Normative di riferimento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Normative di riferimento"

Transcript

1

2

3 Aztec Informatica * MAX Relazione di calcolo 1 Progetto: Ditta: Comune: Progettista: Direttore dei Lavori: Impresa: Giardini del Poio Fabriano Ing. Barbara Lori Normative di riferimento - Legge nr del 05/11/1971. Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica. - Legge nr. 64 del 02/02/1974. Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche. - D.M. LL.PP. del 11/03/1988. Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilitàdei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione. - D.M. LL.PP. del 14/02/1992. Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche. - D.M. 9 Gennaio 1996 Norme Tecniche per il calcolo, l' esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche - D.M. 16 Gennaio 1996 Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi' - D.M. 16 Gennaio 1996 Norme Tecniche per le costruzioni in zone sismiche - Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C. Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG. Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008) - Circolare 617 del 02/02/ Circolare C.S.L.P. 02/02/2009 n Istruzioni per l applicazione delle Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008 Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi: - Calcolo della spinta del terreno - Verifica a ribaltamento - Verifica a scorrimento del muro sul piano di posa - Verifica della stabilità complesso fondazione terreno (carico limite) - Verifica della stabilità globale Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali

4 Aztec Informatica * MAX Relazione di calcolo 2 Calcolo della spinta sul muro Valori caratteristici e valori di calcolo Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze. I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ. In particolare si distinguono combinazioni di carico di tipo A1-M1 nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo A2-M2 nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili. Metodo di Culmann Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea. I passi del procedimento risolutivo sono i seguenti: - si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno; - si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A); - dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete. Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima. La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno. Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb. Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta. Spinta in presenza di sisma Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana). La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente. Detta ε l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a ε' = ε + θ β' = β + θ dove θ = arctg(k h /(1±k v )) essendo k h il coefficiente sismico orizzontale e k v il coefficiente sismico verticale, definito in funzione di k h. In presenza di falda a monte, θ assume le seguenti espressioni: Terreno a bassa permeabilità θ = arctg[(γ sat /(γ sat -γ w ))*(k h /(1±k v ))] Terreno a permeabilità elevata θ = arctg[(γ/(γ sat -γ w ))*(k h /(1±k v ))] Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da dove il coefficiente A vale S = AS' - S

5 Aztec Informatica * MAX Relazione di calcolo 3 cos 2 (β + θ) A = cos 2 βcosθ In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ. Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1. Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico. Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come F ih = k h W F iv = ±k v W dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi. Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma. Verifica a ribaltamento La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M r ) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M s ) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M s /M r sia maggiore di un determinato coefficiente di sicurezza η r. Eseguendo il calcolo mediante gli eurocodici si puo impostare η r >= 1.0. Deve quindi essere verificata la seguente diseguaglianza M s >= η r M r Il momento ribaltante M r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante. Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali. Verifica a scorrimento Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F r e la risultante delle forze che tendono a fare scorrere il muro F s risulta maggiore di un determinato coefficiente di sicurezza η s Eseguendo il calcolo mediante gli Eurocodici si può impostare η s >=1.0 F r >= η s F s Le forze che intervengono nella F s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione. La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ f l'angolo d'attrito terreno-fondazione, con c a l'adesione terrenofondazione e con B r la larghezza della fondazione reagente, la forza resistente può esprimersi come F r = N tg δ f + c a B r La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso,

6 Aztec Informatica * MAX Relazione di calcolo 4 però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento. Per quanto riguarda l'angolo d'attrito terra-fondazione, δ f, diversi autori suggeriscono di assumere un valore di δ f pari all'angolo d'attrito del terreno di fondazione. Verifica al carico limite Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η q. Cioè, detto Q u, il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere: Eseguendo il calcolo mediante gli Eurocodici si può impostare η q >=1.0 Q u >= η q R Si adotta per il calcolo del carico limite in fondazione il metodo di MEYERHOF. L'espressione del carico ultimo è data dalla relazione: Q u = c N c d c i c + qn q d q i q + 0.5γBN γ d γ i γ In questa espressione c φ γ B D q coesione del terreno in fondazione; angolo di attrito del terreno in fondazione; peso di volume del terreno in fondazione; larghezza della fondazione; profondità del piano di posa; pressione geostatica alla quota del piano di posa. I vari fattori che compaiono nella formula sono dati da: A = e π tg φ N q = A tg 2 (45 +φ/2) N c = (N q - 1) ctg φ N γ = (N q - 1) tg (1.4φ) Indichiamo con K p il coefficiente di spinta passiva espresso da: K p = tg 2 (45 +φ/2) I fattori d e i che compaiono nella formula sono rispettivamente i fattori di profondità ed i fattori di inclinazione del carico espressi dalle seguenti relazioni: Fattori di profondità D d q = K p B d q = d γ = 1 per φ = 0

7 Aztec Informatica * MAX Relazione di calcolo 5 D d q = d γ = K p per φ > 0 B Fattori di inclinazione Indicando con θ l'angolo che la risultante dei carichi forma con la verticale ( espresso in gradi ) e con φ l'angolo d'attrito del terreno di posa abbiamo: i c = i q = (1 - θ /90) 2 θ i γ = (1 - ) 2 per φ > 0 φ i γ = 0 per φ = 0 Verifica alla stabilità globale La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η g Eseguendo il calcolo mediante gli Eurocodici si può impostare η g >=1.0 Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50. Il coefficiente di sicurezza fornito da Fellenius si esprime secondo la seguente formula: c i b i Σ n i ( + [W i cosα i -u i l i ]tgφ i ) cosα i η = Σ n i W i sinα i dove n è il numero delle strisce considerate, b i e α i sono la larghezza e l'inclinazione della base della striscia i esima rispetto all'orizzontale, W i è il peso della striscia i esima e c i e φ i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia. Inoltre u i ed l i rappresentano la pressione neutra lungo la base della striscia e la lunghezza della base della striscia (l i = b i /cosα i ). Quindi, assunto un cerchio di tentativo lo si suddivide in n strisce e dalla formula precedente si ricava η. Questo procedimento viene eseguito per il numero di centri prefissato e viene assunto come coefficiente di sicurezza della scarpata il minimo dei coefficienti così determinati.

8 Aztec Informatica * MAX Relazione di calcolo 6 Normativa N.T.C Approccio 2 Simbologia adottata γ Coefficiente parziale sfavorevole sulle azioni permanenti Gsfav γ Gfav γ Qsfav γ Qfav γ tanφ' γ c' γ cu γ qu γ γ Coefficiente parziale favorevole sulle azioni permanenti Coefficiente parziale sfavorevole sulle azioni variabili Coefficiente parziale favorevole sulle azioni variabili Coefficiente parziale di riduzione dell'angolo di attrito drenato Coefficiente parziale di riduzione della coesione drenata Coefficiente parziale di riduzione della coesione non drenata Coefficiente parziale di riduzione del carico ultimo Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce Coefficienti di partecipazione combinazioni statiche Coefficienti parziali per le azioni o per l'effetto delle azioni: Carichi Effetto A1 A2 EQU HYD Permanenti Favorevole γ Gfav 1,00 1,00 0,90 0,90 Permanenti Sfavorevole γ Gsfav 1,30 1,00 1,10 1,30 Variabili Favorevole γ Qfav 0,00 0,00 0,00 0,00 Variabili Sfavorevole γ Qsfav 1,50 1,30 1,50 1,50 Coefficienti parziali per i parametri geotecnici del terreno: Parametri M1 M2 M2 M1 Tangente dell'angolo di attrito γ tanφ' 1,00 1,25 1,25 1,00 Coesione efficace γ c' 1,00 1,25 1,25 1,00 Resistenza non drenata γ cu 1,00 1,40 1,40 1,00 Resistenza a compressione uniassiale γ qu 1,00 1,60 1,60 1,00 Peso dell'unità di volume γ γ 1,00 1,00 1,00 1,00 Coefficienti di partecipazione combinazioni sismiche Coefficienti parziali per le azioni o per l'effetto delle azioni: Carichi Effetto A1 A2 EQU HYD Permanenti Favorevole γ Gfav 1,00 1,00 1,00 0,90 Permanenti Sfavorevole γ Gsfav 1,00 1,00 1,00 1,30 Variabili Favorevole γ Qfav 0,00 0,00 0,00 0,00 Variabili Sfavorevole γ Qsfav 1,00 1,00 1,00 1,50 Coefficienti parziali per i parametri geotecnici del terreno: Parametri M1 M2 M2 M1 Tangente dell'angolo di attrito γ tanφ' 1,00 1,25 1,25 1,00 Coesione efficace γ c' 1,00 1,25 1,25 1,00 Resistenza non drenata γ cu 1,00 1,40 1,40 1,00 Resistenza a compressione uniassiale γ qu 1,00 1,60 1,60 1,00 Peso dell'unità di volume γ γ 1,00 1,00 1,00 1,00 FONDAZIONE SUPERFICIALE Coefficienti parziali γ R per le verifiche agli stati limite ultimi STR e GEO Verifica Coefficienti parziali R1 R2 R3 Capacità portante della fondazione 1,00 1,00 1,40 Scorrimento 1,00 1,00 1,10 Resistenza del terreno a valle 1,00 1,00 1,40

9 Aztec Informatica * MAX Relazione di calcolo 7 Stabilità globale 1,00

10 Aztec Informatica * MAX Relazione di calcolo 8 Geometria muro e fondazione Descrizione Muro a mensola in c.a. Altezza del paramento 3,20 [m] Spessore in sommità 0,25 [m] Spessore all'attacco con la fondazione 0,25 [m] Inclinazione paramento esterno 0,00 [ ] Inclinazione paramento interno 0,00 [ ] Lunghezza del muro 4,46 [m] Fondazione Lunghezza mensola fondazione di valle 0,50 [m] Lunghezza mensola fondazione di monte 0,80 [m] Lunghezza totale fondazione 1,55 [m] Inclinazione piano di posa della fondazione 0,00 [ ] Spessore fondazione 0,50 [m] Spessore magrone 0,10 [m]

11 Aztec Informatica * MAX Relazione di calcolo 9 Materiali utilizzati per la struttura Calcestruzzo Peso specifico 24,517 [kn/mc] Classe di Resistenza C25/30 Resistenza caratteristica a compressione R ck 305,9 [kg/cmq] Modulo elastico E ,55 [kg/cmq] Acciaio Tipo B450C Tensione di snervamento σ fa 4588,0 [kg/cmq] Geometria profilo terreno a monte del muro Simbologia adottata e sistema di riferimento (Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto) N numero ordine del punto X ascissa del punto espressa in [m] Y ordinata del punto espressa in [m] A inclinazione del tratto espressa in [ ] N X Y A 1 5,00 0,00 0,00 Terreno a valle del muro Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [ ] Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,30 [m] Descrizione terreni Simbologia adottata Nr. Indice del terreno Descrizione Descrizione terreno γ Peso di volume del terreno espresso in [kn/mc] γ Peso di volume saturo del terreno espresso in [kn/mc] s φ Angolo d'attrito interno espresso in [ ] δ Angolo d'attrito terra-muro espresso in [ ] c Coesione espressa in [kg/cmq] c Adesione terra-muro espressa in [kg/cmq] a Descrizione γ γ s φ δ c c a TERRENO DI RIPORTO 16,08 19, ,000 0,000 DEPOSITI ALLUVIONAL 21,18 21, ,000 0,000 Stratigrafia Simbologia adottata N Indice dello strato H Spessore dello strato espresso in [m] a Inclinazione espressa in [ ] Kw Costante di Winkler orizzontale espressa in Kg/cm 2 /cm Ks Coefficiente di spinta Terreno Terreno dello strato

12 Aztec Informatica * MAX Relazione di calcolo 10 Nr. H a Kw Ks Terreno 1 2,40 0,00 0,00 0,00 TERRENO DI RIPORTO 2 27,00 0,00 8,05 0,00 DEPOSITI ALLUVIONAL Terreno di riempimento (drenante) DEPOSITI ALLUVIONAL

13 Aztec Informatica * MAX Relazione di calcolo 11 Condizioni di carico Simbologia e convenzioni di segno adottate Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario. X Ascissa del punto di applicazione del carico concentrato espressa in [m] F x Componente orizzontale del carico concentrato espressa in [kn] F y Componente verticale del carico concentrato espressa in [kn] M Momento espresso in [knm] X i Ascissa del punto iniziale del carico ripartito espressa in [m] X f Ascissa del punto finale del carico ripartito espressa in [m] Q i Intensità del carico per x=x espressa in [kn/m] i Q f Intensità del carico per x=x espressa in [kn/m] f D / C Tipo carico : D=distribuito C=concentrato Condizione n 1 (PERMANENTE PARAPETTO H=1,00m) C Paramento X=-0,13 Y=0,00 F x =0,0000 F y =6,2500 M=0,0000 Condizione n 2 (VARIABILE D'ESERCIZIO) D Profilo X i =0,00 X f =2,20 Q i =5,0000 Q f =5,0000 Condizione n 3 (MOMENTO PARAPETTO) C Paramento X=-0,13 Y=0,00 F x =0,0000 F y =0,0000 M=3,0000

14 Aztec Informatica * MAX Relazione di calcolo 12 Descrizione combinazioni di carico Simbologia adottata F/S γ Ψ Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole) Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione Combinazione n 1 - Caso A1-M1 (STR) S/F γ Ψ γ * Ψ Peso proprio muro FAV 1, ,00 Peso proprio terrapieno FAV 1, ,00 Spinta terreno SFAV 1, ,30 PERMANENTE PARAPETTO H=1,00m SFAV Combinazione n 2 - Caso EQU (SLU) S/F γ Ψ γ * Ψ Peso proprio muro FAV 0, ,90 Peso proprio terrapieno FAV 0, ,90 Spinta terreno SFAV 1, ,10 PERMANENTE PARAPETTO H=1,00m SFAV Combinazione n 3 - Caso A2-M2 (GEO-STAB) S/F γ Ψ γ * Ψ Peso proprio muro SFAV 1, ,00 Peso proprio terrapieno SFAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV Combinazione n 4 - Caso A1-M1 (STR) S/F γ Ψ γ * Ψ Peso proprio muro FAV 1, ,00 Peso proprio terrapieno FAV 1, ,00 Spinta terreno SFAV 1, ,30 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 5 - Caso EQU (SLU) S/F γ Ψ γ * Ψ Peso proprio muro FAV 0, ,90 Peso proprio terrapieno FAV 0, ,90 Spinta terreno SFAV 1, ,10 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 6 - Caso A2-M2 (GEO-STAB) S/F γ Ψ γ * Ψ Peso proprio muro SFAV 1, ,00 Peso proprio terrapieno SFAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 7 - Caso A1-M1 (STR) S/F γ Ψ γ * Ψ Peso proprio muro FAV 1, ,00 Peso proprio terrapieno FAV 1, ,00 Spinta terreno SFAV 1, ,30 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 8 - Caso EQU (SLU) S/F γ Ψ γ * Ψ Peso proprio muro FAV 0, ,90 Peso proprio terrapieno FAV 0, ,90 Spinta terreno SFAV 1, ,10 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV

15 Aztec Informatica * MAX Relazione di calcolo 13 Combinazione n 9 - Caso A2-M2 (GEO-STAB) S/F γ Ψ γ * Ψ Peso proprio muro SFAV 1, ,00 Peso proprio terrapieno SFAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 10 - Caso A1-M1 (STR) - Sisma Vert. negativo S/F γ Ψ γ * Ψ Peso proprio muro SFAV 1, ,00 Peso proprio terrapieno SFAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV Combinazione n 11 - Caso A1-M1 (STR) - Sisma Vert. positivo S/F γ Ψ γ * Ψ Peso proprio muro SFAV 1, ,00 Peso proprio terrapieno SFAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV Combinazione n 12 - Caso EQU (SLU) - Sisma Vert. negativo S/F γ Ψ γ * Ψ Peso proprio muro FAV 1, ,00 Peso proprio terrapieno FAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV Combinazione n 13 - Caso EQU (SLU) - Sisma Vert. positivo S/F γ Ψ γ * Ψ Peso proprio muro FAV 1, ,00 Peso proprio terrapieno FAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV Combinazione n 14 - Caso A2-M2 (GEO-STAB) - Sisma Vert. positivo S/F γ Ψ γ * Ψ Peso proprio muro SFAV 1, ,00 Peso proprio terrapieno SFAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV Combinazione n 15 - Caso A2-M2 (GEO-STAB) - Sisma Vert. negativo S/F γ Ψ γ * Ψ Peso proprio muro SFAV 1, ,00 Peso proprio terrapieno SFAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV Combinazione n 16 - Caso A1-M1 (STR) - Sisma Vert. positivo S/F γ Ψ γ * Ψ Peso proprio muro FAV 1, ,00 Peso proprio terrapieno FAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 17 - Caso A1-M1 (STR) - Sisma Vert. negativo S/F γ Ψ γ * Ψ Peso proprio muro SFAV 1, ,00 Peso proprio terrapieno SFAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 18 - Caso EQU (SLU) - Sisma Vert. negativo S/F γ Ψ γ * Ψ Peso proprio muro FAV 1, ,00 Peso proprio terrapieno FAV 1, ,00

16 Aztec Informatica * MAX Relazione di calcolo 14 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 19 - Caso EQU (SLU) - Sisma Vert. positivo S/F γ Ψ γ * Ψ Peso proprio muro FAV 1, ,00 Peso proprio terrapieno FAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 20 - Caso A2-M2 (GEO-STAB) - Sisma Vert. positivo S/F γ Ψ γ * Ψ Peso proprio muro SFAV 1, ,00 Peso proprio terrapieno SFAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 21 - Caso A2-M2 (GEO-STAB) - Sisma Vert. negativo S/F γ Ψ γ * Ψ Peso proprio muro SFAV 1, ,00 Peso proprio terrapieno SFAV 1, ,00 Spinta terreno SFAV 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 22 - Quasi Permanente (SLE) S/F γ Ψ γ * Ψ Peso proprio muro -- 1, ,00 Peso proprio terrapieno -- 1, ,00 Spinta terreno -- 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 23 - Frequente (SLE) S/F γ Ψ γ * Ψ Peso proprio muro -- 1, ,00 Peso proprio terrapieno -- 1, ,00 Spinta terreno -- 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 24 - Frequente (SLE) S/F γ Ψ γ * Ψ Peso proprio muro -- 1, ,00 Peso proprio terrapieno -- 1, ,00 Spinta terreno -- 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV MOMENTO PARAPETTO SFAV VARIABILE D'ESERCIZIO SFAV Combinazione n 25 - Rara (SLE) S/F γ Ψ γ * Ψ Peso proprio muro -- 1, ,00 Peso proprio terrapieno -- 1, ,00 Spinta terreno -- 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV VARIABILE D'ESERCIZIO SFAV MOMENTO PARAPETTO SFAV Combinazione n 26 - Rara (SLE) S/F γ Ψ γ * Ψ Peso proprio muro -- 1, ,00 Peso proprio terrapieno -- 1, ,00 Spinta terreno -- 1, ,00 PERMANENTE PARAPETTO H=1,00m SFAV MOMENTO PARAPETTO SFAV

17 Aztec Informatica * MAX Relazione di calcolo 15 VARIABILE D'ESERCIZIO SFAV Impostazioni di analisi Metodo verifica sezioni Stato limite Impostazioni verifiche SLU Coefficienti parziali per resistenze di calcolo dei materiali Coefficiente di sicurezza calcestruzzo a compressione 1.50 Coefficiente di sicurezza calcestruzzo a trazione 1.50 Coefficiente di sicurezza acciaio 1.15 Fattore riduzione da resistenza cubica a cilindrica 0.83 Fattore di riduzione per carichi di lungo periodo 0.85 Coefficiente di sicurezza per la sezione 1.00 Impostazioni verifiche SLE Condizioni ambientali Ordinarie Armatura ad aderenza migliorata Verifica fessurazione Sensibilità delle armature Poco sensibile Valori limite delle aperture delle fessure w 1 = 0.20 w 2 = 0.30 w 3 = 0.40 Metodo di calcolo aperture delle fessure Circ. Min. 252 (15/10/1996) Verifica delle tensioni Combinazione di carico Rara σ c < 0.60 f ck - σ f < 0.80 f yk Quasi permanente σ c < 0.45 f ck Calcolo della portanza metodo di Meyerhof Coefficiente correttivo su Nγ per effetti cinematici (combinazioni sismiche SLU): 0,97 Coefficiente correttivo su Nγ per effetti cinematici (combinazioni sismiche SLE): 0,98 Impostazioni avanzate Componente verticale della spinta nel calcolo delle sollecitazioni

18 Aztec Informatica * MAX Relazione di calcolo 16 Quadro riassuntivo coeff. di sicurezza calcolati Simbologia adottata C Identificativo della combinazione Tipo Tipo combinazione Sisma Combinazione sismica CS SCO Coeff. di sicurezza allo scorrimento CS RIB Coeff. di sicurezza al ribaltamento CS QLIM Coeff. di sicurezza a carico limite CS STAB Coeff. di sicurezza a stabilità globale C Tipo Sisma cs sco cs rib cs qlim cs stab 1 A1-M1 - [1] -- 1, , EQU - [1] , STAB - [1] ,70 4 A1-M1 - [2] -- 1, , EQU - [2] , STAB - [2] ,64 7 A1-M1 - [3] -- 1, , EQU - [3] , STAB - [3] ,65 10 A1-M1 - [4] Orizzontale + Verticale negativo 1, , A1-M1 - [4] Orizzontale + Verticale positivo 1, , EQU - [4] Orizzontale + Verticale negativo -- 1, EQU - [4] Orizzontale + Verticale positivo -- 1, STAB - [4] Orizzontale + Verticale positivo ,56 15 STAB - [4] Orizzontale + Verticale negativo ,56 16 A1-M1 - [5] Orizzontale + Verticale positivo 1, , A1-M1 - [5] Orizzontale + Verticale negativo 1, , EQU - [5] Orizzontale + Verticale negativo -- 1, EQU - [5] Orizzontale + Verticale positivo -- 1, STAB - [5] Orizzontale + Verticale positivo ,54 21 STAB - [5] Orizzontale + Verticale negativo ,53 22 SLEQ - [1] -- 1, , SLEF - [1] -- 1, , SLEF - [1] -- 1, , SLER - [1] -- 1, , SLER - [1] -- 1, ,57 --

19 Aztec Informatica * MAX Relazione di calcolo 17 Analisi della spinta e verifiche Sistema di riferimento adottato per le coordinate : Origine in testa al muro (spigolo di monte) Ascisse X (espresse in [m]) positive verso monte Ordinate Y (espresse in [m]) positive verso l'alto Le forze orizzontali sono considerate positive se agenti da monte verso valle Le forze verticali sono considerate positive se agenti dall'alto verso il basso Calcolo riferito ad 1 metro di muro Tipo di analisi Calcolo della spinta Calcolo del carico limite Calcolo della stabilità globale Calcolo della spinta in condizioni di metodo di Culmann metodo di Meyerhof metodo di Fellenius Spinta attiva Sisma Combinazioni SLU Accelerazione al suolo a g 1.75 [m/s^2] Coefficiente di amplificazione per tipo di sottosuolo (S) 1.20 Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione (β m ) 0.24 Rapporto intensità sismica verticale/orizzontale 0.50 Coefficiente di intensità sismica orizzontale (percento) k h =(a g /g*β m *St*S) = 5.14 Coefficiente di intensità sismica verticale (percento) k v =0.50 * k h = 2.57 Combinazioni SLE Accelerazione al suolo a g 0.74 [m/s^2] Coefficiente di amplificazione per tipo di sottosuolo (S) 1.20 Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione (β m ) 0.20 Rapporto intensità sismica verticale/orizzontale 0.50 Coefficiente di intensità sismica orizzontale (percento) k h =(a g /g*β m *St*S) = 1.82 Coefficiente di intensità sismica verticale (percento) k v =0.50 * k h = 0.91 Forma diagramma incremento sismico Stessa forma diagramma statico Partecipazione spinta passiva (percento) 0,0 Lunghezza del muro 4,46 [m] Peso muro 38,6143 [kn] Baricentro del muro X=-0,05 Y=-2,51 Superficie di spinta Punto inferiore superficie di spinta X = 0,80 Y = -3,70 Punto superiore superficie di spinta X = 0,80 Y = 0,00 Altezza della superficie di spinta 3,70 [m] Inclinazione superficie di spinta(rispetto alla verticale) 0,00 [ ] COMBINAZIONE n 1 Peso muro favorevole e Peso terrapieno favorevole Valore della spinta statica 42,0333 [kn] Componente orizzontale della spinta statica 39,5325 [kn] Componente verticale della spinta statica 14,2822 [kn] Punto d'applicazione della spinta X = 0,80 [m] Y = -2,26 [m] Inclinaz. della spinta rispetto alla normale alla superficie 19,86 [ ] Inclinazione linea di rottura in condizioni statiche 52,09 [ ] Peso terrapieno gravante sulla fondazione a monte 54,2277 [kn] Baricentro terrapieno gravante sulla fondazione a monte X = 0,40 [m] Y = -1,60 [m]

20 Aztec Informatica * MAX Relazione di calcolo 18 Risultanti carichi esterni Componente dir. Y 8,13 [kn] Risultanti Risultante dei carichi applicati in dir. orizzontale 39,5325 [kn] Risultante dei carichi applicati in dir. verticale 115,2492 [kn] Sforzo normale sul piano di posa della fondazione 115,2492 [kn] Sforzo tangenziale sul piano di posa della fondazione 39,5325 [kn] Eccentricità rispetto al baricentro della fondazione 0,26 [m] Lunghezza fondazione reagente 1,55 [m] Risultante in fondazione 121,8409 [kn] Inclinazione della risultante (rispetto alla normale) 18,93 [ ] Momento rispetto al baricentro della fondazione 29,6500 [knm] Carico ultimo della fondazione 895,2766 [kn] Tensioni sul terreno Lunghezza fondazione reagente 1,55 [m] Tensione terreno allo spigolo di valle 1,5133 [kg/cmq] Tensione terreno allo spigolo di monte 0,0031 [kg/cmq] Fattori per il calcolo della capacità portante Coeff. capacità portante N c = N q = N γ = Fattori forma s c = 1,00 s q = 1,00 s γ = 1,00 Fattori inclinazione i c = 0,62 i q = 0,62 i γ = 0,25 Fattori profondità d c = 1,21 d q = 1,11 d γ = 1,11 I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio. N' c = N' q = N' γ = COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a scorrimento 1.38 Coefficiente di sicurezza a carico ultimo 7.77

21 Aztec Informatica * MAX Relazione di calcolo 19 Sollecitazioni paramento Combinazione n 1 L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in knm Sforzo normale positivo di compressione, espresso in kn Taglio positivo se diretto da monte verso valle, espresso in kn Nr. Y N M T 1 0,00 8,1250 0,0000 0, ,16 9,1384-0,0004 0, ,32 10,2171 0,0131 0, ,48 11,3613 0,0627 0, ,64 12,5709 0,1704 1, ,80 13,8458 0,3583 1, ,96 15,1861 0,6485 2, ,12 16,5919 1,0632 3, ,28 18,0630 1,6244 4, ,44 19,6029 2,3541 5, ,60 21,2250 3,2761 6, ,76 22,9385 4,4187 8, ,92 24,7431 5, , ,08 26,6375 7, , ,24 28,6213 9, , ,40 30, , , ,56 32, , , ,72 35, , , ,88 37, , , ,04 39, , , ,20 42, , ,9299 Sollecitazioni fondazione di valle Combinazione n 1 L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in knm Taglio positivo se diretto verso l'alto, espresso in kn Nr. X M T 1 0,00 0,0000 0, ,05 0,1682 6, ,10 0, , ,15 1, , ,20 2, , ,25 4, , ,30 5, , ,35 7, , ,40 9, , ,45 12, , ,50 15, ,1286 Sollecitazioni fondazione di monte Combinazione n 1 L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in knm Taglio positivo se diretto verso l'alto, espresso in kn Nr. X M T 1 0,00 0,0000 0,0000

22 Aztec Informatica * MAX Relazione di calcolo ,08-0,3121-7, ,16-1, , ,24-2, , ,32-4, , ,40-6, , ,48-9, , ,56-12, , ,64-16, , ,72-19, , ,80-23, ,4830

23 Aztec Informatica * MAX Relazione di calcolo 21 Armature e tensioni nei materiali del muro Combinazione n 1 L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cm] H altezza della sezione espressa in [cm] A fs area di armatura in corrispondenza del lembo di monte in [cmq] area di armatura in corrispondenza del lembo di valle in [cmq] sforzo normale ultimo espresso in [kn] momento ultimo espresso in [knm] CS coefficiente sicurezza sezione VRcd Aliquota di taglio assorbito dal cls, espresso in [kn] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kn] VRd Resistenza al taglio, espresso in [kn] Nr. Y B, H A fs CS V Rd V Rcd V Rsd 1 0,00 100, 25 8,04 8, ,32 0,00 424,78 109, ,16 100, 25 8,04 8, ,91 0,15 377,63 109, ,32 100, 25 8,04 8, ,35-4,42 336,62 109, ,48 100, 25 8,04 8, ,45-18,76 299,30 109, ,64 100, 25 8,04 8, ,98-45,11 264,82 110, ,80 100, 25 8,04 8, ,02-83,45 232,92 110, ,96 100, 25 8,04 8, ,35-118,05 182,03 110, ,12 100, 25 8,04 8, ,06-144,50 135,91 110, ,28 100, 25 8,04 8, ,42-161,46 99,40 110, ,44 100, 25 8,04 8, ,94-161,88 68,76 111, ,60 100, 25 8,04 8,04 938,73-144,89 44,23 111, ,76 100, 25 8,04 8,04 647,40-124,71 28,22 111, ,92 100, 25 8,04 8,04 464,03-109,02 18,75 111, ,08 100, 25 8,04 8,04 348,95-98,12 13,10 111, ,24 100, 25 8,04 8,04 275,04-91,09 9,61 112, ,40 100, 25 8,04 8,04 224,14-86,26 7,30 112, ,56 100, 25 8,04 8,04 187,29-82,75 5,70 112, ,72 100, 25 16,08 16,08 305,90-153,58 8,71 141, ,88 100, 25 8,04 8,04 138,12-78,08 3,69 113, ,04 100, 25 8,04 8,04 121,12-76,46 3,04 113, ,20 100, 25 8,04 8,04 107,34-75,15 2,53 114,

24 Aztec Informatica * MAX Relazione di calcolo 22 Armature e tensioni nei materiali della fondazione Combinazione n 1 Simbologia adottata B base della sezione espressa in [cm] H altezza della sezione espressa in [cm] area di armatura in corrispondenza del lembo inferiore in [cmq] A fs area di armatura in corrispondenza del lembo superiore in [cmq] sforzo normale ultimo espresso in [kn] momento ultimo espresso in [knm] CS coefficiente sicurezza sezione VRcd Aliquota di taglio assorbito dal cls, espresso in [kn] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kn] VRd Resistenza al taglio, espresso in [kn] Fondazione di valle (L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle) Nr. Y B, H A fs CS V Rd V Rcd V Rsd 1 0,00 100, 50 10,05 10,05 0,00 0, ,00 176, ,05 100, 50 10,05 10,05 0,00 177, ,13 176, ,10 100, 50 10,05 10,05 0,00 177,12 266,43 176, ,15 100, 50 10,05 10,05 0,00 177,12 119,85 176, ,20 100, 50 10,05 10,05 0,00 177,12 68,24 176, ,25 100, 50 10,05 10,05 0,00 177,12 44,22 176, ,30 100, 50 10,05 10,05 0,00 177,12 31,09 176, ,35 100, 50 10,05 10,05 0,00 177,12 23,14 176, ,40 100, 50 10,05 10,05 0,00 177,12 17,94 176, ,45 100, 50 10,05 10,05 0,00 177,12 14,36 176, ,50 100, 50 10,05 10,05 0,00 177,12 11,79 176, Fondazione di monte (L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte) Nr. Y B, H A fs CS V Rd V Rcd V Rsd 1 0,00 100, 50 10,05 10,05 0,00 0, ,00 176, ,08 100, 50 10,05 10,05 0,00-177,12 567,57 176, ,16 100, 50 10,05 10,05 0,00-177,12 145,70 176, ,24 100, 50 10,05 10,05 0,00-177,12 66,54 176, ,32 100, 50 10,05 10,05 0,00-177,12 38,49 176, ,40 100, 50 10,05 10,05 0,00-177,12 25,35 176, ,48 100, 50 10,05 10,05 0,00-177,12 18,13 176, ,56 100, 50 10,05 10,05 0,00-177,12 13,74 176, ,64 100, 50 10,05 10,05 0,00-177,12 10,85 176, ,72 100, 50 10,05 10,05 0,00-177,12 8,86 176, ,80 100, 50 10,05 10,05 0,00-177,12 7,42 176, COMBINAZIONE n 2 Valore della spinta statica 43,5229 [kn] Componente orizzontale della spinta statica 41,7741 [kn] Componente verticale della spinta statica 12,2136 [kn] Punto d'applicazione della spinta X = 0,80 [m] Y = -2,29 [m] Inclinaz. della spinta rispetto alla normale alla superficie 16,30 [ ] Inclinazione linea di rottura in condizioni statiche 49,54 [ ] Peso terrapieno gravante sulla fondazione a monte 48,8049 [kn] Baricentro terrapieno gravante sulla fondazione a monte X = 0,40 [m] Y = -1,60 [m] Risultanti carichi esterni Componente dir. Y 6,88 [kn] Risultanti Risultante dei carichi applicati in dir. orizzontale 41,7741 [kn]

25 Aztec Informatica * MAX Relazione di calcolo 23 Risultante dei carichi applicati in dir. verticale 102,6464 [kn] Momento ribaltante rispetto allo spigolo a valle 58,7107 [knm] Momento stabilizzante rispetto allo spigolo a valle 103,6393 [knm] Sforzo normale sul piano di posa della fondazione 102,6464 [kn] Sforzo tangenziale sul piano di posa della fondazione 41,7741 [kn] Eccentricità rispetto al baricentro della fondazione 0,34 [m] Lunghezza fondazione reagente 1,31 [m] Risultante in fondazione 110,8213 [kn] Inclinazione della risultante (rispetto alla normale) 22,14 [ ] Momento rispetto al baricentro della fondazione 34,6224 [knm] COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a ribaltamento 1.77

26 Aztec Informatica * MAX Relazione di calcolo 24 Armature e tensioni nei materiali del muro Combinazione n 2 L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cm] H altezza della sezione espressa in [cm] A fs area di armatura in corrispondenza del lembo di monte in [cmq] area di armatura in corrispondenza del lembo di valle in [cmq] sforzo normale ultimo espresso in [kn] momento ultimo espresso in [knm] CS coefficiente sicurezza sezione VRcd Aliquota di taglio assorbito dal cls, espresso in [kn] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kn] VRd Resistenza al taglio, espresso in [kn] Nr. Y B, H A fs CS V Rd V Rcd V Rsd 1 0,00 100, 25 8,04 8,04 0,00 0,00 0,00 2 0,16 100, 25 8,04 8,04 0,00 0,00 0,00 3 0,32 100, 25 8,04 8,04 0,00 0,00 0,00 4 0,48 100, 25 8,04 8,04 0,00 0,00 0,00 5 0,64 100, 25 8,04 8,04 0,00 0,00 0,00 6 0,80 100, 25 8,04 8,04 0,00 0,00 0,00 7 0,96 100, 25 8,04 8,04 0,00 0,00 0,00 8 1,12 100, 25 8,04 8,04 0,00 0,00 0,00 9 1,28 100, 25 8,04 8,04 0,00 0,00 0, ,44 100, 25 8,04 8,04 0,00 0,00 0, ,60 100, 25 8,04 8,04 0,00 0,00 0, ,76 100, 25 8,04 8,04 0,00 0,00 0, ,92 100, 25 8,04 8,04 0,00 0,00 0, ,08 100, 25 8,04 8,04 0,00 0,00 0, ,24 100, 25 8,04 8,04 0,00 0,00 0, ,40 100, 25 8,04 8,04 0,00 0,00 0, ,56 100, 25 8,04 8,04 0,00 0,00 0, ,72 100, 25 16,08 16,08 0,00 0,00 0, ,88 100, 25 8,04 8,04 0,00 0,00 0, ,04 100, 25 8,04 8,04 0,00 0,00 0, ,20 100, 25 8,04 8,04 0,00 0,00 0,00

27 Aztec Informatica * MAX Relazione di calcolo 25 Armature e tensioni nei materiali della fondazione Combinazione n 2 Simbologia adottata B base della sezione espressa in [cm] H altezza della sezione espressa in [cm] area di armatura in corrispondenza del lembo inferiore in [cmq] A fs area di armatura in corrispondenza del lembo superiore in [cmq] sforzo normale ultimo espresso in [kn] momento ultimo espresso in [knm] CS coefficiente sicurezza sezione VRcd Aliquota di taglio assorbito dal cls, espresso in [kn] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kn] VRd Resistenza al taglio, espresso in [kn] Fondazione di valle (L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle) Nr. Y B, H A fs CS V Rd V Rcd V Rsd 1 0,00 100, 50 10,05 10,05 0,00 0,00 0,00 2 0,05 100, 50 10,05 10,05 0,00 0,00 0,00 3 0,10 100, 50 10,05 10,05 0,00 0,00 0,00 4 0,15 100, 50 10,05 10,05 0,00 0,00 0,00 5 0,20 100, 50 10,05 10,05 0,00 0,00 0,00 6 0,25 100, 50 10,05 10,05 0,00 0,00 0,00 7 0,30 100, 50 10,05 10,05 0,00 0,00 0,00 8 0,35 100, 50 10,05 10,05 0,00 0,00 0,00 9 0,40 100, 50 10,05 10,05 0,00 0,00 0, ,45 100, 50 10,05 10,05 0,00 0,00 0, ,50 100, 50 10,05 10,05 0,00 0,00 0,00 Fondazione di monte (L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte) Nr. Y B, H A fs CS V Rd V Rcd V Rsd 1 0,00 100, 50 10,05 10,05 0,00 0,00 0,00 2 0,08 100, 50 10,05 10,05 0,00 0,00 0,00 3 0,16 100, 50 10,05 10,05 0,00 0,00 0,00 4 0,24 100, 50 10,05 10,05 0,00 0,00 0,00 5 0,32 100, 50 10,05 10,05 0,00 0,00 0,00 6 0,40 100, 50 10,05 10,05 0,00 0,00 0,00 7 0,48 100, 50 10,05 10,05 0,00 0,00 0,00 8 0,56 100, 50 10,05 10,05 0,00 0,00 0,00 9 0,64 100, 50 10,05 10,05 0,00 0,00 0, ,72 100, 50 10,05 10,05 0,00 0,00 0, ,80 100, 50 10,05 10,05 0,00 0,00 0,00

28 Aztec Informatica * MAX Relazione di calcolo 26

29 Aztec Informatica * MAX Relazione di calcolo 27 Stabilità globale muro + terreno Combinazione n 3 Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) W peso della striscia espresso in [kn] α angolo fra la base della striscia e l'orizzontale espresso in [ ] (positivo antiorario) φ angolo d'attrito del terreno lungo la base della striscia c coesione del terreno lungo la base della striscia espressa in [kg/cmq] b larghezza della striscia espressa in [m] u pressione neutra lungo la base della striscia espressa in [kg/cmq] Metodo di Fellenius Numero di cerchi analizzati 36 Numero di strisce 25 Cerchio critico Coordinate del centro X[m]= -1,15 Y[m]= 0,00 Raggio del cerchio R[m]= 4,18 Ascissa a valle del cerchio Xi[m]= -4,18 Ascissa a monte del cerchio Xs[m]= 3,03 Larghezza della striscia dx[m]= 0,29 Coefficiente di sicurezza C= 1.70 Le strisce sono numerate da monte verso valle Caratteristiche delle strisce Striscia W α( ) Wsinα b/cosα φ c u 1 3, ,4811 0, ,00 0,00 2 8, ,6110 0, ,00 0, , ,0139 0, ,00 0, , ,9330 0, ,00 0, , ,3201 0, ,00 0, , ,2441 0, ,00 0, , ,8137 0, ,00 0, , ,6325 0, ,00 0, , ,7920 0, ,00 0, , ,3746 0, ,00 0, , ,9864 0, ,00 0, , ,1278 0, ,00 0, , ,1144 0, ,00 0, , ,5405 0, ,00 0, , ,0008 0, ,00 0, , ,5355 0, ,00 0, , ,0465 0, ,00 0, , ,5062 0, ,00 0, , ,8873 0, ,00 0, , ,1604 0, ,00 0, , ,2926 0, ,00 0, , ,2463 0, ,00 0, , ,9768 0, ,00 0, , ,4275 0, ,00 0, , ,5234 0, ,00 0,00 ΣW i = 276,9448 [kn] ΣW i sinα i = 86,3834 [kn] ΣW i cosα i tanφ i = 146,5370 [kn] Σc i b i /cosα i = 0,0000 [kn] COMBINAZIONE n 4 Peso muro favorevole e Peso terrapieno favorevole Valore della spinta statica 46,9041 [kn] Componente orizzontale della spinta statica 44,2814 [kn] Componente verticale della spinta statica 15,4643 [kn] Punto d'applicazione della spinta X = 0,80 [m] Y = -2,09 [m]

30 Aztec Informatica * MAX Relazione di calcolo 28 Inclinaz. della spinta rispetto alla normale alla superficie 19,25 [ ] Inclinazione linea di rottura in condizioni statiche 54,78 [ ] Peso terrapieno gravante sulla fondazione a monte 60,2277 [kn] Baricentro terrapieno gravante sulla fondazione a monte X = 0,40 [m] Y = -1,60 [m] Risultanti carichi esterni Componente dir. Y 8,13 [kn] Risultanti Risultante dei carichi applicati in dir. orizzontale 44,2814 [kn] Risultante dei carichi applicati in dir. verticale 122,4314 [kn] Sforzo normale sul piano di posa della fondazione 122,4314 [kn] Sforzo tangenziale sul piano di posa della fondazione 44,2814 [kn] Eccentricità rispetto al baricentro della fondazione 0,36 [m] Lunghezza fondazione reagente 1,25 [m] Risultante in fondazione 130,1932 [kn] Inclinazione della risultante (rispetto alla normale) 19,88 [ ] Momento rispetto al baricentro della fondazione 44,0218 [knm] Carico ultimo della fondazione 682,0749 [kn] Tensioni sul terreno Lunghezza fondazione reagente 1,25 [m] Tensione terreno allo spigolo di valle 2,0034 [kg/cmq] Tensione terreno allo spigolo di monte 0,0000 [kg/cmq] Fattori per il calcolo della capacità portante Coeff. capacità portante N c = N q = N γ = Fattori forma s c = 1,00 s q = 1,00 s γ = 1,00 Fattori inclinazione i c = 0,61 i q = 0,61 i γ = 0,23 Fattori profondità d c = 1,21 d q = 1,11 d γ = 1,11 I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio. N' c = N' q = N' γ = COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a scorrimento 1.31 Coefficiente di sicurezza a carico ultimo 5.57

31 Aztec Informatica * MAX Relazione di calcolo 29 Sollecitazioni paramento Combinazione n 4 L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in knm Sforzo normale positivo di compressione, espresso in kn Taglio positivo se diretto da monte verso valle, espresso in kn Nr. Y N M T 1 0,00 8,1250 3,1500 0, ,16 9,2491 3,1545 0, ,32 10,4391 3,2103 0, ,48 11,6945 3,3397 1, ,64 13,0154 3,5649 2, ,80 14,4017 3,9080 2, ,96 15,8533 4,3910 3, ,12 17,3704 5,0360 5, ,28 18,9640 5,8649 6, ,44 20,6739 6,9050 7, ,60 22,5009 8,1975 9, ,76 24,4209 9, , ,92 26, , , ,08 28, , , ,24 30, , , ,40 32, , , ,56 35, , , ,72 37, , , ,88 40, , , ,04 42, , , ,20 45, , ,7225 Sollecitazioni fondazione di valle Combinazione n 4 L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in knm Taglio positivo se diretto verso l'alto, espresso in kn Nr. X M T 1 0,00 0,0000 0, ,05 0,2270 9, ,10 0, , ,15 1, , ,20 3, , ,25 5, , ,30 7, , ,35 10, , ,40 13, , ,45 16, , ,50 19, ,4006 Sollecitazioni fondazione di monte Combinazione n 4 L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in knm Taglio positivo se diretto verso l'alto, espresso in kn Nr. X M T 1 0,00 0,0000 0,0000

Muro in c.a. tipo 1. Normative di riferimento

Muro in c.a. tipo 1. Normative di riferimento Aztec Informatica * MAX 10.0 Relazione di calcolo 1 Muro in c.a. tipo 1 Normative di riferimento - Legge nr. 1086 del 05/11/1971. Norme per la disciplina delle opere in conglomerato cementizio, normale

Dettagli

ε' = ε + θ β' = β + θ

ε' = ε + θ β' = β + θ Normative di riferimento Ordinanza Ministeriale nr. 3274 del 20 Marzo 2003 e succ. modif. ed integ. D.M. 14/01/2008 e succ. modifiche ed integrazioni Eurocodice 7 - Progettazione geotecnica Eurocodice

Dettagli

CALCOLO MURI A GABBIONI

CALCOLO MURI A GABBIONI PROVINCIA DI CHIETI SETTORE LAVORI PUBBLICI LAVORI DI SISTEMAZIONE STRADA PROVINCIALE S.S. 650 FONDO VALLE TRIGNO - SCHIAVI DI ABRUZZO III LOTTO FUNZIONALE CALCOLO MURI A GABBIONI 1. Normative di riferimento

Dettagli

Normative di riferimento

Normative di riferimento Aztec Informatica * MAX 10.10 Relazione di calcolo 1 Normative di riferimento - Legge nr. 1086 del 05/11/1971. Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed

Dettagli

Normative di riferimento

Normative di riferimento Aztec Informatica * MAX 10.0 Relazione di calcolo 1 Progetto: Committente: Comune: Progettista: Direttore dei Lavori: Normative di riferimento MESSA IN SICUREZZA STRADA PROVINCIALE RIPA-TOLLO NELL ABITATO

Dettagli

RELAZIONE DI CALCOLO OPERE IN C.A.

RELAZIONE DI CALCOLO OPERE IN C.A. Relazione specialistica e di calcolo Opere in c.a. Pag. 1 a 51 RELAZIONE DI CALCOLO OPERE IN C.A. Relazione specialistica e di calcolo Opere in c.a. Pag. 2 a 51 Premessa La presente relazione di calcolo

Dettagli

COMUNE DI VOLTERRA RELAZIONE DI CALCOLO

COMUNE DI VOLTERRA RELAZIONE DI CALCOLO Via delle Mura all Arco - VOLTERRA 1 COMUNE DI VOLTERRA PROV. DI PISA OPERE DI SOMMA URGENZA PER LA RICOSTRUZIONE DEL CROLLO DELLA CINTA MURARIA MEDIEVALE DI VIA LUNGO LE MURA ALL ARCO DI VOLTERRA (PI)

Dettagli

Relazione di calcolo Muro di sostegno Via A. Zanibelli 1. Progetto: Muro di sostegno - Via A. Zanibelli Quartiere Via Di Vittorio - Comune di Troia

Relazione di calcolo Muro di sostegno Via A. Zanibelli 1. Progetto: Muro di sostegno - Via A. Zanibelli Quartiere Via Di Vittorio - Comune di Troia Relazione di calcolo Muro di sostegno Via A. Zanibelli 1 Progetto: Muro di sostegno - Via A. Zanibelli Quartiere Via Di Vittorio - Ditta: Comune di Troia Comune: Troia (FG) Relazione di calcolo Muro di

Dettagli

GEOTECNICA MECCANICA DEI TERRENI E INGEGNERIA DELLE FONDAZIONI ing. Mauro BATTAGLIO. COMUNE DI FRABOSA SOTTANA (Provincia di Cuneo)

GEOTECNICA MECCANICA DEI TERRENI E INGEGNERIA DELLE FONDAZIONI ing. Mauro BATTAGLIO. COMUNE DI FRABOSA SOTTANA (Provincia di Cuneo) GEOTECNICA MECCANICA DEI TERRENI E INGEGNERIA DELLE FONDAZIONI ing. Mauro BATTAGLIO CONSULENZA E PROGETTO COMUNE DI FRABOSA SOTTANA (Provincia di Cuneo) S16 AMPLIAMENTO CAVA RABARI IN LOCALITA MIROGLIO

Dettagli

quella di cui al D.M ; aggiungendo però che quest ultima, per la parte qui d interesse, non differisce sostanzialmente dalla successiva e

quella di cui al D.M ; aggiungendo però che quest ultima, per la parte qui d interesse, non differisce sostanzialmente dalla successiva e Premessa I Va ricordato preliminarmente che gli scriventi progettisti strutturali, in relazione alla specifica richiesta in più occasioni formulata dal R.U.P., avevano ribadito, con propria nota 27.04.2009,

Dettagli

SETTORE 6 - PIANIFICAZIONE, PROGETTAZIONE E MANUTENZIONE STRADALE

SETTORE 6 - PIANIFICAZIONE, PROGETTAZIONE E MANUTENZIONE STRADALE SETTORE 6 - PIANIFICAZIONE, PROGETTAZIONE E MANUTENZIONE STRADALE LAVORI DI SISTEMAZIONE STRADA PROVINCIALE N. 107 PELIGNA CASOLI GESSOPALENA 4^ LOTTO PROGETTO ESECUTIVO RELAZIONE DI CALCOLO OPERE DI SOSTEGNO

Dettagli

CALCOLO MURI IN C.A. PROVINCIA DI CHIETI SETTORE LAVORI PUBBLICI III LOTTO FUNZIONALE LAVORI DI SISTEMAZIONE STRADA PROVINCIALE

CALCOLO MURI IN C.A. PROVINCIA DI CHIETI SETTORE LAVORI PUBBLICI III LOTTO FUNZIONALE LAVORI DI SISTEMAZIONE STRADA PROVINCIALE PROVINCIA DI CHIETI SETTORE LAVORI PUBBLICI LAVORI DI SISTEMAZIONE STRADA PROVINCIALE S.S. 650 FONDO VALLE TRIGNO - SCHIAVI DI ABRUZZO III LOTTO FUNZIONALE CALCOLO MURI IN C.A. 1 1. Normative di riferimento

Dettagli

"PROGETTO SPECIALE - STRADA VIA DON BLASCO"

PROGETTO SPECIALE - STRADA VIA DON BLASCO Ufficio Gabinetto del Sindaco "PROGETTO SPECIALE - STRADA VIA DON BLASCO" Ordinanza della Presidenza del Consiglio dei Ministri n. 3633 del 5.12.2007 "Interventi urgenti di Protezione Civile diretti a

Dettagli

ESERCIZI SVOLTI. Verifica allo SLU di ribaltamento (tipo EQU) 9 Spinta delle terre e muri di sostegno 9.3 Il progetto dei muri di sostegno

ESERCIZI SVOLTI. Verifica allo SLU di ribaltamento (tipo EQU) 9 Spinta delle terre e muri di sostegno 9.3 Il progetto dei muri di sostegno ESERCIZI SVOLTI Seguendo le prescrizioni delle N.T.C. 008 effettuare le verifiche agli SLU di ribaltamento, di scorrimento sul piano di posa e di collasso per carico limite dell insieme fondazione-terreno

Dettagli

1. Normative di riferimento

1. Normative di riferimento INDICE 1. Normative di riferimento... 2 2. Calcolo della spinta sul muro... 3 3. Verifica a ribaltamento... 4 4. Verifica a scorrimento... 4 5. Verifica al carico limite... 5 6. Verifica alla stabilità

Dettagli

ESERCIZIO SVOLTO A. P 2 St

ESERCIZIO SVOLTO A. P 2 St ESERCIZIO SVOLTO A Effettuare le verifiche agli stati limite di ribaltamento, di scorrimento e di collasso per carico limite dell insieme fondazione-terreno per il muro di sostegno in calcestruzzo semplice

Dettagli

Relazione Generale. Descrizione Generale del Progetto. Livelli di sicurezza e prestazioni attese

Relazione Generale. Descrizione Generale del Progetto. Livelli di sicurezza e prestazioni attese Aztec Informatica * MAX 10.0 Relazione di calcolo 1 Progetto: Ditta: Comune: Progettista: Direttore dei Lavori: Impresa: Miglioramento delle caratteristiche di stabilità e di sicurezza delle località Sorriento

Dettagli

1 BARRIERE PARAMASSI... 2

1 BARRIERE PARAMASSI... 2 1 BARRIERE PARAMASSI... 2 1.1 PREMESSA... 2 1.2 NOTA SUGLI EUROCODICI... 2 1.3 QUADRO NORMATIVO... 2 1.3.1 AZIONI... 2 1.3.2 RESISTENZE... 3 1.4 MODELLO DI CALCOLO... 5 1.4.1 VERIFICA SEZIONE ACCIAIO...

Dettagli

COMUNE DI BAGNOLO PIEMONTE

COMUNE DI BAGNOLO PIEMONTE REGIONE PIEMONTE PROVINCIA DI CUNEO COMUNE DI BAGNOLO PIEMONTE PROGETTO DI COLTIVAZIONE CAVA IN LOCALITA BRICCO VOLTI LOTTI 28 1A- 1 2 5 FUORI CORSO VERIFICHE GEOTECNICO-STRUTTURALI DI MURI DI SOSTEGNO

Dettagli

OPEREE DI SOSTEGNO II

OPEREE DI SOSTEGNO II Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì OPEREE DI SOSTEGNO II AGGIORNAMENTO 25/01/2015 Progetto di un muro di sostegno a gravità in cls Sviluppiamo

Dettagli

Importo finanziamento ,00 CODICE CUP I12J RELAZIONE DI CALCOLO Ponticello nuovo ingresso privato

Importo finanziamento ,00 CODICE CUP I12J RELAZIONE DI CALCOLO Ponticello nuovo ingresso privato Accordo di programma finalizzato alla programmazione e al finanziamento di interventi urgenti e prioritari per la mitigazione del rischio idrogeologico. D.G.R. 408 del 28.03.2011 2R9F011 Potenziamento

Dettagli

OPEREE DI SOSTEGNO II

OPEREE DI SOSTEGNO II Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì OPEREE DI SOSTEGNO II AGGIORNAMENTO 28/02/2013 Progetto di un muro di sostegno a gravità in cls Sviluppiamo l argomento direttamente

Dettagli

Lavori di consolidamento del fronte roccioso e delle grotte antistanti la spiaggia di Rinella INDICE 2) VERIFICA DELLA VOLTA DELLE GROTTE

Lavori di consolidamento del fronte roccioso e delle grotte antistanti la spiaggia di Rinella INDICE 2) VERIFICA DELLA VOLTA DELLE GROTTE INDICE 1) VERIFICA DEI MURI A SECCO 2) VERIFICA DELLA VOLTA DELLE GROTTE a) Premessa b) Verifiche di stabilità 3) VERIFICA DEGLI ARCHI E DEI PIEDRITTI a) Premessa b) Verifiche di stabilità degli archi

Dettagli

Prontuario Opere Geotecniche (Norme tecniche per le costruzioni D.M. 14/01/2008)

Prontuario Opere Geotecniche (Norme tecniche per le costruzioni D.M. 14/01/2008) Prontuario Opere Geotecniche (Norme tecniche per le costruzioni D.M. 14/01/2008) Punto 6.2.3_Verifiche statiche: Stati Limite Ultimi (SLU) Stato Limite di resistenza del terreno (GEO) Stato Limite di resistenza

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO Gruppo di progettazione Ing. Francesco Donatelli - Ing. Nicola Montesano Mario Cerillo Arch. Gianfranco Mariani RELAZIONE DI CALCOLO MURO DI SOSTEGNO IN C.A. 1) - Premesse e caratteristiche generali delle

Dettagli

ADEGUAMENTO SR 435 LUCCHESE NEL COMUNE DI PESCIA (PT) PROGETTO ESECUTIVO

ADEGUAMENTO SR 435 LUCCHESE NEL COMUNE DI PESCIA (PT) PROGETTO ESECUTIVO ADEGUAMENTO SR 435 LUCCHESE NEL COMUNE DI PESCIA (PT) PROGETTO ESECUTIVO Relazione strutturale di opere in c.a. per la realizzazione dell adeguamento stradale 1 Premesse La seguente relazione strutturale

Dettagli

ANALISI DI STABILITA DEL PENDIO SU CUI SI PREVEDE LA REALIZZAZIONE DI MURI DI SOSTEGNO IN MASSI DI CAVA IN LOCALITA CRIVELLA INFERIORE

ANALISI DI STABILITA DEL PENDIO SU CUI SI PREVEDE LA REALIZZAZIONE DI MURI DI SOSTEGNO IN MASSI DI CAVA IN LOCALITA CRIVELLA INFERIORE SIA Professionisti Associati Via Vittorio Veneto n 27 10061 CAVOUR (TO) - Tel. 01216233 012169308 Fax 0121609560 COMUNE DI BAGNOLO P.TE Provincia di Cuneo CONCESSIONARIO: B.F.P. S.n.c. di Bruno Franco

Dettagli

STRADA DI COLLEGAMENTO S.S.36 - A.T.1.1.

STRADA DI COLLEGAMENTO S.S.36 - A.T.1.1. COMUNE DI CHIAVENNA PROVINCIA DI SONDRIO PIANO DI LOTTIZZAZIONE DI INIZIATIVA PRIVATA (Ambito di trasformazione 1.1. Via per Uggia) LOCALITA BETTE, CHIAVENNA (SO) STRADA DI COLLEGAMENTO S.S.36 - A.T.1.1.

Dettagli

Verranno presentati i seguenti aspetti del calcolo:

Verranno presentati i seguenti aspetti del calcolo: Capitolo 7 Esempio guidato Questo capitolo presenta un esempio di calcolo che si propone di verificare la stabilità di un muro in c.a. a mensola, nel caso siano agenti un sovraccarico nastriforme sul terreno

Dettagli

1 Sottopasso strada Bianca a ponte all Abate

1 Sottopasso strada Bianca a ponte all Abate OPERE D ARTE 1 Sottopasso strada Bianca a ponte all Abate 1.1 Premesse La presente parte di relazione è relativa alla realizzazione di un nuovo sottopasso stradale previsto per mantenere un collegamento

Dettagli

MURI DI SOSTEGNO. a cura del professore. Francesco Occhicone

MURI DI SOSTEGNO. a cura del professore. Francesco Occhicone MURI DI SOSTEGNO a cura del professore Francesco Occhicone anno 2014 MURI DI SOSTEGNO Per muro di sostegno si intende un opera d arte con la funzione principale di sostenere o contenere fronti di terreno

Dettagli

LAVORI DI RISTRUTTURAZIONE EDILIZIA DELLA TENSOSTRUTTURA DEGLI IMPIANTI SPORTIVI DI VIA NAPOLEONICA COMMITTENTE. Comune di Bagnolo di Po

LAVORI DI RISTRUTTURAZIONE EDILIZIA DELLA TENSOSTRUTTURA DEGLI IMPIANTI SPORTIVI DI VIA NAPOLEONICA COMMITTENTE. Comune di Bagnolo di Po Pag. 1 di 11 totali LAVORI DI RISTRUTTURAZIONE EDILIZIA DELLA TENSOSTRUTTURA DEGLI IMPIANTI SPORTIVI DI VIA NAPOLEONICA COMMITTENTE Comune di Bagnolo di Po UBICAZIONE TENSOSTRUTTURA PRESSO COMUNE DI BAGNOLO

Dettagli

= 1+ = posta a distanza. dalla base del muro.

= 1+ = posta a distanza. dalla base del muro. Premessa Al fine di realizzare un tratto di strada in rilevato limitando il più possibile l area di occupazione del solido stradale, viene realizzato un terrapieno alto 4,50 m delimitato da un muro di

Dettagli

Provincia di Savona. Settore Gestione della Viabilità, Edilizia ed Ambiente

Provincia di Savona. Settore Gestione della Viabilità, Edilizia ed Ambiente Pag. N 1 di 82 Documento Provincia di Savona Settore Gestione della Viabilità, Edilizia ed Ambiente Evento alluvionale del 04-10-2010 O.P.C.M. 3903/2010 D.C.D. 176/2011 S.P. n. 57 Varazze Casanova Alpicella

Dettagli

VERIFICHE DI STABILITA DI UN PENDIO

VERIFICHE DI STABILITA DI UN PENDIO VERIFICHE DI STABILITA DI UN PENDIO 52 Secondo le NTC 2008, il livello di sicurezza di un versante è espresso, in generale, come rapporto tra resistenza al taglio disponibile, presa con il suo valore caratteristico

Dettagli

SUPERSTRADA A PEDAGGIO PEDEMONTANA VENETA

SUPERSTRADA A PEDAGGIO PEDEMONTANA VENETA COMMISSARIO DELEGATO PER L EMERGENZA DETERMINATASI NEL SETTORE DEL TRAFFICO E DELLA MOBILITA NEL TERRITORIO DELLE PROVINCE DI TREVISO E VICENZA SUPERSTRADA A PEDAGGIO PEDEMONTANA VENETA PROGETTO DEFINITIVO

Dettagli

MB Muro ( Ver. 2.0 ) Documento di Validazione. Ing. Mauro Barale

MB Muro ( Ver. 2.0 ) Documento di Validazione. Ing. Mauro Barale MB Muro ( Ver. 2.0 ) Documento di Validazione Ing. Mauro Barale barale.mauro@mbmuro.it Indice Premessa... 2 Campo di applicazione e limitazioni d uso... 3 Esempi di Verifica... 4 Esempio di calcolo completo...

Dettagli

INDICE 1. INTRODUZIONE NORMATIVA MATERIALI DEFINIZIONE DEI CARICHI... 5

INDICE 1. INTRODUZIONE NORMATIVA MATERIALI DEFINIZIONE DEI CARICHI... 5 INDICE 1. INTRODUZIONE... 2 1.1. NUOVA SOLETTA... 2 1.2. POSTAZIONE DISABILI E NUOVI GRADINI... 3 2. NORMATIVA... 4 3. MATERIALI... 4 3.1. CALCESTRUZZI... 5 3.2. ACCIAIO PER C.A.... 5 4. DEFINIZIONE DEI

Dettagli

ESERCIZI DA ESAMI ( ) Stabilità dei pendii

ESERCIZI DA ESAMI ( ) Stabilità dei pendii ESERCIZI DA ESAMI (1996-2003) Stabilità dei pendii Esercizio 1 Si vuole eseguire uno scavo di sbancamento in un deposito di argilla omogenea satura sovrastante uno stato rigido (bedrock). Determinare con

Dettagli

D.M. 14/01/08 Norme tecniche per le costruzioni

D.M. 14/01/08 Norme tecniche per le costruzioni 1) NORME ADOTTATE D.M. 14/01/08 Norme tecniche per le costruzioni Circ. Min. II. TT. 02/02/09 n 617 AA.GG/S.T.C. Istruzioni per l applicazione delle nuove norme tecniche per le costruzioni di cui al D.M.

Dettagli

OPERE DI SOSTEGNO Stati Limite Ultimi di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU): 1. Stabilità globale dell insieme opera-terreno 2. Scorrimento sul piano di posa 3. Collasso per carico

Dettagli

LA SPINTA DELLE TERRE

LA SPINTA DELLE TERRE LA SPINTA DELLE TERRE Per spinta delle terre, si intende la pressione che un determinato masso di terra esercita contro un muro o un qualsiasi paramento atto ad impedire il franamento del masso di terra.

Dettagli

03 Analisi di stabilita di un pendio

03 Analisi di stabilita di un pendio 03 Analisi di stabilita di un pendio BISHOP - FS = 1.651 LEGENDA: BELL - FS = 1.6335 BISHOP - FS = 1.651 BELL - FS = 1.6335 FELLENIUS - FS = 1.5839 FELLENIUS - FS = 1.5839 2400 2200 2000 1800 1600 1400

Dettagli

RIFACIMENTO TRATTO PERICOLANTE del MURO di SOSTEGNO STRADALE lungo via CICOGNE

RIFACIMENTO TRATTO PERICOLANTE del MURO di SOSTEGNO STRADALE lungo via CICOGNE COMUNE DI SAN GERVASIO BRESCIANO PROVINCIA DI BRESCIA Progetto: RIFACIMENTO TRATTO PERICOLANTE del MURO di SOSTEGNO STRADALE lungo via CICOGNE RELAZIONE GEOTECNICA Il Progettista Ing. Gabriele Bonvicini

Dettagli

Analisi di stabilita di un pendio naturale

Analisi di stabilita di un pendio naturale Università degli Studi di Napoli FEDERICO II Dipartimento di Ingegneria Idraulica, Geotecnica ed Ambientale (DIGA) Corso di perfezionamento - Gestione e mitigazione dei rischi naturali Analisi di stabilita

Dettagli

COMUNE DI FIRENZE PROGETTO DI UNA PLATEA DI FONDAZIONE

COMUNE DI FIRENZE PROGETTO DI UNA PLATEA DI FONDAZIONE COMUNE DI FIRENZE PROGETTO DI UNA PLATEA DI FONDAZIONE A3 - RELAZIONE TECNICA GENERALE A4 - Relazione sui materiali A8 Relazione di calcolo Progettista: Ing. Marco Gori Ordine Ingegneri di Firenze n 3546

Dettagli

Comune di Venaria. Parcheggio A. Progetto esecutivo per la realizzazione parcheggi e viabilità nel complesso di Venaria Reale RELAZIONE DI CALCOLO

Comune di Venaria. Parcheggio A. Progetto esecutivo per la realizzazione parcheggi e viabilità nel complesso di Venaria Reale RELAZIONE DI CALCOLO Comune di Venaria Parcheggio A Progetto esecutivo per la realizzazione parcheggi e viabilità nel complesso di Venaria Reale RELAZIONE DI CALCOLO DEI MURI DI CONTENIMENTO Realizzazione parcheggi e viabilità

Dettagli

Verifica di stabilità globale

Verifica di stabilità globale Unità I muri di sostegno 1 Verifica di stabilità globale Per effetto di molteplici cause e principalmente: il terreno costituente il terrapieno si presenta incoerente e giace su strati inferiori coerenti;

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO COMUNE di INDUNO OLONA - PROVINCIA DI VARESE PROGETTO di AMPLIAMENTO del CIMITERO COMUNALE PROGETTO STRUTTURALE ESECUTIVO RELAZIONE DI CALCOLO Brescia, 20 Ottobre 2011 1 Il dimensionamento e le verifiche

Dettagli

Via Pinarella. Relazione geotecnica e sulle fondazioni Edificio Sud. Comune di Cervia (Ra)

Via Pinarella. Relazione geotecnica e sulle fondazioni Edificio Sud. Comune di Cervia (Ra) Via Pinarella Relazione geotecnica e sulle fondazioni Relazione geotecnica e sulle fondazioni Edificio Sud Via Pinarella Comune di Cervia (Ra) INDICE INDICE... 1 1 Descrizione della struttura di fondazione...

Dettagli

Esercizi d esame risolti

Esercizi d esame risolti Corsi di Geotecnica, Geotecnica e Meccanica delle terre e delle rocce. Esercizi d esame risolti Ing. Lucia Simeoni http://.ing.unitn.it/~simeonil/esercizi.html 6. Problemi al collasso: carico limite di

Dettagli

D.M. 14/01/08 Norme tecniche per le costruzioni

D.M. 14/01/08 Norme tecniche per le costruzioni 1) NORME ADOTTATE D.M. 14/01/08 Norme tecniche per le costruzioni Circ. Min. II. TT. 02/02/09 n 617 AA.GG/S.T.C. Istruzioni per l applicazione delle nuove norme tecniche per le costruzioni di cui al D.M.

Dettagli

PROGETTO ESECUTIVO. Relazione di calcolo opere in cemento armato

PROGETTO ESECUTIVO. Relazione di calcolo opere in cemento armato AMSA Spa Azienda Milanese Servizi Ambientali Sede legale e amministrativa Via Olgettina, 25 20132 Milano MI Tel. 02-27298.1 Fax. 02-26300911 E mail: amsa@amsa.it http://www.amsa.it REALIZZAZIONE DI PARCHEGGIO

Dettagli

RELAZIONE DI CALCOLO E VERIFICA PALI DI SOSTEGNO I.P. IN ACCIAIO E PLINTI DI FONDAZIONE

RELAZIONE DI CALCOLO E VERIFICA PALI DI SOSTEGNO I.P. IN ACCIAIO E PLINTI DI FONDAZIONE AMGA - Azienda Multiservizi SpA - Udine pag. 1 di 8 RELAZIONE DI CALCOLO E VERIFICA PALI DI SOSTEGNO I.P. IN ACCIAIO E PLINTI DI FONDAZIONE 1. GENERALITA La presente relazione riguarda la verifica di un

Dettagli

NORMATIVA DI RIFERIMENTO...

NORMATIVA DI RIFERIMENTO... 1. OGGETTO... 2 2. NORMATIVA DI RIFERIMENTO... 2 3. METODO DI CALCOLO... 4 4. ORIGINE E CARERISTICHE DEI CODICI DI CALCOLO... 5 5. MODELLAZIONE DEI MATERIALI... 5 6. VERIFICA PALO DI ILLUMINAZIONE VERTICALE...

Dettagli

7/a COMUNE DI GIACCIANO CON BARUCHELLA PROVINCIA DI ROVIGO TAVOLA

7/a COMUNE DI GIACCIANO CON BARUCHELLA PROVINCIA DI ROVIGO TAVOLA COMUNE DI GIACCIANO CON BARUCHELLA PROVINCIA DI ROVIGO TAVOLA 7/a Piazzale G. Marconi n 1 Giacciano con Baruchella (RO) STUDIO TECNICO CAPPELLARI GEOM. FRANCESCO Riviera Pace n. 141/1 Badia Polesine (Ro)

Dettagli

Spea Ufficio Tunnelling 1 / 24 1. INTRODUZIONE... 2 2. NORMATIVA DI RIFERIMENTO... 3 3. MATERIALI IMPIEGATI... 4

Spea Ufficio Tunnelling 1 / 24 1. INTRODUZIONE... 2 2. NORMATIVA DI RIFERIMENTO... 3 3. MATERIALI IMPIEGATI... 4 Spea Ufficio Tunnelling 1 / 24 INDICE 1. INTRODUZIONE... 2 1.1 PREMESSA... 2 1.2 DESCRIZIONE DELLE OPERE... 2 2. NORMATIVA DI RIFERIMENTO... 3 3. MATERIALI IMPIEGATI... 4 4. VERIFICA DEI MURI DI SOSTEGNO...

Dettagli

1 PREMESSA MATERIALI INQUADRAMENTO NORMATIVO PREDIMENSIONAMENTO DELL IMPALCATO... 8

1 PREMESSA MATERIALI INQUADRAMENTO NORMATIVO PREDIMENSIONAMENTO DELL IMPALCATO... 8 INDICE 1 PREMESSA... 2 2 MATERIALI... 5 3 INQUADRAMENTO NORMATIVO... 6 4 PREDIMENSIONAMENTO DELL IMPALCATO... 8 4.1 ANALISI DEI CARICHI... 8 4.2 RISULTATI... 10 5 PREDIMENSIONAMENTO DELLE SPALLE... 14

Dettagli

Resistenza al fuoco delle strutture in C.A: norma UNI 9502 ed eurocodici

Resistenza al fuoco delle strutture in C.A: norma UNI 9502 ed eurocodici Corso di specializzazione antincendio ex legge 818/84 Resistenza al fuoco delle strutture in C.A: norma UNI 9502 ed eurocodici Docente: Vicedirigente 1 Resistenza al fuoco di elementi in conglomerato cementizio

Dettagli

RELAZIONE DI CALCOLO. P t = K a γ t z = 2

RELAZIONE DI CALCOLO. P t = K a γ t z = 2 RELAZIONE DI CALCOLO Normative di riferimento: NTC008 - Norme tecniche per le costruzioni - D.M. 14 Gennaio 008. CIRCOLARE febbraio 009, n. 617 - Istruzioni per l'applicazione delle 'Nuove norme tecniche

Dettagli

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1 PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/1/011 Esercizio n 1 Sia data una sezione di c.a. avente dimensioni 40 x 60 cm. I materiali impiegati sono: a) calcestruzzo Rck=0 N/, b) acciaio tipo B450C.

Dettagli

AICAP - ASSOCIAZIONE ITALIANA CALCESTRUZZO ARMATO E PRECOMPRESSO

AICAP - ASSOCIAZIONE ITALIANA CALCESTRUZZO ARMATO E PRECOMPRESSO AICAP - ASSOCIAZIONE ITALIANA CALCESTRUZZO ARMATO E PRECOMPRESSO Guida all uso dell Eurocodice 2 nella progettazione strutturale Facoltà di Ingegneria - Università degli Studi di Pisa Pisa, 26 Gennaio

Dettagli

Capitolo 2 Condizioni statiche di un cubetto di terra immerso...» 3

Capitolo 2 Condizioni statiche di un cubetto di terra immerso...» 3 Indice Presentazione...pag. VII Capitolo 1 Il sostegno di un terrapieno...» 1 Capitolo 2 Condizioni statiche di un cubetto di terra immerso...» 3 Capitolo 3 Calcolo della spinta attiva su un muro di sostegno...»

Dettagli

Lezione 10 GEOTECNICA

Lezione 10 GEOTECNICA Lezione 10 GEOTECNICA Docente: Ing. Giusy Mitaritonna e-mail: g.mitaritonna@poliba.it 1 - Lezione 10 A. Opere di sostegno B. Spinta delle Terre C. Teoria di Rankine (1857) D. Teoria di Coulomb (1776) 10.A

Dettagli

UNIVERSITA DEGLI STUDI DI FIRENZE. DIPARTIMENTO DI INGEGNERIA CIVILE Sezione geotecnica SPINTA DELLE TERRE

UNIVERSITA DEGLI STUDI DI FIRENZE. DIPARTIMENTO DI INGEGNERIA CIVILE Sezione geotecnica SPINTA DELLE TERRE UNIVERSIT DEGLI STUDI DI FIRENE DIRTIMENTO DI INGEGNERI CIVILE SINT DELLE TERRE CorsodiFondamentidiGeotecnica Scienze dell Ingegneria Edile,.. 005\006 Dott. Ing. Johann Facciorusso UNIVERSIT DEGLI STUDI

Dettagli

IL METODO DEGLI STATI LIMITE

IL METODO DEGLI STATI LIMITE Corso sulle Norme Tecniche per le costruzioni in zona sismica (Ordinanza PCM 3274/2003, DGR Basilicata 2000/2003) POTENZA, 2004 IL METODO DEGLI STATI LIMITE Prof. Ing. Angelo MASI DiSGG, Università di

Dettagli

Si definiscono tali le opere atte a sostenere il terreno che è stato o dovrà essere oggetto di scavo.

Si definiscono tali le opere atte a sostenere il terreno che è stato o dovrà essere oggetto di scavo. LEZIONE 0 LE OPERE DI OTEGNO DEI TERRENI i definiscono tali le opere atte a sostenere il terreno che è stato o dovrà essere oggetto di scavo. Le opere di sostegno più comuni sono classificabili in: MURI

Dettagli

Relazione Preliminare -Calcolo Strutture-

Relazione Preliminare -Calcolo Strutture- PREMESSA Oggetto della presente è la definizione delle strutture di fondazione (plinto su micropali) e accessorie (muri su strada) relative alle torri eoliche che verranno posate in località Garessio (CN);

Dettagli

CITTÀ DI PIOSSASCO P.IVA

CITTÀ DI PIOSSASCO P.IVA CITTÀ DI PIOSSASCO C..A.P. 10045 PROVINCIA DI TORINO P.IVA 0161477001 ----------------------------------------- Tel. : 011/ 90.7.63-6 - Fax 011/ 90.7.69 REALIZZAZIONE NUOVI LOCULI LUNGO LA CINTA SUD DELL

Dettagli

Normative di riferimento

Normative di riferimento Aztec Informatica CARL 9.0 Relazione di calcolo 1 RELAZIONE DI CALCOLO GEOTECNICO Normative di riferimento - Legge nr. 1086 del 05/11/1971. Norme per la disciplina delle opere in conglomerato cementizio,

Dettagli

Muri di sostegno in c.a.

Muri di sostegno in c.a. Corso di aggiornamento professionale Progettazione geotecnica secondo le NTC 2008 Prof. Ing. Claudia Madiai Dipartimento di Ingegneria Civile e Ambientale, Università di Firenze Muri di sostegno in c.a.

Dettagli

3.2 Portale di sostegno alla passerella metallica pag. 7

3.2 Portale di sostegno alla passerella metallica pag. 7 INDICE Premessa pag. 2 1 Normativa pag. 3 2 Materiali pag. 5 3 Calcoli Statici pag. 6 3.1 Passerella metallica pag. 6 3.2 Portale di sostegno alla passerella metallica pag. 7 1 PREMESSA La presente relazione

Dettagli

Relazione di Calcolo Descrizione: Paratia flessibile

Relazione di Calcolo Descrizione: Paratia flessibile Relazione di Calcolo Descrizione: Paratia flessibile Indice Modello Strutturale...3 Metodo di calcolo...3 Materiali da costruzione impiegati...3 Elementi strutturali...3 Strati...4 Spinta a riposo...4

Dettagli

VOLUME D Modulo S Strade, muri di sostegno, ponti

VOLUME D Modulo S Strade, muri di sostegno, ponti VOLUME D iferimento.10 Pag. 148 Muri di sostegno: verifiche di stabilità e calcolo delle pareti Unità didattica Muri di sostegno TESTO DM 88 NTC (par. 6.5.3.1.1, capitolo 7.11) CIC. (parr. C6.5, C7) Le

Dettagli

Ordine degli Ingegneri della Provincia di Bergamo AZIONE SISMICA E PROGETTAZIONE PER AZIONI SISMICHE

Ordine degli Ingegneri della Provincia di Bergamo AZIONE SISMICA E PROGETTAZIONE PER AZIONI SISMICHE Ordine degli Ingegneri della Provincia di Bergamo LE NORME TECNICHE PER LE COSTRUZIONI - D.M. 14-1-2008 AZIONE SISMICA E PROGETTAZIONE PER AZIONI SISMICHE Analisi statica di un edificio regolare in pianta

Dettagli

COMUNE DI SANTA SEVERINA

COMUNE DI SANTA SEVERINA COMUNE DI SANTA SEVERINA PROVINCIA di CROTONE LAVORI DI CONSOLIDAMENTO E MESSA IN SICUREZZA PARETE SOGGETTA A CROLLO SOTTOSTANTE CORSO ARISTIPPO - VIA GRECIA PROGETTO ESECUTIVO RELAZIONE GEOTECNICA E DI

Dettagli

Criticità e problemi applicativi delle Nuove Norme Tecniche per le Costruzioni

Criticità e problemi applicativi delle Nuove Norme Tecniche per le Costruzioni Criticità e problemi applicatii delle Nuoe Norme Tecniche per le Costruzioni Verifiche agli Stati Limite con particolare riguardo alle strutture geotecniche Mantoa, 4-06-011 Dott. Ing. Antonio Sproccati

Dettagli

OPERE DI SOSTEGNO IIII

OPERE DI SOSTEGNO IIII Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì OPERE DI SOSTEGNO IIII AGGIORNAMENTO 14/0/013 Progetto di un muro di sostegno in c.a. Facciamo riferimento allo stesso muro,

Dettagli

A3-Relazione tecnica generale

A3-Relazione tecnica generale A3-Relazione tecnica generale L intervento prevede la realizzazione di una centrale termica a biomasse (cippato di legno); l edificio viene organizzato in tre vani: 1) locale caldaia: all interno del quale

Dettagli

COMUNE DI S.MINIATO (PI) IMPIANTO DI SOLLEVAMENTO PER LA RIDUZIONE DEI FENOMENI DI ALLAGAMENTO E RISTAGNO PRESSO LA ZONA DI S.

COMUNE DI S.MINIATO (PI) IMPIANTO DI SOLLEVAMENTO PER LA RIDUZIONE DEI FENOMENI DI ALLAGAMENTO E RISTAGNO PRESSO LA ZONA DI S. COMUNE DI S.MINIATO (PI) IMPIANTO DI SOLLEVAMENTO PER LA RIDUZIONE DEI FENOMENI DI ALLAGAMENTO E RISTAGNO PRESSO LA ZONA DI S.DONATO RELAZIONE PRELIMINARE DI CALCOLO DELLE STRUTTURE - indice 1. Relazione

Dettagli

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008)

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008) CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008) Editare descrizione: es. Il solaio di copertura sarà portato da capriate in legno del tipo alla Palladio con estremi

Dettagli

INTERVENTO PORTO CAVERNAGO PROVINCIA DI VENEZIA COMUNE DI VENEZIA

INTERVENTO PORTO CAVERNAGO PROVINCIA DI VENEZIA COMUNE DI VENEZIA INTERVENTO PORTO CAVERNAGO PROVINCIA DI VENEZIA COMUNE DI VENEZIA MURO DI SOSTEGNO E TOMBOTTO INDICE 1. Descrizione generale dell opera 2. Unità di misura 3. Normativa 4. Schemi strutturali e metodologia

Dettagli

RELAZIONE ILLUSTRATIVA RIGUARDANTE LE STRUTTURE

RELAZIONE ILLUSTRATIVA RIGUARDANTE LE STRUTTURE RELAZIONE ILLUSTRATIVA RIGUARDANTE LE STRUTTURE Proprietà: Ubicazione: RONCONI & LIVERANI Srl Comune di Cotignola Via Madonna di Genova n 39/41 Prog. e DDL Strutturale: Progetto architettonico: Ing. Peroni

Dettagli

Università IUAV di Venezia

Università IUAV di Venezia Università IUAV di Venezia corso : Fondazioni a.a. 2016-17 17 D.M.14.01.2008.14.01.2008 - cap. 6 Progettazione geotecnica 6.2.2 INDAGINI, CARATTERIZZAZIONE E MODELLAZIONE GEOTECNICA Le indagini geotecniche

Dettagli

Spinta delle terre Teoria di Coulomb o del prisma di massima spinta

Spinta delle terre Teoria di Coulomb o del prisma di massima spinta Spinta delle terre Teoria di Coulomb o del prisma di massima spinta La valutazione in intensità, verso, punto di applicazione della spinta del terreno su un muro di sostegno presenta tutt ora difficoltà

Dettagli

- Punto 3: Progetto e verifica delle sezioni armate della trave e delle colonne costituenti il telaio principale.

- Punto 3: Progetto e verifica delle sezioni armate della trave e delle colonne costituenti il telaio principale. ESERCITAZIONE DI PROGETTO DI STRUTTURE - Anno Accademico 013/014 Redattore Dott. Ing. Simone Caffè OGGETTO - Punto 1 Analisi dei carichi di una copertura in calcestruzzo armato adibita a parcheggio sopraelevato.

Dettagli

I. Indice. Cernicchiara Opere di sostegno - Relazione di calcolo. 1 di 58

I. Indice. Cernicchiara Opere di sostegno - Relazione di calcolo. 1 di 58 I. Indice I. Indice... 1 II. Norme e specifiche... 2 1. Premessa... 3 2. Descrizione delle strutture... 5 3. Caratteristiche dei materiali... 7 3.1. Conglomerato di classe di resistenza C28/35... 7 3.2.

Dettagli

6 Stato Limite Ultimo per tensioni normali

6 Stato Limite Ultimo per tensioni normali 6 Stato Limite Ultimo per tensioni normali Legami costitutivi non lineari Si considerano i seguenti legami costitutivi non lineari del calcestruzzo e dell acciaio Legame parabola - rettangolo Legame stress

Dettagli

Test 21 Calcolo del k di Winkler

Test 21 Calcolo del k di Winkler Test 21 Calcolo del k di Winkler Rev 00 Data: 15/06/2009 Programma: PRO_VGeo Versione: build 2009.06.0010 File: 200906_k_winkler plinto.psp Scopo: Validazione del calcolo del k di Winkler di un plinto:

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO PLINTI PREFORMATI TIPO 85/60/60 (h) IN CONGLOMERATO CEMENTIZIO PER PALI D ILLUMINAZIONE DA PORSI IN LOCALITA DELLE ZONE 3 RELAZIONE DI CALCOLO Ditta Produttrice: GIORNI OSCAR di GIORNI Massimo & c snc

Dettagli

RELAZIONE DI CALCOLO E SUI MATERIALI

RELAZIONE DI CALCOLO E SUI MATERIALI RELAZIONE DI CALCOLO E SUI MATERIALI (D.Leg.vo n.163/2006; D.P.R. n. 207/2010) Titolo del progetto: Intervento di ripristino della strada comunale fosso Martelli I stralcio. PROGETTO DEFINITIVO Ubicazione:

Dettagli

Stabilità delle opere di sostegno Esercizio 1 Verificare la stabilità, in assenza di falda, del muro di sostegno a gravità mostrato in Figura.

Stabilità delle opere di sostegno Esercizio 1 Verificare la stabilità, in assenza di falda, del muro di sostegno a gravità mostrato in Figura. ESERCIZI DA ESAMI (1996-006) Stabilità delle opere di sostegno Esercizio 1 Verificare la stabilità, in assenza di falda, del muro di sostegno a gravità mostrato in Figura. H A B α β dati: H = 5.00 m A

Dettagli

L obiettivo è stato quello di verificare la relazione Rd > Ed, come indicato nelle NTC2008 al paragrafo 2.3.

L obiettivo è stato quello di verificare la relazione Rd > Ed, come indicato nelle NTC2008 al paragrafo 2.3. 1) PREMESSA La presente relazione viene redatta in supporto al progetto dell ampliamento della scuola secondaria di primo grado Istituto comprensivo Erasmo da Rotterdam sita in Via Giovanni XXIII, 8 a

Dettagli

Progettazione di strutture in c.a. SLU per taglio nelle travi

Progettazione di strutture in c.a. SLU per taglio nelle travi Progettazione di strutture in c.a. SLU per taglio nelle travi Travi 4.1.6.1.1-NTC Armatura trasversale minima 1. sezione complessiva delle staffe non inferiore ad A st = 1,5 b mm 2 /m essendo b lo spessore

Dettagli

modulo E Le volte f 2 + l2 4 2 f Con i valori numerici si ha: 1, , , 40 = 5,075 m r =

modulo E Le volte f 2 + l2 4 2 f Con i valori numerici si ha: 1, , , 40 = 5,075 m r = Unità Il metodo alle tensioni ammissibili 1 ESERCIZIO SVOLTO Le volte Verificare una volta circolare a sesto ribassato in muratura di mattoni pieni che presenta le seguenti caratteristiche geometriche:

Dettagli

Rinforzo a flessione Esempi numerici

Rinforzo a flessione Esempi numerici Rinorzo a lessione Esempi numerici 1 Rinorzo a lessione Il rinorzo a lessione è necessario per elementi strutturali soggetti a momento lettente di calcolo maggiore della corrispondente resistenza Il rinorzo

Dettagli

CALCOLO ESECUTIVO DELLE STRUTTURE E DEGLI IMPIANTI

CALCOLO ESECUTIVO DELLE STRUTTURE E DEGLI IMPIANTI LAVORI DEL PRIMO STRALCIO E DEL SECONDO STRALCIO DELLA TERZA FASE DEL PORTO COMMERCIALE DI AUGUSTA - BANCHINE CONTAINERS - IMPRESE: (MANDATARIA) (MANDANTI) 0 8 1 1 1 4 PRIMA EMISSIONE REV. DATA EMISSIONE

Dettagli

OPERE DI SOSTEGNO. Normativa sismica Diego Lo Presti & Nunziante Squeglia Dipartimento di Ingegneria Civile Università di Pisa

OPERE DI SOSTEGNO. Normativa sismica Diego Lo Presti & Nunziante Squeglia Dipartimento di Ingegneria Civile Università di Pisa OPERE DI SOSTEGNO 1 TIPOLOGIE STRUTTURALI 2 Normativa: OPCM 3274, NTC 14.01.2008 Requisiti generali di progetto Funzionalità (durante e dopo) Ammessi spostamenti permanenti (compatibili) Criteri di progetto

Dettagli

COMUNE DI BARLETTA PROV. DI BARLETTA ANDRIA TRANI

COMUNE DI BARLETTA PROV. DI BARLETTA ANDRIA TRANI COMUNE DI BARLETTA PROV. DI BARLETTA ANDRIA TRANI Tav. 2/Str. RELAZIONE DI CALCOLO STRUTTURE SECONDARIE E APERTURA BOTOLE A SOLAIO/VARCHI ESISTENTI RELAZIONE DI CALCOLO A.3 OGGETTO: LAVORI DI RECUPERO

Dettagli

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa t = 15 h = 175 Si consideri la sezione rappresentata in figura (sezione di trave inflessa) sulla quale agisca un taglio verticale T

Dettagli