TIPI DI TRIANGOLO La classificazione dei triangoli può essere fatta o in riferimento ai lati oppure agli angoli. Sulla base dei lati abbiamo:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TIPI DI TRIANGOLO La classificazione dei triangoli può essere fatta o in riferimento ai lati oppure agli angoli. Sulla base dei lati abbiamo:"

Transcript

1 TIPI DI TRIANGOLO La classificazione dei triangoli può essere fatta o in riferimento ai lati oppure agli angoli. Sulla base dei lati abbiamo: TRIANGOLO EQUILATERO Il triangolo equilatero ha i tre lati congruenti. TRIANGOLO ISOSCELE Il triangolo isoscele ha almeno due lati congruenti (quindi il triangolo equilatero è a sua volta un tipo di triangolo isoscele) TRIANGOLO SCALENO Il triangolo scaleno ha tutti e tre i lati di differente lunghezza.

2 SULLA BASE DEGLI ANGOLI ABBIAMO: TRIANGOLI ACUTANGOLI tutti gli angoli sono minori di 90 TRIANGOLI RETTANGOLI hanno un angolo di 90 (angolo retto). I triangoli rettangoli possono essere scaleni oppure isosceli. TRIANGOLI OTTUSANGOLI hanno un angolo maggiore di 90 (angolo ottuso).

3 I PUNTI NOTEVOLI DEL TRIANGOLO

4 ALTEZZE DEL TRIANGOLO in un triangolo si chiama ALTEZZA il segmento che partendo da un vertice forma un angolo di 90 (un angolo retto) con il lato opposto. Questa altezza si dice RIFERITA a questo lato opposto. A B altezza riferita a BC proiezione H proiezione di AC di AB piede dell'altezza Il segmento AH, che partendo dal vertice A forma un angolo retto con il lato opposto BC si dice ALTEZZA RIFERITA AL LATO BC. Il punto H si dice PIEDE DELL'ALTEZZA AH, i segmenti BH e HC si dicono rispettivamente proiezioni dei lati AB e AC sul lato BC (base del triangolo). C

5 In un triangolo ci sono tre lati e tre vertici, per cui abbiamo anche TRE altezze, come mostra la figura qui sotto. Il triangolo ABC possiede tre altezze: 1) altezza AH riferita al lato BC 2) altezza BK riferita al lato AC 3) altezza CS riferita al lato AB S A O K B H C Le tre altezze di un triangolo si incontrano in un unico punto chiamato ORTOCENTRO (O). L'Ortocentro è il punto di incontro delle tre altezze di un triangolo.

6 OSSERVAZIONI SULLE ALTEZZE E SULL'ORTOCENTRO DEL TRIANGOLO La posizione dell'ortocentro dipende dal tipo di triangolo. Se disegnamo le tre altezze di un qualunque tipo di triangolo (acutangolo, ottusangolo, rettangolo...) possiamo osservare la posizione dell'ortocentro. Nei triangoli acutangoli l'ortocentro è SEMPRE INTERNO AL TRIANGOLO.

7 TRIANGOLI OTTUSANGOLI Nei triangoli ottusangoli le altezze formano un angolo retto con il lato opposto o con il suo prolungamento. L'ortocentro è sempre esterno al triangolo.

8 ALTEZZE E ORTOCENTRO NEI TRIANGOLI RETTANGOLI. ALTEZZE E ORTOCENTRO NEI TRIANGOLI RETTANGOLI cateto altezza riferita all'ipotenusa Ipotenusa ortocentro cateto Nei triangoli rettangoli due delle tre altezze coincidono con i lati più piccoli, chiamati cateti, la terza altezza parte da un vertice (quello formato dai due cateti) e forma un angolo retto con il lato maggiore, chiamato IPOTENUSA. L'ortocentro coincide con il vertice opposto all'ipotenusa, cioè quello che forma un angolo di 90 gradi.

9 CONCLUSIONI 1) L'altezza di un triangolo relativa a un lato è il segmento che partendo dal vertice opposto forma un agolo di 90 gradi con lo stesso lato (cioè, il segmento perpendicolare al lato di riferimento o al suo prolungamento, che parte dal vertice opposto). 2) Le tre altezze di un triangolo si incontrano in un unico punto chiamato ortocentro (O), che può essere interno (nei triangoli acutangoli), esterno (nei triangoli ottusangoli), oppure coincidente con il vertice dell'angolo retto nei triangoli rettangoli.

10 LA BISETTRICE DI UN ANGOLO bisettrice vertice

11 LE TRE BISETTRICI DI UN TRIANGOLO A Le tre bisettrici si incontrano in un unico punto chiamato INCENTRO incentro (I) L'incentro si trova sempre all'interno del triangolo B L'incentro si trova sempre alla stessa distanza dai tre lati. C 1) La bisettrice di un triangolo relativa a un determinato angolo è il segmento di bisettrice che lo divide in due parti uguali. 2) Un triangolo ha tre bisettrici, che si incontrano in un solo punto chiamato INCENTRO. 3) l'incentro è sempre interno al triangolo, ed è equidistante dai tre lati.

12 LE TRE MEDIANE DI UN TRIANGOLO E IL BARICENTRO Si dice MEDIANA il segmento che partendo da un vertice raggiunge il punto medio del lato opposto. Il punto medio di un lato è quello che lo divide in due parti uguali. A Le tre mediane di un triangolo si incontrano in un punto che si chiama BARICENTRO, che è sempre INTERNO al triangolo. BARICENTRO (B) In qualunque triangolo il BARICENTRO divide ciascuna mediana in due parti, una delle quali è la metà dell'altra. B C Il BARICENTRO è il CENTRO DI GRAVITA' del triangolo, cioè il suo PUNTO DI EQUILIBRIO.

13 GLI ASSI DI UN TRIANGOLO E IL CIRCOCENTRO Si dice ASSE di un lato la retta che, passando per il suo punto medio, forma un angolo di 90 gradi con il lato stesso. Poichè un triangolo possiede tre lati, allora presenta anche TRE ASSI. A I tre assi di un triangolo si incontrano in un punto chiamato CIRCOCENTRO CIRCOCENTRO (C) B C

14 OSSERVAZIONI SUGLI ASSI E SUL CIRCOCENTRO La posizione del circocentro dipende dal tipo di triangolo. Nei triangoli acutangoli il circocentro è interno al triangolo Il circocentro è sempre equidistante dai vertici C

15 Nel triangolo rettangolo la posizione del circocentro coincide con il punto medio del lato maggiore (ipotenusa) A circocentro B C

16 NEI TRIANGOLI OTTUSANGOLI IL CIRCOCENTRO E' SEMPRE ESTERNO AL TRIANGOLO

17 A In un qualunque triangolo il circocentro è equidistante dai tre vertici. a = b = c a b c B C

18 Nel triangolo equilatero, ortocentro, incentro, baricentro e circocentro coincidono!

19 NEL TRIANGOLO ISOSCELE ORTOCENTRO, INCENTRO, BARICENTRO E CIRCOCENTRO NON COINCIDONO MA SI TROVANO ALLINEATI. Circocentro Baricentro Incentro Ortocentro

20 CRITERI DI CONGRUENZA Abbiamo visto che due angoli si dicono congruenti se sono perfettamente sovrapponibili. In generale, diremo che due figure geometriche sono congruenti quando sono perfettamente sovrapponibili.

21 Prendiamo due figure poligonali, F ed F' A A' C B G C' B' G' D F E F DUE FIGURE PIANE F ED F' SONO CONGRUENTI SE, SOVRAPPONENDOLE MEDIANTE UNO O PIU' MOVIMENTI CHE NON LE DEFORMINO, COINCIDONO PERFETTAMENTE. A A' D' F' E' F' C C' B B' G G' D D' E E' F F'

22 per esempio, due triangoli sono CONGRUENTI se, sovrapposti, coincidono perfettamente.

Proprietà di un triangolo

Proprietà di un triangolo Poligono con tre lati e tre angoli. Proprietà di un triangolo In un triangolo : I lati e i vertici sono consecutivi fra loro; La somma degli angoli interni è 180 ; La somma degli angoli esterni è 360 Ciascun

Dettagli

TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli.

TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli. TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è sempre maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI SCALENO:

Dettagli

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli. I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può

Dettagli

TRIANGOLI. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI

TRIANGOLI. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. a) RISPETTO AI LATI CLASSIFICAZIONE DEI TRIANGOLI SCALENO:

Dettagli

IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati.

IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati. IL TRIANGOLO Il triangolo è un poligono avente tre lati. FORMULE AREA: Il triangolo è equivalente a metà parallelogramma. A = (b x h) : da cui: b= A : h e h= A : b TRIANGOLO RETTANGOLO (a, b cateti; c

Dettagli

I triangoli. Un triangolo è un poligono con tre lati e tre angoli.

I triangoli. Un triangolo è un poligono con tre lati e tre angoli. Triangoli I triangoli Un triangolo è un poligono con tre lati e tre angoli. I triangoli A, B e C: vertici AB, BC e CA: lati A, B e C: angoli Il lato CB Il lato CA Il lato AB I triangoli Un lato e un angolo

Dettagli

Si dicono elementi di un triangolo i suoi lati e i suoi angoli interni ed esterni. α β

Si dicono elementi di un triangolo i suoi lati e i suoi angoli interni ed esterni. α β Il triangolo è un poligono di tre lati e tre angoli. In esso, ovviamente, possiamo anche affermare che: la somma degli angoli esterni misura 2 x 180 α γ β la somma degli angoli interni misura 180 Elementi

Dettagli

Poligoni. Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita.

Poligoni. Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita. Poligoni I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita. I punti A, B, C, D, E sono i VERTICI del poligono I segmenti AB BC CD DE AE

Dettagli

Poligoni e triangoli

Poligoni e triangoli Poligoni e triangoli Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita.. I punti A, B, C, D, E sono i vertici del poligono. I segmenti

Dettagli

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.

Dettagli

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U Prendiamo in considerazione le figure geometriche nel piano, cioè le figure piane, intendendo con questo termine un qualsiasi insieme di punti appartenenti a uno stesso piano. Disegniamo più segmenti consecutivi:

Dettagli

Poligoni. Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita.

Poligoni. Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita. Poligoni Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita. I punti A, B, C, D, E sono i VERTICI del poligono I segmenti AB, BC, CD,

Dettagli

Poligoni. Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita.

Poligoni. Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita. Poligoni Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita. I punti A, B, C, D, E sono i VERTICI del poligono I segmenti AB BC CD

Dettagli

24/03/2012 APPUNTI DI GEOMETRIA EUCLIDEA LEZIONE 2-3. definizione 26-29/3/2012

24/03/2012 APPUNTI DI GEOMETRIA EUCLIDEA LEZIONE 2-3. definizione 26-29/3/2012 PPUNTI DI GEOMETRI EULIDE LEZIONE 2-3 26-29/3/2012 definizione un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni un triangolo è un l

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

CONOSCENZE 1. gli elementi di un triangolo 2. la classificazione dei triangoli. 3. il teorema dell'angolo esterno. 4. i punti notevoli di un triangolo

CONOSCENZE 1. gli elementi di un triangolo 2. la classificazione dei triangoli. 3. il teorema dell'angolo esterno. 4. i punti notevoli di un triangolo GEOMETRIA I TRIANGOLI PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale l conoscere le proprietaá delle quattro operazioni e operare con esse l conoscere gli enti geometrici

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo I TRIANGOLI 1. IL TRIANGOLO Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo In un triangolo: I lati e i vertici sono consecutivi fra loro. La somma degli angoli interni è sempre

Dettagli

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di

Dettagli

CONGRUENZE TRA FIGURE DEL PIANO

CONGRUENZE TRA FIGURE DEL PIANO CONGRUENZE TRA FIGURE DEL PIANO Appunti di geometria ASSIOMI 15. La congruenza tra figure è una relazione di equivalenza 16. Tutte le rette del piano sono congruenti tra loro; così come tutti i piani,

Dettagli

I Triangoli e i criteri di congruenza

I Triangoli e i criteri di congruenza I Triangoli e i criteri di congruenza 1 Le caratteristiche di un triangolo Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni I punti

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

Proprietà dei triangoli e criteri di congruenza

Proprietà dei triangoli e criteri di congruenza www.matematicamente.it Proprietà dei triangoli 1 Proprietà dei triangoli e criteri di congruenza Nome: classe: data: 1. Relativamente al triangolo ABC in figura, quali affermazioni sono vere? A. AH è altezza

Dettagli

CAP.2:ITRIANGOLI GEOMETRIA 1 - AREA 3 I TRIANGOLI E LA LORO CLASSIFICAZIONE. richiami della teoria COMPRENSIONE DELLA TEORIA

CAP.2:ITRIANGOLI GEOMETRIA 1 - AREA 3 I TRIANGOLI E LA LORO CLASSIFICAZIONE. richiami della teoria COMPRENSIONE DELLA TEORIA GEOMETRIA 1 - AREA 3 CAP.2:ITRIANGOLI I TRIANGOLI E LA LORO CLASSIFICAZIONE richiami della teoria n In un triangolo ogni lato eá minore della somma degli altri due ed eá maggiore della loro differenza;

Dettagli

Unità Didattica N 22 I triangoli. U.D. N 22 I triangoli

Unità Didattica N 22 I triangoli. U.D. N 22 I triangoli 10 Unità Didattica N 22 I triangoli U.D. N 22 I triangoli 01) Il triangolo ed i suoi elementi 02) Uguaglianza di due triangoli 03) Primo criterio di uguaglianza dei triangoli 04) Secondo criterio di uguaglianza

Dettagli

C5. Triangoli - Esercizi

C5. Triangoli - Esercizi C5. Triangoli - Esercizi DEFINIZIONI 1) Dato il triangolo in figura completare al posto dei puntini. I lati sono i segmenti,, Gli angoli sono,, Il lato AB e l angolo sono opposti Il lato AB e l angolo

Dettagli

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ). Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.

Dettagli

Postulati e definizioni di geometria piana

Postulati e definizioni di geometria piana I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando

Dettagli

Problemi sui punti notevoli di un triangolo

Problemi sui punti notevoli di un triangolo 1 Sia O l ortocentro del triangolo ABC; dimostra che B è l ortocentro del triangolo AOC. 2 Dimostra che in un triangolo rettangolo il circocentro è il punto medio dell ipotenusa. 3 Il baricentro del triangolo

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Elementi di Geometria euclidea Proprietà dei triangoli isosceli Il triangolo isoscele ha almeno due lati congruenti, l eventuale lato non congruente si chiama base, i due lati congruenti si dicono lati

Dettagli

POLIGONI. A= bxh. 2p=2(b+h) RETTANGOLO. Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti

POLIGONI. A= bxh. 2p=2(b+h) RETTANGOLO. Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti POLIGONI RETTANGOLO Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti Pertanto ogni parallelogramma che ha gli angoli congruenti e le diagonali congruenti è un

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono:

Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono: Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono: congruenti (uguali) maggiore minore la somma di due angoli la ottieni portandoli ad essere consecutivi

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti o semirette. Questi punti sono detti punti

Dettagli

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti. Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

Poligoni inscritti e circoscritti ad una circonferenza

Poligoni inscritti e circoscritti ad una circonferenza Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.

Dettagli

Cap. 10 Il Triangolo

Cap. 10 Il Triangolo Cap. 10 Il Triangolo Definizione Caratteristiche In un triangolo possiamo individuare: 1. Tre vertici (A; B;C) 2. Tre lati (a; b; c) 3. Tre angoli (α;( β; γ) Un triangolo è una figura rigida indeformabile

Dettagli

I triangoli. In questa dispensa presenteremo brevemente la definizione di triangolo e le proprietà principali.

I triangoli. In questa dispensa presenteremo brevemente la definizione di triangolo e le proprietà principali. I triangoli In questa dispensa presenteremo brevemente la definizione di triangolo e le proprietà principali. Dopo aver introdotto la definizione e le classificazioni rispetto ai lati e rispetto agli angoli,

Dettagli

SPEZZATA. Si chiama spezzata una figura costituita da due o più segmenti consecutivi non adiacenti. A, B, C, D, E. Vertici AB, BC, CD, DE,..

SPEZZATA. Si chiama spezzata una figura costituita da due o più segmenti consecutivi non adiacenti. A, B, C, D, E. Vertici AB, BC, CD, DE,.. Poligoni e triangoli SPEZZATA Si chiama spezzata una figura costituita da due o più segmenti consecutivi non adiacenti B A D E A, B,, D, E. Vertici AB, B, D, DE,.. Lati Una spezzata può essere aperta chiusa

Dettagli

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non

Dettagli

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza

Dettagli

GEOMETRIA - LICEO SCIENTIFICO. Pagina 1 di 29

GEOMETRIA - LICEO SCIENTIFICO. Pagina 1 di 29 1_GEOMSCIENTIFICO Quali sono gli enti geometrici fondamentali? Il punto, la retta, il piano Il triangolo, il quadrato, il rettangolo Il perimetro, la superficie, il volume Il cono, il cilindro, la sfera

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della circonferenza. La circonferenza si dice circoscritta al

Dettagli

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura

Dettagli

Triangoli. Matematica di Base - Ingegneria UNIUD

Triangoli. Matematica di Base - Ingegneria UNIUD Triangoli idoro.sciarratta@alice.it Matematica di ase - Ingegneria UNIUD IL TRINGOLO Si defince triangolo la parte di piano racchiusa da una poligonale chiusa composta da tre segmenti detti lati o spigoli

Dettagli

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI LATI: equilatero, isoscele, scaleno CLASSIFICAZIONE RISPETTO

Dettagli

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando

Dettagli

CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari

CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari GEOMETRIA I POLIGONI INSCRITTI E CIRCOSCRITTI PREREQUISITI l l l l conoscere le proprietaá delle quattro operazioni e operare con esse conoscere gli enti fondamentali della geometria e le loro proprietaá

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE PER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda PARTE PRIMA Disegno del rilievo Unità Didattica:

Dettagli

Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza

Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza 1. I poligoni inscritti Quando un poligono è inscritto in una Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza Se un poligono è inscritto in una circonferenza,

Dettagli

La retta. y 5 x ; 5y. Esercizio 6. 6 x 3. y x. Essendo ;,, i tre punti sono allineati.

La retta. y 5 x ; 5y. Esercizio 6. 6 x 3. y x. Essendo ;,, i tre punti sono allineati. La retta Esercizi Esercizio eterminare l equazione della retta passante per ; 7 e parallela alla retta. 7 ( ) ; 7 ;. Esercizio eterminare l equazione della retta passante per 7 e perpendicolare alla retta.

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 B

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 B Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 011-01 Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: B 9.03.01 prof. Mimmo Corrado A. Dato il triangolo di vertici: 3, 1 4,

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI TEST 1 In figura sono disegnati l angolo aob e il segmento PQ, perpendicolare al lato Oa e tale che PH sia congruente a HQ. Il luogo geometrico dei

Dettagli

Angoli al centro e alla circonferenza

Angoli al centro e alla circonferenza Angoli al centro e alla circonferenza angolo al centro se il vertice coincide con il centro del cerchio proprietà ad angoli uguali corrispondono archi uguali A B angolo alla circonferenza se ha il vertice

Dettagli

Far apprendere i concetti della geometria. Sviluppare la capacità di osservazione e ragionamento attraverso l esperienza.

Far apprendere i concetti della geometria. Sviluppare la capacità di osservazione e ragionamento attraverso l esperienza. Progetto: Far apprendere i concetti della geometria. Sviluppare la capacità di osservazione e ragionamento attraverso l esperienza. Offrire all alunno con DSA l opportunità di acquisire un metodo di lavoro

Dettagli

Questo file è solo un anteprima, la tavola sinottica completa la puoi acquistare cliccando qui

Questo file è solo un anteprima, la tavola sinottica completa la puoi acquistare cliccando qui Questo file è solo un anteprima, la tavola sinottica completa la puoi acquistare cliccando qui 1 1 N o z i o n i v a r i e Gli enti fondamentali della geometria sono il punto, la retta e il piano La capacità

Dettagli

CAP.2:IPOLIGONIINSCRITTIECIRCOSCRITTI

CAP.2:IPOLIGONIINSCRITTIECIRCOSCRITTI GEOMETRIA 1 - AREA 4 CAP.2:IPOLIGONIINSCRITTIECIRCOSCRITTI LE CARATTERISTICHE DELLA CIRCONFERENZA E DEL CERCHIO richiami della teoria n Un poligono inscritto in una circonferenza ha tutti i suoi vertici

Dettagli

I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE

I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE I TRIANGOLI COSTRUZIONE DEL TRIANGOLO ISOSCELE Come sai il triangolo isoscele ha due lati della stessa lunghezza. Costruiamo il triangolo isoscele a partire dal lato disuguale. 1. Apri il programma Geogebra

Dettagli

POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA. Poligono formato da 3 angoli e 3 lati. Nessuna diagonale.

POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA. Poligono formato da 3 angoli e 3 lati. Nessuna diagonale. POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA NOME E FIGURA PROPRIETÀ FORMULE TRIANGOLO Poligono formato da 3 angoli e 3 lati. Nessuna diagonale. P=somma delle misure dei 3lati SCALENO

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

N. Domanda A B C D. circonferenza in quattro parti la base del triangolo isoscele che genera il cono

N. Domanda A B C D. circonferenza in quattro parti la base del triangolo isoscele che genera il cono 1 Se in un triangolo circocentro e incentro coincidono allora esso come è? 2 Un angolo di un triangolo misura 50 gradi. Quanto misrano gli altri due angoli? 3 In un trapezio avente l'area di 320 m^2 le

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

Indice del vocabolario della Geometria euclidea

Indice del vocabolario della Geometria euclidea Indice del vocabolario della Geometria euclidea 1 Postulati di appartenenza: piano, retta e punto nello spazio Punto, retta, piano nello spazio Punto, retta nel piano Punto nella retta Punto esterno alla

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso.

Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso. Poligoni In geometria un poligono è una figura geometrica piana delimitata da una linea spezzata chiusa. I segmenti che compongono la spezzata chiusa si dicono lati del poligono e i punti in comune a due

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio

Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio ELEMENTI DI GEOMETRI PIN. MISURE RIGURDNTI TRINGOLI, PRLLELOGRMMI, POLIGONI REGOLRI, CERCHIO La geometria piana si occupa delle

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 C

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 C Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 011-01 Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: C 8.0.01 prof. Mimmo Corrado A. Dato il triangolo di vertici: 7, 1, 65

Dettagli

PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA

PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA 1. Calcolare la misura x di un cateto di un triangolo rettangolo, sapendo che essa supera di 4 cm. quella della sua proiezione sull'ipotenusa,

Dettagli

Il triangolo è una figura indeformabile ed è l'unico poligono cui è sempre circoscrivibile e in cui è sempre inscrivibile una circonferenza.

Il triangolo è una figura indeformabile ed è l'unico poligono cui è sempre circoscrivibile e in cui è sempre inscrivibile una circonferenza. I triangoli e il teorema di Pitagora (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Triangoli - I triangoli

Progetto Matematica in Rete - Geometria euclidea - Triangoli - I triangoli I triangoli Definizione: un triangolo è l insieme dei punti del piano costituiti da una poligonale chiusa di tre lati e dai suoi punti interni. A, B, C vertici del triangolo α, β, γ angoli interni AB,

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

1 Congruenza diretta e inversa

1 Congruenza diretta e inversa 1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Geometria con GeoGebra

Geometria con GeoGebra GeoGebra è un software didattico "open source" di geometria dinamica dedicato all'insegnamento e all'apprendimento della matematica a tutti i livelli di istruzione: dalla scuola primaria all'università.

Dettagli

Geometria 1851 La vasca di un acquario, a forma di parallelepipedo, ha le seguenti dimensioni: 6 dm, 4 dm e 3 dm. Per riempire la vasca fino all orlo, quanti litri d acqua saranno necessari? A) 72 B) 24

Dettagli

CRITERI DI ISOMETRIA (o di CONGRUENZA) dei TRIANGOLI

CRITERI DI ISOMETRIA (o di CONGRUENZA) dei TRIANGOLI RITERI DI ISOMETRI (o di ONGRUENZ) dei TRINGOLI Ricordando il concetto di congruenza possiamo affermare che due triangoli e ''' sono congruenti (isometrici) se sono rispettivamente congruenti gli elementi

Dettagli

Banca Dati Finale Senza Risposte GEM da 1851 a 2500

Banca Dati Finale Senza Risposte GEM da 1851 a 2500 Banca Dati Finale Senza Risposte GEM da 1851 a 2500 1851 La vasca di un acquario, a forma di parallelepipedo, ha le seguenti dimensioni: 6 dm, 4 dm e 3 dm. Per riempire la vasca fino all orlo, quanti litri

Dettagli

N. Domanda Risposta esatta Risposta 2 Risposta 3 Risposta 4. rettangolo. un angolo retto 4

N. Domanda Risposta esatta Risposta 2 Risposta 3 Risposta 4. rettangolo. un angolo retto 4 Quali sono gli enti geometrici fondamentali? Il punto, la retta, il piano Il triangolo, il quadrato, il Il perimetro, la superficie, il Il cono, il cilindro, la sfera rettangolo volume 1 Due angoli consecutivi

Dettagli

Punto d intersezione delle altezze nel triangolo

Punto d intersezione delle altezze nel triangolo Punto d intersezione delle altezze nel triangolo 1. Osserva la posizione del punto d intersezione H. Dove si trova H a) in un triangolo acutangolo? b) in un triangolo rettangolo? c) in un triangolo ottusangolo?

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO È una linea chiusa formata da tutti i punti del piano che sono equidistanti da un punto interno detto centro. La distanza punto della circonferenza-centro è detto raggio. circonferenza

Dettagli

esercizi 107 Problemi sulla retta

esercizi 107 Problemi sulla retta esercizi 107 Problemi sulla retta Es. 1 Detto C il punto in cui l asse del segmento di estremi A( 3, 3) e B(1, 5) incontra l asse x, calcolare le coordinate del punto D equidistante da A, B e C. Determinare

Dettagli

LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1

LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1 LA GEOMETRIA EUCLIDEA Seminario Cidi, Roma 13/05/2013 - prof.ssa Dario Liliana 1 Le difficoltà degli studenti nell apprendere la geometria nel 1 anno della scuola secondaria Gli argomenti della geometria

Dettagli

RETTE PARALLELE E RETTE PERPENDICOLARI

RETTE PARALLELE E RETTE PERPENDICOLARI RETTE PARALLELE E RETTE PERPENDICOLARI Rette perpendicolari Due rette si dicono perpendicolari se incontrandosi formano 4 angoli retti. In simboli, per indicare che a è perpendicolare ad b si scrive: a

Dettagli

C8. Teoremi di Euclide e di Pitagora - Esercizi

C8. Teoremi di Euclide e di Pitagora - Esercizi C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli