindi l funzion è diffrnzibil dov è dfini. Sgno: f è il prodoo di + pr un sponnzil ch è smpr posiiv, quindi il sgno di f è unicmn drmino dl sgno di +, ch è posiiv s > ngiv s <. Quindi nch f è posiiv pr > ngiv pr <. Asinoi: ( + ) + ± ± prciò l funzion non h sinoi orizzonli, quindi { } è un sinoo vricl. Vdimo infin s ci sono sinoi obliqui: ±( + ) + ± f () ± ± ( f () ) ( + ) + ( + ) + + +

2 o() + Quindi c è un sinoo obliquo di quzion y Puni criici: Com bbimo viso prim, l driv di f è + f () o() + y + o() 0 d ss si nnull solno in. Pr scoprir l nur di, clcolimo l driv scond di f vluimol in : f () d + d d d d d ( + ) ( + ) ( + ) 3 l driv scond clcol in dà quindi è un mssimo rlivo. f ( ) / ( ) 3 < ( + ) 3 ( ii) Dominio di dfinizion: L funzion rcsin() è dfini solo pr gli [,], prciò f è dfini solo pr gli li ch + Do ch +, l disuguglinz sopr è smpr soddisf l funzion è dfini su uo. Simmri: quindi l funzion è pri. ( ) f ( ) rcsin rcsin + ( ) + f () Coninuià: L funzion è coninu prchè composizion dll rcosno con un funzion rzionl fr, d nrmb sono funzioni coninu. Diffrnzibilià: L driv di f è f d () d ( + ) + ( + ) ( ) ( + )

3 L unico puno in cui l driv h un problm è qundo + cioè qundo 0. M 0 f pr dl dominio di dfinizion di f, quindi f non è diffrnzibil in 0. Asinoi: L rgomno dll rcosno nd s nd ±. Quindi rcsin ± + y rcsin(y) π quindi l r {y π/} è un sinoo orizzonl di f pr ±. Do ch l funzion è ovunqu dfini coninu, non può vr sinoi vricli, do ch l funzion h du sinoi orizzonli in ±, non può vrn di obliqui. Puni criici: Essndo il numror 0, y, m in 0 l funzion non è diffrnzibil, l driv non si nnull mi. Sudimo or il sgno di f in un inorno di 0. Il ch dnominor di f è smpr posiivo dov dfinio, prciò il sgno di f è unicmn drmino dl sgno dl numror, ch è ugul 4, quindi è smpr posiivo s < 0 smpr ngivo s > 0. Quindi l funzion è smpr crscn s < 0 dcrscn s > 0, prciò 0 è un mssimo ssoluo. ( iii) Dominio di dfinizion: L funzion è il prodoo di un sponnzil di un funzion rzionl, quindi è dfini pr ogni pr cui il dnominor non si nnull. Quindi f è dfini pr \{ } Simmri: f ( ) f () f () quindi l funzion non è nè pri n dispri. Coninuià: Essndo il prodoo di un sponnzil di un funzion rzionl fr, funzioni nrmb coninu sul loro dominio di dfinizion, nch f è coninu dov è dfini. Diffrnzibilià: L driv di f è f () d d + + d + d + + ( + ) ( + ) cioè è il prodoo di un sponnzil pr un funzion rzionl fr il cui dnominor si nnull solo in, ch è l unico puno di R dov l funzion non è dfini. Prciò l funzion è ovunqu diffrnzibil nl suo dominio di dfinizion. Asinoi: mnr

4 Quindi f h com sinoo orizzonl l r {y 0} s non h sinoi orizzonli s + Inolr, f () + + ( + ) + quindi f non h nmmno sinoi obliqui s +. Vdimo dsso ch succd in : ± + prch l sponnzil è coninuo in l funzion rzionl è posiiv in un inorno sinisro di ngiv in un inorno dsro di. Prciò, l r { } è l unico sinoo vricl di f. Puni criici: L driv di f si nnull qundo + + 0, cioè mi, do ch qus quzion h solo rdici complss. Inolr, bbimo viso ch nll unico puno in cui f non è diffrnzibil, f non è nmmno dfini d h un sinoo vricl. Quindi f non h puni criici. ( iv) Dominio di dfinizion: L funzion coinvolg un rdic qudr, prciò è dfini qundo il rdicndo è posiivo, cioè s oppur < + 0 L prim dll du disquzioni di scondo grdo sopr è soddisf pr ogni, do ch l quzion + h rdici complss l concvià dll prbol è rivol vrso l lo, mnr l scond disquzion è soddisf solo s Quindi f è dfini su Simmri:, 5 5, (,] ( [, )), 5 5, f ( ) ( ) f () f () prciò l funzion non è nè pri nè dispri. Coninuià: Poichè l funzion é l composizion di un rdic qudr di un combinzion linr r un monomio un modulo, poichè u l funzioni ppn mnzion sono coninu, f è coninu dov è dfini. Diffrnzibilià: L driv di f è f () d d ( ) ( sgn( )) 4

5 dov sgn() è l funzion dfini su \ {0} s > 0 sgn() s < 0 quindi, in pricolr d è dfini su uo \ { } sgn( ) s > s < f ( ) s > () ( + ) s < D qui vdimo subio f non è dfini in (puno ch f pr dl dominio di f ) ch l rdic l dnominor è smpr 0, si nnull gli srmi dll inrvllo in cui f non è dfini, In qui puni f è dfini, ssndo i du inrvlli ch compongono il dominio di f chiusi l finio. Tuvi, pr por dfinir l driv di un qulsisi funzion in un puno, c è bisogno ch sso si inrno l dominio di f, quindi non h snso chidrsi s l funzion si diffrnzibil o mno gli srmi dl dominio. Prciò, l unico puno in cui f è diffrnzibil è. Asinoi: + ± quindi l funzion non h sinoi orizzonli. Inolr, l funzion si nnull gli srmi dl suo insim di dfinizion (dov è smpr coninu), quindi non h nnch sinoi vricli. Vdimo or gli sinoi obliqui: b ± b ± f () ± ± + o() ± ± (f () ± ± ) b + ( ) + ( ) ( + + ) + ( + + ) o() + ( +) y ( y y y) y ( y y y) ( y y + y y y y) y + y + y y + y y y + y ( y y + y) y + y + y y y y + o(y) + y Quindi gli sinoi obliqui di f sono y / pr + y / pr 5

6 Puni criici: L driv di f f ( ) s > () ( + ) s < si nnull s solo s + 0 o 0, cioè s ±/. M ±/ non snno nl dominio di f in quno ( 5)/ < / ( + 5)/ > /. Vdimo cos f l driv in un inorno di, l unico puno in cui f non è diffrnzibil: f () + + ( ) > 0 f () ( + ) 3 > 0 Quindi, l driv non cmbi sgno in un inorno di quindi non è un puno criico di f. Prciò f non h puni criici. Esrcizio (i) n n n + n (n!) (n)! n n + n... n! n (n ) (n )... (n + ) (n + )...(n ) n n! n n n(n ) n < dov nll pnulim disuguglinz bbimo uso il fo ch n n n n n + <, n n + <,..., 3 n 3 < Quindi l sri convrg. (ii) Abbimo ch, s 0 < n, n! n quindi l sri convrg. S, l sri divn n 0 quindi l sri divrg. S >, n! n quindi l sri divrg. Noimo, inolr, ch s n, n! è pri. Quindi, cci i primi du rmini, ciscun sommndo vluo in è ugul l corrispondn vluo in, quindi l du sri hnno lo ssso compormno. Prciò l sri convrg ( si smplicmn ch ssolumn, do ch pr qunno ossrvo è ssnzilmn un sri rmini posiivi) s < divrg s (iii) Pr ogni 0, n + n n 3/ n 0 Quso inolr ci dic ch ( ) n n n + n + n n 3/ n n 6 n n 3/ n

7 ch convrg pr ogni 0 fisso prchè è un sri rmonic gnrlizz con sponn più grnd di. Quindi l sri convrg ssolumn s 0, prciò, mggior rgion, convrg nch smplicmn. L convrgnz smplic l si può vdr dirmn con Libniz: n + n n + + (n + ) n( + (n + ) ) n + ( + n ) n(+(n +n+) ) n + (+n ) n(n+) + n(+n ) n + (+n ) n(n + ) ( n + n + + n n)( + n ) n + + n ( n + + n) n(n+) ( n + n )(+n ) ( n + n+n)(n+) (+n ) M ( n + n + n)(n + ) n(n + ) n n(n + ) 4n + n > ( + n ) n > Prciò il rmin gnrl dll sri sicurmn dcrsc s n > / quindi l sri convrg pr Libniz 0. Tuvi, s 0, l sri divn ( ) n n divrg do ch n n. n (iv) n n + n s > s s 0 s < prciò, s l sri non convrg nè smplicmn, nè ssolumn. Vdimo quindi or s c è convrgnz ssolu qundo < : pr frlo pplichimo il cririo dll rdic n n + n /n n n + n /n n + n /n ch è < pr iposi. smplicmn. Prciò, s < l sri convrg ssolumn, quindi nch Esrcizio 3 Ossrvimo ch f è priodic di priodo π/ω, prciò ci bsrà crcr il mssimo ssoluo, d smpio, nll inrvllo [ π/ω,π/ω] Clcolimo l driv di f : ss si nnull in 0 s f () ω sin(ω) + bω cos(ω) ω sin(ω 0 ) + bω cos(ω 0 ) 0 bω cos(ω 0 ) ω sin(ω 0 ) mi sono ccoro ch si pov ddurr l convrgnz smplic dll sri d qull ssolu dopo vr scrio ciò ch sgu qul puno non m l sono sni di cncllrlo. Morl: conroll smpr prim l convrgnz ssolu poi qull smplic! 7

8 Do ch s 0 soddisf l ulim quzion, cos(ω 0 ) ( pr lo ssso moivo nch sin(ω 0 ) ) dv ssr divrso d 0 (prchè siccom simo ssumndo, b ω divrsi d 0, cos(ω 0 ) 0 non può soddisfr l quzion, prchè sin(ω 0 ) dovrbb ssr ±, llor vrmmo ch un lo dll quzion è 0 l lro è divrso d 0 ), possimo porrlo l dnominor: bω cos(ω 0 ) ω sin(ω 0 ) ω sin(ω 0 ) ω cos(ω 0 ) b n(ω 0 ) b 0 b ω rcn Tuvi, ssndo l funzion n(ω) priodic di priodo π/ω, in un priodo di f compi du priodi, prciò dobbimo considrr nch il puno dov pur l driv si nnull. ω rcn b + π ω Or, snz clcolr l driv scond, sppimo ch siccom f è priodic non cosn, s uno di du puni rovi è un minimo, l lro dovrà ssr un mssimo. Inolr, Quindi f ( ) sin ω ω rcn sin rcn b b m f () b rcn sin + π + b cos ω ω ω rcn b b cos rcn + b cos rcn b f ( 0 ) b + π ω NOTA IMPORTANTE: Il profssor Bssi mi h rifrio ch s ω non è inro, l funzion così scri non mm mssimo minimo, m solno sup inf. Tuvi il modo qui sposo non subisc lcun vrizion s si suppon ch ω. 8

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

MATEMATICA I Esercitazione del

MATEMATICA I Esercitazione del FACOLTA DI INGEGNERIA Corso di lur in Inggnri Mccnic.. 9- MATEMATICA I Esrcizion dl..9 Cognom... Nom... Mricol n.... Svolgr gli srcizi sguni moivndo l rispos. Uilizzo di sofwr grfico-simbolico: Si No )

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO.

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO. DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO Sia A un apro di : sis un vor ab, al ch,, f A Prso, A si dic ch f è diffrnziabil in,, 0, 0 0 0 f f a b 0 si pon df, a, b f Si dimosra ch a, b,, quindi

Dettagli

Matematica e Fisica classe 5G Dinamiche delle popolazioni

Matematica e Fisica classe 5G Dinamiche delle popolazioni Mmic Fisic clss 5G Dinmich dll popolzioni Modlli di crsci Crsci linr d/d D cosn + c + c c, l coninuo: d c d c + c è l pndnz dll r (). Crsci sponnzil rcg(c) o D linr Thoms Mlhus, 798 λ frzion di nuovi ni

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 7/8 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi 4. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: LI02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: LI02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica www.mmicmn.i Nicol D Ros Murià Esm di so di isruzion scondri suprior Indirizzi: LI SCIENIFICO LI - SCIENIFICO - OPZIONE SCIENZE APPLICAE m di mmic Il cndido risolv uno di du problmi rispond qusii dl qusionrio

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 dei 10 quesiti del questionario. PROBLEMA 1 Si consideri la funzione:

Il candidato risolva uno dei due problemi e risponda a 5 dei 10 quesiti del questionario. PROBLEMA 1 Si consideri la funzione: Sssion suppliv PNI 8 9 Soluzion cur di Nicol D Ros ESAME DI STATO DI LICEO SCIENTIFICO Indirizzo Y: P.N.I. sciniico uonomi sciniico sciniico-cnologico Brocc Proo. CORSO SPERIMENTALE Sssion suppliv 9 Tm

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Mtodi Mtmtici pr l Fisic Prov scritt - 7 sttmbr 011 Esrcizio 1 6 punti Si clcoli l intgrl I snx snhx dx Ci sono du mtodi, di sguito il primo Ci sono infiniti poli smplici inftti il sno iprbolico si nnull

Dettagli

Integrale di sin t/t e varianti

Integrale di sin t/t e varianti Ingral di sin / variani Annalisa Massaccsi dicmbr Ingral di sin / In rifrimno all s. 7 dl VII gruppo di srcizi, com già viso ad srciazion, vogliamo dimosrar ch sin / d R. Ossrvazion. Ossrviamo innanziuo

Dettagli

Compito sugli integrali definiti e impropri (1)

Compito sugli integrali definiti e impropri (1) Compito sugli intgrli dfiniti impropri () Esrcizio Clcolr i sgunti intgrli dfiniti: () () d d ; Esrcizio Stilir s i sgunti intgrli impropri convrgono d, in cso ffrmtivo, scrivr qul vlor: () () d ; d Esrcizio

Dettagli

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico a.s SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico a.s SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO imulzion Prov Esm di Murià di Mmi pr Lio iniio.s. IMULAZIONE PROVA EAME DI MATURITA PER LICEO CIENTIFICO Prov di Mmi PROBLEMA i d l unzion g d. Drminr i oiini,, d,, nll origin un mssimo in ;, in modo g

Dettagli

Esercizi sulla CONVOLUZIONE INTRODUZIONE. x(t)y( τ - t)dt. x(τ - t)y(t)dt

Esercizi sulla CONVOLUZIONE INTRODUZIONE. x(t)y( τ - t)dt. x(τ - t)y(t)dt INTRODUZIONE Si ricorda ch la convoluzion ra du sgnali x() y(), rali o complssi, indicaa simbolicamn com: C xy () = x() * y() è daa indiffrnmn dall du sprssioni: Esrcizi sulla CONVOLUZIONE C xy () = C

Dettagli

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1 Nicol De Ros, Liceo scienifico Americhe sessione ordinri, memicmene.i PROBLEMA Nel pino riferio coordine cresino Oy:. si sudi l funzione f e se ne rcci il grfico.. Si deermini l mpiezz degli ngoli individui

Dettagli

E SEVERAMENTE PROIBITO L USO DI CALCOLATRICI PROGRAMMABILI, TABLET, SMARTPHONE E NETBOOK

E SEVERAMENTE PROIBITO L USO DI CALCOLATRICI PROGRAMMABILI, TABLET, SMARTPHONE E NETBOOK 5/6-MT-5---U Lio Siniio Glilo Glili COMPITO IN CLSSE di MTEMTIC TERZO Compio dl SECONDO qudrimsr mggio 6 S. Brnrdino d Sin srdo Clss QUINT Sz. Pro. Muro D ETTORRE -8 E SEERMENTE PROIBITO L USO DI CLCOLTRICI

Dettagli

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s),

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s), Soluzione N3 Soluzione T] Si F l primiiv dell nosr funzione f, in lre prole F (s) =f (s), per definizione di inegrle definio oenimo β() α() f (s) ds = F (β ()) F (α ()) derivndo oenimo β() d f (s) ds =

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2003 Calendario australe SECONDA PROVA SCRITTA Tema di Matematica

SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2003 Calendario australe SECONDA PROVA SCRITTA Tema di Matematica Sssio ordiri Esro - Soluzio cur di Nicol D Ros SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sssio Ordiri Cldrio usrl SECONDA PROVA SCRITTA Tm di Mmic Il cdido risolv uo di du prolmi 4

Dettagli

Esercizi Circuiti Resistivi

Esercizi Circuiti Resistivi srcizi Circuiti sistivi srcizio n isolvr il circuito in figur: v v v v 4 4 5 4 0 0Ω 5Ω 5Ω 4 5Ω Ω 5 v 5 5 4 () isolvr un circuito signific in gnrl dtrminr tnsioni corrnti in tutti i lti dl circuito. Trsformimo

Dettagli

Esercizi di Segnali Aleatori per Telecomunicazioni

Esercizi di Segnali Aleatori per Telecomunicazioni Corso di Lur in Inggnri Inormic corso di Tlcomunicioni (ro. G. Giun) (diing cur dll ing. F. Bndo) srcii di Sgnli Alori r Tlcomunicioni Diniioni di momni sisici (di rimo scondo ordin) di vriili lori: -

Dettagli

Segnali e sistemi nel dominio della frequenza

Segnali e sistemi nel dominio della frequenza oria di sgnali Sgnali sismi nl dominio dlla rqunza EORIA DEI SEGNALI LAUREA IN INGEGNERIA DELL INORMAZIONE Sommario Sgnali mpo coninuo priodici Sri di ourir Sgnali mpo coninuo apriodici rasormaa di ourir

Dettagli

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero INCERTEZZA DELLE MISURE Trminologi Prcision: riproduciilià di un misur Accurzz: vicinnz dll misur con il vlor vro Error sprimnl incrzz dll misur Tipologi di rrori sprimnli Error sismico: ls sismicmn l

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Mamaica cla Danil Rilli anno accadmico 8/9 Lzion : Ingrali Esrcizi svoli. Provar, usando il cambio di variabil ch:. Dimosrar ch. Ingrando pr pari dimosrar ch + = + = 6 sin(π) = π Svolgimno.

Dettagli

S kx. e che è dispari in quanto

S kx. e che è dispari in quanto imulzion MIUR Esm di tto 09 - mtmtic Prolm f x 0, 0 i h immditmnt: 0 x 0 x f ' x 0 x lim f lim 0 lim f lim x x x x f 0 Il grfico riport l ndmnto; pplicndo ll curv l trslzion di vttor 0;, ovvro: x' x y

Dettagli

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE OSSERVAZIONI ED ESEMPI Si f : [,+ ) : R inegrbile in senso improprio. Se,, f() llor f è inegrbile secondo Lebesgue, e i due inegrli coincidono. Infi

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Modello AD-AS. Mercato del lavoro. Mercato dei beni. Mercati finanziari

Modello AD-AS. Mercato del lavoro. Mercato dei beni. Mercati finanziari Modllo AD-AS Mrcao dl lavoro Equilibrio di mdio priodo su Mrcao di bni Mrcai finanziari.b. A un dao asso di disoccupazion corrispond un dao livllo dlla produzion (assumndo funzion di produzion =): U u

Dettagli

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione Educnica.i Calcolo di ii Calcola i sguni ii risolvndo l vnuali form di indrminazion Esrcizio no. Esrcizio no. Soluzion a pag.8 Soluzion a pag.8 [ ] Esrcizio no. Esrcizio no. Esrcizio no. lg Esrcizio no.6

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Corso di Analisi: Algebra di Base. 3^ Lezione

Corso di Analisi: Algebra di Base. 3^ Lezione Corso di Analisi: Algbra di Bas ^ Lzion Disquazioni algbrich. Disquazioni di. Disquazioni di. Disquazioni faoriali. Disquazioni biquadraich. Disquazioni binomi. Disquazioni fra. Sismi di disquazioni. Allgao

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo.

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo. Politcnico di Bari Laur in Inggnria dll Automazion, Elttronica Informatica corso B Esam di Analisi matmatica II A.A. 2006/2007-8 sttmbr 2007 - TRACCIA A. Studiar gli vntuali punti critici dlla funzion

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1 ANALISI MATEMATICA II Sapinza Univrsità di Roma - Laura in Inggnria Informatica Esam dl 15 sttmbr 016 - Soluzioni compito 1 E 1 Calcolar il sgunt intgral di funzion di variabil ral con i mtodi dlla variabil

Dettagli

1 REGOLE DI INTEGRAZIONE

1 REGOLE DI INTEGRAZIONE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcolà di Frmci e Medicin - Corso di Lure in CTF REGOLE DI INTEGRAZIONE. REGOLA DI INTEGRAZIONE PER PARTI f(x)g (x)dx = f(x)g(x) g(x)f (x)dx f(x)dg(x) = f(x)g(x)

Dettagli

TEMA 1: Nella rete in figura tracciare l andamento della corrente it (). Dati e 1

TEMA 1: Nella rete in figura tracciare l andamento della corrente it (). Dati e 1 Esm di Elttrotcnic dl 04/07/0. Tutti i tmi hnno lo stsso pso. Link: http://prsonl.dln.polito.it/vito.dnil/ Gli studnti immtricolti nll A.A 007-08 o succssivi dvono obbligtorimnt sostnr l sm complto Esm

Dettagli

macchina in corrente continua a magneti permanenti Struttura base del motore dc

macchina in corrente continua a magneti permanenti Struttura base del motore dc cchin in corrn coninu ni prnni Sruur bs dl oor dc l clssico oor in corrn coninu h un pr ch ir d ppuno roor o nch rur un pr ch nr un cpo nico fisso (nll'spio i du ni colori) d sor. Un inrruor ron do couor

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

CORSO DI ELEMENTI COSTRUTTIVI DELLE MACCHINE (NUOVO ORDINAMENTO)

CORSO DI ELEMENTI COSTRUTTIVI DELLE MACCHINE (NUOVO ORDINAMENTO) COSO DI ELEETI COSTUTTIVI DELLE CCHIE (UOVO ODIETO) ESE DEL GEIO 00 Il coprchio di srboio osro in igur è ono su un crdin doo di un ccniso in grdo di cilirn l prur conrobilncindon il pso. Tl ccniso è cosiuio

Dettagli

sellaposizionaxassegnatali

sellaposizionaxassegnatali Cinmic dl puno mril win un dimnsion com si muovono l cos con snsioni rispo i loro sposmni lggi orri offèndno m non solo dilp dirio rscurbili in funzion dl mpo cso 1 DM bs grndzz coordin rpprsnr l posizion

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD ECOOMIA POLITICA II - ESERCITAZIOE 8 Curv di Phillips Legge di Okun - AD Esercizio 1 Sino β = 0.5, α = 1, u = u n = 6%, λ = 0.5, g y = 0.03. Supponee che nell nno 0 l disoccupzione si 6% e che l bnc cenrle

Dettagli

EQUAZIONI DIFFERENZIALI. dx dx. = = = 2e

EQUAZIONI DIFFERENZIALI. dx dx. = = = 2e EQUAZINI DIFFERENZIALI Dfinizion : si dfinisc qzion diffrnzil ordinri ordinr diffrnil qion n qzion fnzionl ch bbi com inconi n fnzion ƒx dll ribil rl x ch sbilisc n lm fr x lmno n dll s dri. Dfinizion

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) Matmatica Gnral 6 fbbraio 9 (prof Biscglia) Traccia A Trovar, s possibil un punto di approssimazion con un rror nll intrvallo, Dopo avrn accrtata l sistnza, calcolar il sgunt

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

Appendice Analisi in frequenza dei segnali

Appendice Analisi in frequenza dei segnali Appndic Analisi in rqunza di sgnali - Appndic Analisi in rqunza di sgnali - Sgnali priodici Sviluppo in sri di Fourir Un sgnal è priodico nl mpo quando si rip ogni scondi. Si vda, com smpio, il sgnal in

Dettagli

Corso di Laurea in Fisica e Astrofisica Corso di Laboratorio di Elettromagnetismo Esonero del 13/06/2012

Corso di Laurea in Fisica e Astrofisica Corso di Laboratorio di Elettromagnetismo Esonero del 13/06/2012 rs di ur in Fisic Asrisic rs di rri di Elrmgnism Esnr dl 3/06/0 Si cnsidri il circui di igur, rm d un indur rl cn mh rsisnz inrn 0Ω, d un cpcià nf.. lclr l risps in rqunz T u / in, snz cnsidrr il cllgmn

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

Determinare il dominio di una funzione

Determinare il dominio di una funzione Drminar il dominio di una funzion CHE COSA SONO LE FUNZON. Una funzion = f( è una rlazion ch lga du grandzz (variabili: la variabil vin chiamaa variabil indipndn, mnr la variabil dipndn. Pr smpio la rlazion

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita.

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita. FUNZIONI Dominio: il dominio di una funzion è l insim dll in cui una funzion è dfinita. Funzioni Fratt: una funzion si dic fratta quando compar la al dnominator Pr calcolar il dominio di una funzion fratta

Dettagli

Capitolo 3 Lo studio dell'evoluzione di perturbazioni di densità di fermioni nell'universo in espansione

Capitolo 3 Lo studio dell'evoluzione di perturbazioni di densità di fermioni nell'universo in espansione Cpiolo Lo sudio dll'voluzion di prurbzioni di dnsià di frmioni nll'univrso in spnsion Rispo ll finlià dllo sudio di Bisnov-Kogn Zl'dovich sull'voluzion di prurbzioni di dnsià di pricll clssich non collisionli,

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero )

STUDI DI FUNZIONI. Dunque : y=1 è asintoto orizzontale sia sinistro che destro. x=0 è asintoto verticale ( solo a sinistra di zero ) ESERCITAZIONI 7-8- 9- STUDI DI FUNZIONI A) Esrcizi svolti. Studiar il dominio d il comportamnto agli strmi dl dominio dll sgunti funzioni. Calcolarn splicitamnt vntuali asintoti orizzontali o vrticali.

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

( ) = 8x 1 + x 2 + 8x 3 con i vincoli x k! 0 ( 1 " k " 3) e

( ) = 8x 1 + x 2 + 8x 3 con i vincoli x k! 0 ( 1  k  3) e Elmnti di Analisi Matmatica Ricrca Oprativa prova dl 5 gnnaio 06 ) Discutr il sgunt problma di Programmazion Linar: Trovar il massimo di p,, = 8 + + 8 con i vincoli k 0 ( " k " ) " + + 5 # + + = % 7 +

Dettagli

Autovalori complessi e coniugati

Autovalori complessi e coniugati Auovalori complssi coniugai Noazioni A A α ω ω α λ λ λ α + jω, λ α jω, maric ad lmni rali α + jω, maric diagonal ad lmni complssi α jω L du marici A A hanno gli sssi auovalori λ, λ. aa una gnrica maric

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Corso di Automi e Linguaggi Formali Parte 3

Corso di Automi e Linguaggi Formali Parte 3 Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

Teoria dei Sistemi - A.A. 2003/2004

Teoria dei Sistemi - A.A. 2003/2004 ANAISI ODAE DEI SISTEI INEARI A TEPO CONTINUO Dr. Crisian Scchi ARSconrol ab Univrsià di odna Rggio Emilia Il movimno di un sisma TI & ( A( + Bu( y( C( + Du( Formula di agrang ( A A( τ + Bu( τ dτ A I +

Dettagli

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ). Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto

Dettagli

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim.

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim. Clcolo I,.. 5 6 Esercizi 8 dicembre 5 Si f : [, b] R u fuzioe coiu. Clcolre le derive d f( d, d b f( d, Iolre (usdo il Teorem di de l Hôpil clcolre il ie d f( d. Ricorddo che per il Teorem fodmele del

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgebric di monomi. Esempio: b ; y y ; b c sono polinomi. I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Corso di Macroeconomia

Corso di Macroeconomia Corso di Macroconomia LE ASPETTATIVE: NOZIONI DI BASE. Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Sinesi delle eori e guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T No il k:\scuola\corsi\corso isica\ond\oscillaori aronico sorzao orzaodoc Crao il 5// 87 Dinsion il: 86 b ndra Zucchini Elaborao il 5// all or 885, salao il 5// 87 sapao il 5// 88 Wb: hp://digilandrioli/prozucchini

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno dell esponenzile,

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE L funzioni iprbolich sono funzioni spcili dott di proprità formlmnt simili qull di cui sono dott l funzioni goniomtrich ordinri. Anch l loro dfinizion in trmini gomtrici è molto simil

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI CORSO DI LAUREA IN INFORMATICA APPLICATA PRECORSO DI MATEMATICA ESERCIZI SULLE EQUAZIONI ESPONENZIALI Esrcizio 1: Risolvr la sgunt quazion x+ = x+1. Svolgimnto: Dividndo il primo il scondo mmbro pr x+1

Dettagli

Analisi Matematica I Soluzioni del tutorato 4

Analisi Matematica I Soluzioni del tutorato 4 Corso di laura i Fisica - Ao Accadmico 07/08 Aalisi Matmatica I Soluzioi dl tutorato 4 A cura di David Macra Esrcizio ( i) Domiio di dfiizio: La fuzio o è dfiita s è tal ch l argomto sotto radic sia gativo,

Dettagli