ALCUNE CURVE INTERESSANTI
|
|
|
- Tommaso Leo
- 9 anni fa
- Visualizzazioni
Transcript
1 CURVE IN COORDINATE POLARI USANDO GEOGEBRA Si ricorda che il punti si inseriscono con la sintassi 6; " ( dove pigreco va 4 ' inserito con la parola pi Che le curve vanno inserire in forma parametrica, con la sintassi del comando Curva che è la seguente: Curva[Espressione e, Espressione e, Parametro t, Numero a, Numero b]: Questo comando definisce e traccia la curva in forma parametrica avente la x definita dall'espressione e e la y dall'espressione e (dipendenti dal parametro t nell intervallo [a, b] Ad esempio la cardioide cos va inserita Curva[(-cos(t)) cos(t), (-cos(t)) sin(t),t,0, pi] Si possono utilizzare degli slider per modificare rapidamente le curve. Utilizzare gli slider soprattutto in presenza di parametri. ALCUNE CURVE INTERESSANTI SPIRALE UNIFORME Si chiama spirale uniforme una spirale il cui passo, cioè la distanza tra una spirale e la successiva, è costante. Tale curva è nota come spirale di Archimede e ha equazione m con m numero che determina la diversa forma della spirale. Essa si genera ad esempio quando un punto mobile P si muove a velocità uniforme su un asta che a sua volta ruota uniformemente attorno a un punto con velocità angolare costante. Altro esempio: un elettrone ruota con velocità angolare costante e contemporaneamente il raggio della traiettoria aumenta unformemente. Nella SPIRALE LOGARITMICA o equiangolare il passo non è costante ma varia seguendo una ben determinata legge. Tale curva, studiata inizialmente da Cartesio e Torricelli, ha equazione m. Ad esempio: un elettrone immerso in una camera a bolle può venir sollecitato in modo che la sua traiettoria sia una spirale non a passo costante: l elettrne ruota con velocità angolare costante ma durante la rotazione la distanza dimezza ogni secondo. Si noti che se I valori di m sono in successione aritmetica I valori di " sono in successione geometrica. Tale spirale è detta logaritmica perchè, pur non essendo costante il passo, è costante il rapporto dei passi. Si noti che la spirale logaritmica è infinita nei due versi
2 La CICLOIDE è la curva generata da un cerchio che rotola, senza strisciare, lungo una retta. Se il cerchio rotola, senza strisciare, non su una retta ma su una circonferenza otterremo l IPOCICLOIDE se il cerchio è all interno della circonferenza, e EPICICLOIDE se è all esterno. Al variare del raggio del cerchio si ottengono diverse curve. L ASTEROIDE, cioè l opocicloide che si ottiene quando il raggio del cerchio è è ¼ del raggio della circonferenza fissa; x = 4acos 3 " y = 4asin 3 " la CARDIOIDE che è l epicicloide che si ottiene quando il raggio del cerchio mobile è uguale a quello della circonferenza fissa. a( cos ) La LEMNISCATA DI BERNOULLI è il luogo dei punti del piano tali che il prodotto delle distanze da due punti fissi detti fuochi è uguale al quadrato della semidistanza focale. a cos
3 ESERCIZI. Scrivere tutte le equazioni delle seguenti curve. Disegnare le seguenti coniche prestando attenzione alle variazioni dell equazione e del disegno a cos 3 4 cos b cos + cos + 4 cos + 0,cos c. + cos + cos d. + cos e. + 6cos cos + 4cos + cos f. + cos + cos g. sin applicare rotazione di " ;"; 3" e farne i grafici h. sin sin sin i. sin sin sin sin sin sin + 3 cos 3. Disegnare con geogebra le seguenti curve
4 a. Spirale iperbolica b. Spirale logaritmica e 5 c. Spirale di Galileo 3 d. Lumaca di Pascal a(+ cos ) e. Cardioide 3 + sin f. b sin g. Rosa a tre foglie asin3 con a variabile h. Rosa a quattro foglie asin con a variabile i. Leminiscata di Bernoulli a cos con a variabile 4. Disegnare sullo stesso piano polare le seguenti spirali uniformi (di Archimede) 5. La cardioide ha equazione generale a(+ cos ). Disegnare il caso a=. Applicare poi la rotazione di " ;"; 3", farne i grafici e scriverne le equazioni. 6. Equazione dell asteroide x = 4acos3 ". Disegnarlo per a= e a= y = 4asin 3 " 7. Equazione della cicloide x = r" rsin". Disgnarla al variare di r. y = r rcos" 8. Generalizzare l esercizion g,h disegnando sinn con a. n=, /, /4, /6 b. n=/3, /5, /7 c. n=/3, /5, 3/5, 3/7, ¾, 5/6, 5/7, 6/7, d. osservare poi la differenza tra sin(n +) e sin(n)
5 ALTRE CURVE CURIOSE e. Parabola virtuale di Gregorio di San Vincenzo x = acos " y = (acos" + bsin" ) f. Concoide di Nicomede a cos + k g. Cissoide de Diocle asin b sin cos h. Lituo " = a i. Kappa x = a cos" sin" y = acos" j. Apienne x = r(+ cos" ) r y = + sin" x = a(3cos" cos3" ) k. Nefroide y = a(3sin" sin3" ) l. Strofoide x = a(" ) /(" +) y = a" (" ) /(" +) m. Strofoide si Freeth 4acos cos n. Deltoide o. Bicorno x = acos" + acos" ) y = asin" asin" ) x = acos" y = asin " + sin" p. Clotoide x = ' cos("t /) dt 0 ( ' y = sin("t /) dt 0
ENCICLOPEDIA MATEMATICA. di Corrado Brogi http://spazioweb.libero.it/corradobrogi
ENCICLOPEDIA MATEMATICA di Corrado Brogi http://spazioweb.libero.it/corradobrogi Prefazione A mio modesto (anzi modestissimo) parere questa enciclopedia in sette volumi è uno dei lavori più chiari e completi
Curve e lunghezza di una curva
Curve e lunghezza di una curva Definizione 1 Si chiama curva il luogo geometrico dello spazio di equazioni parametriche descritto da punto p, chiuso e limitato. Definizione 2 Si dice che il luogo C è una
AUTORI COSTANZO CATERINA DE LUCA ELISABETTA MACCHERONI FEDERICO MANCINI SARA MORETTI MARGHERITA
VARIETÀ DI RODONEE AUTORI COSTANZO CATERINA DE LUCA ELISABETTA MACCHERONI FEDERICO MANCINI SARA MORETTI MARGHERITA ABSTRACT. L articolo illustra alcune varianti costruite a partire da curve denominate
( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come
Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata
1. Traiettorie Determiniamo le equazioni delle due rette su cui si muove ciascuna nave. ( )
PROBLEMA Sei il responsabile del controllo della navigazione della nave indicata in figura con il punto P. Nel sistema di riferimento cartesiano Oxy le posizioni della nave P, misurate negli istanti t
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.
Matematica creativa e packaging
Matematica creativa e packaging Elena Marchetti - Luisa Rossi Costa Dipartimento di Matematica F. Brioschi Politecnico di Milano Piazza Leonardo da Vinci, 32-20133 Milano POLIGONI E TASSELLAZIONI DEL PIANO
SUPERFICI CONICHE. Rappresentazione di coni e cilindri
SUPERFICI CONICHE Rappresentazione di coni e cilindri Si definisce CONO la superficie che si ottiene proiettando tutti i punti di una curva, detta DIRETTRICE, da un punto proprio, non appartenente al piano
I MOTI NEL PIANO. Vettore posizione e vettore spostamento
I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento
LABORATORIO DI MATEMATICA: COORDINATE POLARI ESTENSIONE DELLE FUNZIONI TRIGONOMETRICHE
LABORATORIO DI MATEMATICA: COORDINATE POLARI ESTENSIONE DELLE FUNZIONI TRIGONOMETRICHE Uno strumento, che ci suggerisce come ampliare le nostre conoscenze, è il radar, strumento fondamentale nella navigazione
DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA
DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema
Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce
1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo
PROIEZIONI ORTOGONALI: SEZIONI CONICHE
www.aliceappunti.altervista.org PROIEZIONI ORTOGONALI: SEZIONI CONICHE 1) PREMESSA: Il cono è una superficie generata da una retta con un estremo fisso e l altro che ruota. La retta prende il nome di GENERATRICE.
GEOMETRIA ANALITICA: LE CONICHE
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale
MECCANISMI PER LA TRASMISSIONE DEL MOTO
Le MACCHINE UTENSILI sono macchine che, usando una fonte di energia, compiono un lavoro, che consiste solitamente nell'asportazione di materiale. Per tramettere il moto dal punto in cui viene generato,
In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.
L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze
(Per scaricare il programma: cercare su Google download EffeDiX )
EffeDiX 2012 (ver. 3.0) Attività (Per scaricare il programma: cercare su Google download EffeDiX ) Primo incontro Attività 1 Discutere graficamente l equazione letterale kx 2 + x + k = 0 Tracciare il grafico
La parabola. Tutti i diritti sono riservati.
La parabola Copyright c 8 Pasquale Terrecuso Tutti i diritti sono riservati. La parabola di equazione y = a + b + c Concavità............................................................... Se a varia................................................................
Costruzione delle coniche con riga e compasso
Costruzione delle coniche con riga e compasso Quando in matematica è possibile dare diverse definizioni, tutte equivalenti, di uno stesso oggetto, allora significa che quell oggetto può essere caratterizzato
MP. Moti rigidi piani
MP. Moti rigidi piani Quanto abbiamo visto a proposito dei moti rigidi e di moti relativi ci consente di trattare un esempio notevole di moto rigido come il moto rigido piano. Un moto rigido si dice piano
Introduzione a GeoGebra
Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni
Analisi Matematica II (Prof. Paolo Marcellini)
Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 [email protected] web.math.unifi.it/users/eleuteri
Gravità e moti orbitali. Lezione 3
Gravità e moti orbitali Lezione 3 Sommario Brevi cenni storici. Le leggi di Keplero e le leggi di Newton. La forza di gravitazionale universale e le orbite dei pianeti. 2 L Universo Geocentrico La sfera
Il calcolo vettoriale: ripasso della somma e delle differenza tra vettori; prodotto scalare; prodotto vettoriale.
Anno scolastico: 2012-2013 Docente: Paola Carcano FISICA 2D Il calcolo vettoriale: ripasso della somma e delle differenza tra vettori; prodotto scalare; prodotto vettoriale. Le forze: le interazioni fondamentali;
Note di geometria analitica nel piano
Note di geometria analitica nel piano e-mail: [email protected] Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................
C I R C O N F E R E N Z A...
C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della
SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE
SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei
Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale è la capacità in litri del serbatoio?
Quesiti ord 011 Pagina 1 di 6 a cura dei Prof. A. Scimone, G. Florio,. R. Sofia Quesito 1 Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IVB. Anno Scolastico
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IVB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 Le coniche nella discussione dei problemi (Richiami)
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IIIB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 DISEQUAZIONI Disequazioni razionali intere di secondo
Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2
0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la
Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica
Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali
Esercitazioni Fisica Corso di Laurea in Chimica A.A
Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
Le coniche: circonferenza, parabola, ellisse e iperbole.
Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono
Ellisse. DEF: "il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi. è costante"; CONSIDERAZIONI:
Ellisse DEF: "il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi è costante"; CONSIDERAZIONI: Il punto P appartiene all'ellisse se, e solo se, la distanza del punto P dal fuoco
Indice. P Preliminari 3. 1 Limiti e continuità 61. P.7 Funzioni trigonometriche 47. Per lo studente Ringraziamenti
vii Indice Prefazione Per lo studente Ringraziamenti xiii xvii xix Che cosa è il calcolo differenziale? 1 P Preliminari 3 P.1 Numeri reali e retta reale 3 Intervalli 5 Il valore assoluto 8 Equazioni e
Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h
Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare
Cinematica. Descrizione dei moti
Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2
Definizione unitaria delle coniche
Autore/i: M.Maddalena Bovetti docente di matematica della Scuola Media Superione Titolo: Definizione unitaria delle coniche Collocazione: Difficoltà: Livello di scolarità: Periodo scolastico: Abstract:
[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?
Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una
Problemi con discussione grafica
Problemi con discussione grafica Un problema con discussione grafica consiste nel determinare le intersezioni tra un fascio di rette (proprio o improprio) e una particolare funzione che viene assegnata
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Coniche
LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.
Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di
04 LA CIRCONFERENZA ESERCIZI. 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza 2 dal punto C(1; 3).
04 LA CIRCONFERENZA ESERCIZI 1. LA CIRCONFERENZA E LA SUA EQUAZIONE 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza dal punto C(1; 3). x + y x 6y + 6 = 0 Indica se le seguenti
Disequazioni di secondo grado
Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione
LE CONICHE IN LABORATORIO Attività per osservare la matematica prima parte A cura di Silvia Defrancesco
LE CONICHE IN LABORATORIO Attività per osservare la matematica prima parte A cura di Silvia Defrancesco Le coniche con la luce 1)Visualizzare un cono di luce con la macchina per la nebbia e intercettare
Formulario di Geometria Analitica a.a
Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore [email protected]).
(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.
Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di
Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0
Calcolo Algebrico Equazioni e disequazioni in una incognita e coefficienti reali: Primo grado ax + b = 0 (a 0) x = b a Secondo grado ax 2 + bx + c = 0 (a 0) Si hanno due soluzioni che possono essere reali
DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane
DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione
SCALA QUADRATICA. Grafico di y(x) Grafico di y(x 2 ) y. X=x 2
SCALA QUADRATICA Grafico di y(x) y Grafico di y(x 2 ) y x X=x 2 1 SCALE NON LINEARI L utilizzo di scale non lineari permette di: Riconoscere le curve di tipo esponenziale o potenza Semplificare le curve
Esercizi di Elementi di Matematica Corso di laurea in Farmacia
Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando
Metodo 1 - Completamento del quadrato
L iperbole traslata Esercizi Esercizio 472.121.b Traccia il grafico della curva di equazione: 9² 4² + 18 + 8 31=0 Metodo 1 - Completamento del quadrato Poiché i coefficienti di e sono opposti, si tratta
Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO
Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima Liceo Artistico e Musicale - Numeri naturali, interi, razionali
Indice. P Preliminari 3. 1 Limiti e continuità 59
Indice Prefazione ix Per lo studente xii Ringraziamenti xiv Che cos èilcalcolodifferenziale? 1 P Preliminari 3 P.1 Numeri reali e retta reale 3 Intervalli 5 Il valore assoluto 8 Equazioni e disequazioni
Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia
Unità didattica 1 Unità di misura Cinematica Posizione e sistema di riferimento....... 3 La velocità e il moto rettilineo uniforme..... 4 La velocità istantanea... 5 L accelerazione 6 Grafici temporali.
Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi
Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
Tutorato di Analisi 2 - AA 2014/15
Tutorato di Analisi - AA / Emanuele Fabbiani marzo Funzioni in più variabili. Dominio Determinare e rappresentare gracamente il più grande insieme di R n che può essere dominio delle seguenti funzioni.
R. Capone Analisi Matematica Integrali multipli
Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale
Quesiti dell Indirizzo Tecnologico
Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella
Scheda (1) per lo svolgimento dell attività
Matebilandia 246 Scheda (1) per lo svolgimento dell attività Prima parte Domanda 1. Scegli una ruota dentata dello spirografo. Leggi il numero dei denti stampato sulla plastica... 36 Quanti denti ci sono
Indice. Capitolo 1 Richiami di calcolo numerico 1. Capitolo 2 Rappresentazioni di dati 13
Autori Prefazione Nota dell Editore e istruzioni per l uso Guida alla lettura XI XIII XV XVII Richiami di calcolo numerico 1 1.1 Unità di misura e fattori di conversione; potenze del 10; notazioni scientifiche
COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1
COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA STATICA
INTEGRALI TRIPLI Esercizi svolti
INTEGRLI TRIPLI Esercizi svolti. Calcolare i seguenti integrali tripli: (a xye xz dx dy dz, [, ] [, ] [, ]; (b x dx dy dz, {(x, y, z : x, y, z, x + y + z }; (c (x + y + z dx dy dz, {(x, y, z : x, x y x
Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014
Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro
Proprietà focali delle coniche.
roprietà focali delle coniche. Mauro Saita e-mail: [email protected] Versione provvisoria, gennaio 2014 Indice 1 Coniche 1 1.1 arabola....................................... 1 1.1.1 roprietà focale
LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE
LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE 1. EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE ESEMPIO Della funzione y = f(x) si sa che y' 2x = 1. Che cosa si può dire della funzione
CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata
CLASSIFICAZIONE DELLE CONICHE AFFINI
CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e
213. Le spirali di Archimede in 2D e 3D Rosa Marincola
213. Le spirali di Archimede in 2D e 3D Rosa Marincola [email protected] Sunto Questo lavoro è stato realizzato in un laboratorio del Piano Lauree con una classe del II biennio superiore Sistemi
CURVE 2D-3D. x ² + y ² - 1 = 0 è l equazione di una circonferenza di centro O e raggio 1
CURVE 2D-3D Curve in R² 01 Definizioni. Consideriamo il piano euclideo R² dotato di un sistema di assi cartesiani ortogonali Oxy. Esso sarà chiamato d ora in poi più semplicemente piano cartesiano. L equazione
Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente
1 Fasci di Coniche Salvino Giuffrida 1. Determinare e studiare il fascio Φ delle coniche che passano per O = (0, 0), con tangente l asse y, e per i punti (1, 0), (1, ). Determinare vertice e asse della
CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO
CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO ESERCIZI PROPOSTI 1. DATI I PUNTI A(3,-) E B(-5,): A. RAPPRESENTARLI SUL PIANO; B. CALCOLARE LA LORO DISTANZA; C. CALCOLARE
Esercizi su esponenziali, coni, cilindri, superfici di rotazione
Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizio 1. Risolvere exp (exp (z)) = i. Esercizio. Risolvere i exp(z)z 4 + i exp(z)(1 + i) z 4 i 1 = 0. Esercizio. Risolvere exp(z) =
Mutue posizioni della parabola con gli assi cartesiani
Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse
2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica.
2ALS Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. Si consiglia il libro: Matematica-recupero dei debiti formativi e ripasso estivo 2 ISBN 978-88-24741279
, conservaz del mom della quant di moto, in cui abbiamo 3 cost scalari.
Il probl degli N corpi consiste nello studio del moto di un sistema di n punti di massa, soggetti alle mutue interazioni gravitaz descritte dalla legge newtoniana. L obiettivo è quello di identificare
Quadro riassuntivo di geometria analitica
Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive
Fisica 1 Anno Accademico 2011/2011
Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 011/011 (1 Marzo - 17 Marzo 01) Sintesi Abbiamo introdotto lo studio del moto di un punto materiale partendo da un approccio cinematico.
MOTO CIRCOLARE VARIO
MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO
Condizione di allineamento di tre punti
LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.
ANALISI B alcuni esercizi proposti
ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la
Formule Utili Analisi Matematica per Informatici a.a
Formule Utili Analisi Matematica per Informatici a.a. 006-007 Dott. Simone Zuccher dicembre 006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore [email protected]).
Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )
Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto
Gravità e moti orbitali. Lezione 3
Gravità e moti orbitali Lezione 3 Sommario Brevi cenni storici. Le leggi di Keplero e le leggi di Newton. La forza di gravitazionale universale e le orbite dei pianeti. 2 L Universo Geocentrico La sfera
Test sull ellisse (vai alla soluzione) Quesiti
Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate
parametri della cinematica
Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero
