Frequenza relativa e probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Frequenza relativa e probabilità"

Transcript

1 Frequenza relativa e probabilità La La probabilità e' e' un un numero con con cui cuisi si descrivono i i fenomeni che che possono essere essere pensati come come risultato di di un un esperimento che che cambia cambia al al ripetersi dell esperimento stesso stesso (pur (pur mantenendo le le medesime condizioni operative). Esempio: Esperimento: Lancio Lancio casuale di di un un dado dado Risultato: Numero sulla sulla faccia faccia superiore del del dado dado Insieme dei dei possibili risultati (elementari): S={,,3,4,5,6} Evento: qualsiasi sottoinsieme dell insieme dei dei risultati risultati A={,}; B={,4,6}; ecc. ecc. Se Se si si esegue esegue un un numero N di di prove prove sufficientemente elevato, sia sia l esperienza sia sia la la teoria teoria della della probabilità mostrano che che la la frequenza relativa relativadei dei singoli singoli risultati risultati (k=,,3,4,5,6) (o (o di di un un qualsiasi evento) evento) è prossima alla alla loro loro probabilità: NA f P( A) A = N

2 Frequenza relativa e probabilità f A = N N A P( A) A f P( A) f S = P( S) = f AUB = f + f f P( AU B) = P( A) + P( B) P( AI B) A B AIB f A B = f A + fb f ( ) ( ) ( ) ( ) + AB P A+ B = P A + P B P AB

3 Variabile casuale numero reale associato ad un evento ( ) Funzione di distribuzione a = P( a) F P( a a + da) da d da ( ) ( ) Densità di probabilità p a = F a =

4 Variabile casuale continua Le Le variabili casuali sono continue quando possono assumere un un insieme continuo di di valori (e (e quindi i i possibili risultati sono in in numero infinito). Esempio: v.c. v.c. Uniforme Assume con con la la stessa stessa probabilità un un qualsi qualsi valore valore reale reale valore valore compreso tra tra e ( ) Funzione di distribuzione F a = P( a) = a d da ( ) ( ) Densità di probabilità p a = F a =

5 Variabile casuale discreta Le Le variabili casuali sono discrete quando possono assumere un un insieme discreto di di valori (e (e quindi i i possibili risultati sono in in numero finito). Esempio: v.c. v.c. Legata Legata al al numero sulla sulla faccia faccia superiore del del dado. dado. F p ( a) Funzione di distribuzione = P( a) = u( a ) + u( a ) u( a 6) d da Densità di probabilità 6 ( a) = F ( a) = δ( a ) + δ( a 6) δ( a 6) 6 6

6 Uso della densità di probabilità Dalla Dalla densità densitàdi di probabilità p(a) p(a) è facile facile calcolare la la probabilità che che la la variabile casuale assuma un un valore valore compreso in in un un intervallo a,, a.. Basta Basta sommare! si si ottiene ottiene l area l area sottesa sottesa dalla dalla ddp ddpnell intervallo d interesse. ( < ) = a P a Si noti che a a p ( a) da P ( < < ) = p ( a) da =.. Dunque l area l area sottesa sottesa dalla dalla ddp ddp di di una una qualunque variabile casuale è unitaria a a

7 Variabili casuali continue Il Il concetto di di frequenza relativa relativaviene viene recuperato approssimando l insieme continuo di di valori valori con con un un numero finito finito di di intervallini di di misura misura (discretizzazione). Ad Ad esempio, se se la la v.c. v.c. può può variare variare con con continuità tra tra e gradi, gradi, non non commettiamo un un grosso grosso errore errore approssimando l intervallo continuo con con intervallini contigui larghi larghi La La variabile casuale è diventata discreta (ci (ci sono sono possibili risultati risultati dell esperimento) e possiamo approssimare la la probabilità come come limite limite della della frequenza relativa relativa per per N elevato.

8 =rand(,); hist(,) Istogramma dei risultati di una V.C. uniforme

9 =rand(,); hist(,) All'aumentare del numero di prove, l'istogramma tende alla frequenza relativa moltiplicata per il numero di prove

10 =rand(,); [X,N]=hist(,); bar(n,x/*) All'aumentare del numero di prove e del numero di intervalli, l'istogramma diviso per il numero di prove e per la dimensione degli intervalli tende alla densita' di probabilita'

11 =randn(,); hist(,) All'aumentare del numero di prove, l'istogramma tende alla frequenza relativa moltiplicata per il numero di prove. 4 4 V.C. gaussiana

12 =randn(,); [X,N]=hist(,); d=(n()-n()); bar(n,x//d) All'aumentare del numero di prove e del numero di intervalli, l'istogramma diviso per il numero di prove e per la dimensione degli intervalli tende alla densita' di probabilita' V.C. gaussiana

13 Valor medio di una variabile casuale Il Il valor valor medio mediom,, detto detto anche anche valore valore atteso attesoe [] [] o momento (statistico) di di ordine ordine uno, uno, di di una una variabile casuale è definito definito come come segue. segue. m [ ] = = E a p (a) da Il valor medio di una variabile casuale è l ascissa del baricentro dell area sottesa dalla densità di probabilità. p(a) p(a) m X a m X a Il valor medio della somma di variabili casuali è la somma dei valori medi

14 Valore quadratico medio e varianza Il Il valor valor quadratico medio medioe [ [ X [ ( ], ], detto detto anche potenza statistica o momento (statistico) di di ordine ordine σ, =, Edi di Xuna una mvariabile X ) ] = ( acasuale m ) f X ( è a ): : da = = E X [ ] m E[ X ] + m = E[ X ] m m + m = E[ X ] m X X E [ ] X X = a p (a) da X X La La varianza σ (detta (detta anche anche momento centrale di di ordine ordine ) ) di di una una variabile casuale è il il valore valore quadratico medio medio della della differenza tra tra e il il suo suo valor valor medio medio m σ = E [ ] [ ] m ) = E m ( La La radice radice quadrata della della varianza è detta detta deviazione standard (o (o scarto scarto quadratico medio) medio) della della variabile casuale σ = σ

15 =rand(,); z=rand(,); b=/*+/*z; [B,N]=hist(a,); bar(n,b/*) La d.d.p. della somma di v.c. indipendenti è data dalla convoluzione delle d.d.p

16 Introduzione ai processi casuali Il rumore termico Un classico e importante esempio utile a introdurre il concetto di processo casuale e rappresentato dalla debole tensione elettrica v (t) esistente ai capi di un resistore. Questa tensione, variabile nel tempo, e causata dal movimento caotico degli elettroni dovuto ad una temperatura del materiale superiore allo zero assoluto. Se si misura la tensione v (t) si ottiene, secondo quanto detto in precedenza, un segnale deterministico. v (t) t

17 Introduzione ai processi casuali () Se si prende un secondo resistore identico al primo e posto alla stessa temperatura e si esegue la misura della tensione elettrica ai suoi capi, si otterra di nuovo un segnale deterministico v (t), con caratteristiche simili ma diverso dal precedente dato che gli elettroni si muovono in modo diverso. v (t) v (t) t t

18 Introduzione ai processi casuali (3) Se il nostro scopo e determinare l effetto del rumore termico del resistore su un apparecchiatura elettronica, non e di nessuna utilità conoscere deterministicamente il comportamento della tensione v (t) ai capi del primo resistore se poi il resistore effettivamente montato nell apparecchiatura e il secondo. E utile invece riuscire a descrivere quelle che sono le caratteristiche della tensione di rumore comuni a tutti i resistori dello stesso tipo e a quella temperatura. In questo modo, qualsiasi sia il resistore (di quel valore e a quella temperatura) montata nell apparecchiatura, potremo dire, per esempio, con quale probabilità si presenteranno certi valori di tensione o quale sarà il valore atteso della potenza di rumore. Si abbandona dunque il concetto di certezza (proprio dei segnali deterministici) per passare a quello dell incertezza, descritto dalla teoria della probabilità, proprio dei processi casuali.

19 Introduzione ai processi casuali (4) Un processo casuale e : l insieme di tutti i segnali deterministici (detti le realizzazioni del processo) generati da altrettante sorgenti uguali, ma indipendenti tra loro. ESEMPIO Dimensione d'insieme Dimendsione Temporale

20 Introduzione ai processi casuali (5) Per ogni tempo t si ottiene una variabile casuale che viene descritta attraverso la sua ddp Dimensione d'insieme Dimendsione Temporale t

21 Introduzione ai processi casuali (6) Per ogni coppia di tempi t e t si ottiengono variabili casuali che viengono descritte attraverso la loro ddp congiunta Dimensione d'insieme Dimendsione Temporale t t

22 ESEMPIO ( t) = cos(π.t + ϑ) ϑ V.C. Unif. - π Dimensione Temporale Dimensione d'insieme

23 ESEMPIO (t ) = cos(π.t + ϑ ) ϑ V.C. Unif. - π

24 ESEMPIO ( t) = cos(π.t + ϑ) ϑ V.C. Unif. - π N=; fi=rand(,n)**pi; =cos(fi); hist(,)

25 ESEMPIO ( t) = cos(π.t + ϑ) ϑ V.C. Unif. - π N=; fi=rand(,n)**pi; =cos(fi); [X,M]=hist(,); bar(m,x/n*5) p ( a) = π a

26 =randn(,);

27 =randn(,); y=randn(,); plot(,y,'.') ais('square') Lo "scatterplot" di v.c. è una visualizzazione indicativa della densita' di probabilità congiunta 4 V.C. gaussiane indipendenti 3 y

28 L'istogramma dei risultati di V.C. Gaussiane indipendenti con valor medio nullo e e varianza unitaria =randn(,); y=randn(,); Fy=hist3([' y'],{-5:.:5-5:.:5}); imagesc((-5:.:5),(-5:.:5),fy) colorbar

29 All'aumentare del numero di prove, l'istogramma tende alla frequenza relativa moltiplicata per il numero di prove. =randn(,e7); y=randn(,e7); Fy=hist3([' y'],{-5:.:5-5:.:5}); imagesc((-5:.:5),(-5:.:5),fy) colorbar

30 All'aumentare del numero di prove e del numero di intervalli, l'istogramma diviso per il numero di prove e per la dimensione degli intervalli tende alla densita' di probabilita' congiunta. =randn(,e7); y=randn(,e7); Fy=hist3([' y'],{-5:.:5-5:.:5}); Py=Fy/e7/(.*.); imagesc((-5:.:5),(-5:.:5),py) colorbar

31 La densità condizionata si ottiene leggendo la congiunta in un particolare valore di (es: =.5) e dividendo il risultato per la somma dei valori letti moltiplicata per la dimensione dell'intervallo (. nel nostro esempio): =.5; n=(+5)/.; Py=Py(:,n)/sum(Py(:,n)*.); plot((-5:.:5),py)

32 X(n+)=.955*(n)+.3*randn(,);

33 =randn(,); y=randn(,); a=; b=.955*+.3*y; plot(a,b,'.') ais('square') 3 V.C. gaussiane correlate b a

34 L'istogramma dei risultati di V.C. Gaussiane correlate =randn(,); y=randn(,); a=; b=.955*+.3*y; Fab=hist3([a' b'],{-5:.:5-5:.:5}); imagesc((-5:.:5),(-5:.:5),fab) colorbar

35 All'aumentare del numero di prove, l'istogramma tende alla frequenza relativa moltiplicata per il numero di prove. =randn(,e7); y=randn(,e7); a=; b=.955*+.3*y; Fab=hist3([a' b'],{-5:.:5-5:.:5}); imagesc((-5:.:5),(-5:.:5),fab) colorbar

36 All'aumentare del numero di prove e del numero di intervalli, l'istogramma diviso per il numero di prove e per la dimensione degli intervalli tende alla densita' di probabilita' congiunta. =randn(,e7); y=randn(,e7); a=; b=.955*+.3*y; Fab=hist3([a' b'],{-5:.:5-5:.:5}); Pab=Fab/e7/(.*.); imagesc((-5:.:5),(-5:.:5),pab) colorbar

37 La densità condizionata si ottiene leggendo la congiunta in un particolare valore di (es: =) e dividendo il risultato per la somma dei valori letti moltiplicata per la dimensione dell'intervallo (. nel nostro esempio): =; n=(+5)/.; Pb=Pab(:,n)/sum(Pab(:,n)*.); plot((-5:.:5),pb)

38 X(n+)= -.955*(n)+.3*randn(,);

39 =randn(,); y=randn(,); a=; b=-.955*+.3*y; plot(a,b,'.') ais('square') V.C. gaussiane correlate b a

40 Predizione MMSE (Minimum Mean Square Error) La predizione del futuro dato il presente che minimizza l'errore quadratico medio è data dal valor medio del futuro condizionato al presente, cioè dal valo medio della densità di probabilità condizionata: ˆ t ( ) ( ) t = E ( t ) = a La predizione MMSE coincide con la più semplice predizione lineare nel caso di processi casuali gaussiani : ( t ) = ρ ( t t ) ( t ) ˆ Tuttavia la predizione MMSE coincide con la predizione lineare in molti altri processi casuali.

41 ESEMPIO ( t) = cos(π.t + ϑ) ϑ V.C. Unif. - π p ( a) m = = π a σ =

42 ESEMPIO ( t) = cos(π.t + ϑ) ϑ V.C. Unif. - π R ( τ ) = cos( π. τ ) ( τ ) C ρ ( τ ) = = cos σ ( π. τ ) ρ ( τ ) = quando τ = 5 + k 5

43 ( t) = cos(π.t + ϑ) ( t ) cos( π. t +φ) = φ = ± acos ( ( t )) π. t ( t ).8.6 A B t

44 [.( t t ) ( ( ))] A ( t) = cos π + acos t B [.( t t ) ( ( ))] ( t) = cos π acos t ( t ).8.6 A B t

45 ( t ) = cos[ π.( t t ) ( ( t ))] A + B acos ( t ) = cos[ π.( t t ) ( ( t ))] acos ( t ).8.6 A B t t

46 ( t ) = cos[ π.( t t ) ( ( t ))] A + B acos ( t ) = cos[ π.( t t ) ( ( t ))] acos p ( ) ( t ) a ( ) t ( t ) ( ) A B t a

47 t ( t ) 4. t = = ( t ) cos ( ( t )) A B [ ] [ ( )] t A = π + acos B t = cos π acos ( ) ( ) t t

48 [ ] [ ( )] t ( t ) cos ( ( t )) A = π + acos B t = cos π acos ( ) ( ) p ( ) ( t ) a ( ) t ( t ) ( ) A B t a

49 ( t ) = cos[ π.( t t ) ( ( t ))] A + B acos ( t ) = cos[ π.( t t ) ( ( t ))] acos ˆ ( ) ( t ) ( ) ( ) ( ) A t + B t t = E = = cos = ρ [ π.( t t )] cos[ acos( ( t ))] ( t t ) ( t ) t = = p ( ) ( t ) a ( ) t ( t ) ( ) A B t a

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne PROCESSI CASUALI Fondamenti di segnali Fondamenti e trasmissione TLC Segnali deterministici Un segnale (t) si dice deterministico se è una funzione nota di t, cioè se ad un qualsiasi istante di tempo t

Dettagli

Frequenza relativa e probabilità

Frequenza relativa e probabilità Frequenz reltiv e probbilità L probbilità e' un numero che indic con qule frequenz si presentno eventi ssociti d un insieme di possibili risultti di un esperimento. Esempio: Esperimento: Lncio csule di

Dettagli

Teoria della probabilità Variabili casuali

Teoria della probabilità Variabili casuali Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Variabili casuali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Variabile casuale Una variabile

Dettagli

Probabilità e Processi casuali Laboratorio 5 Segnali per le

Probabilità e Processi casuali Laboratorio 5 Segnali per le Probabilità e Processi casuali Laboratorio 5 Segnali per le Telecomunicazioni Prof. Prati Claudio Maria Autore: Federico Borra Politecnico di Milano, DEIB Email: federico.borra@polimi.it Aprile 17, Ultima

Dettagli

Elaborazione statistica di dati

Elaborazione statistica di dati Elaborazione statistica di dati 1 CONCETTI DI BASE DI STATISTICA ELEMENTARE 2 Taratura strumenti di misura IPOTESI: grandezza da misurare identica da misura a misura Per la presenza di errori casuali,

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2006-07 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Le variabili casuali o aleatorie

Le variabili casuali o aleatorie Le variabili casuali o aleatorie Intuitivamente un numero casuale o aleatorio è un numero sul cui valore non siamo certi per carenza di informazioni - ad esempio la durata di un macchinario, il valore

Dettagli

RICHIAMI DI CALCOLO DELLE PROBABILITÀ

RICHIAMI DI CALCOLO DELLE PROBABILITÀ UNIVERSITA DEL SALENTO INGEGNERIA CIVILE RICHIAMI DI CALCOLO DELLE PROBABILITÀ ing. Marianovella LEONE INTRODUZIONE Per misurare la sicurezza di una struttura, ovvero la sua affidabilità, esistono due

Dettagli

INFORMAZIONI. p. 1/23

INFORMAZIONI. p. 1/23 p. 1/23 INFORMAZIONI Prossime lezioni Giorno Ora Dove Giovedi 11/02 14:30 Laboratorio (via Loredan) Martedi 16/02 14:30 P50 Lunedi 22/02 09:30 P50 Martedi 23/02 14:30 P50 Giovedi 25/02 14:30 Aula informatica

Dettagli

POPOLAZIONE E CAMPIONI

POPOLAZIONE E CAMPIONI p. 1/2 POPOLAZIONE E CAMPIONI POPOLAZIONE insieme di tutti quegli elementi che hanno almeno una caratteristica comune (persone, oggetti,misure, osservazioni). Consideriamo il caso di caratteristiche associate

Dettagli

f (a)δa = C e (a a*)2 h 2 Δa

f (a)δa = C e (a a*)2 h 2 Δa Distribuzione di Gauss Se la variabile non e` discreta ma puo` variare in modo continuo in un certo intervallo e ad ogni suo valore resta assegnata una probabilita` di verificarsi, dalla distribuzione

Dettagli

Modelli di probabilità

Modelli di probabilità Modelli di probabilità Corso di STATISTICA Ordinario di, Università di Napoli Federico II Professore supplente, Università della Basilicata a.a. 0/0 Obiettivo dell unità didattica Definire i concetti di

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof. L.Morato) Esercizi Parte III: variabili aleatorie dipendenti e indipendenti,

Dettagli

Richiami di TEORIA DELLE PROBABILITÀ

Richiami di TEORIA DELLE PROBABILITÀ corso di Teoria dei Sistemi di Trasporto Sostenibili 6 CFU A.A. 015-016 Richiami di TEORIA DELLE PROBABILITÀ Prof. Ing. Umberto Crisalli Dipartimento di Ingegneria dell Impresa crisalli@ing.uniroma.it

Dettagli

Elaborazione statistica di dati

Elaborazione statistica di dati Elaborazione statistica di dati CONCETTI DI BASE DI STATISTICA ELEMENTARE Taratura strumenti di misura IPOTESI: grandezza da misurare identica da misura a misura Collaudo sistemi di produzione IPOTESI:

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni Prof. Mario Barbera [parte ] Variabili aleatorie Esempio: sia dato l esperimento: Scegliere un qualunque giorno non festivo della settimana, per verificare casualmente

Dettagli

Variabile casuale Normale

Variabile casuale Normale Variabile casuale Normale La var. casuale Normale (o Gaussiana) è considerata la più importante distribuzione Statistica per le innumerevoli Applicazioni e per le rilevanti proprietà di cui gode L'importanza

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

2. Introduzione alla probabilità

2. Introduzione alla probabilità . Introduzione alla probabilità Carla Seatzu, 8 Marzo 008 Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari: è l insieme Ω di tutti i possibili esiti

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica Ulteriori Conoscenze di Informatica e Statistica Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 (I piano) tel.: 06 55 17 72 17 meneghini@fis.uniroma3.it Indici di forma Descrivono le

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità A.A

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità A.A Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità A.A. 2006-07 Alberto Perotti Esperimento casuale Esperimento suscettibile di più risultati

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 Introduzione alla Statistica Nella statistica, anziché predire la probabilità che si verifichino gli eventi di interesse (cioè passare dal modello alla realtà), si osserva un fenomeno se ne estraggono

Dettagli

Calcolo delle Probabilità e Statistica Matematica previsioni 2003/04

Calcolo delle Probabilità e Statistica Matematica previsioni 2003/04 Calcolo delle Probabilità e Statistica Matematica previsioni 2003/04 LU 1/3 Esempi di vita reale : calcolo delle probabilità, statistica descrittiva e statistica inferenziale. Lancio dado/moneta: definizione

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 4 Abbiamo visto: Distribuzioni discrete Modelli probabilistici nel discreto Distribuzione uniforme

Dettagli

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte Cap.1: Probabilità 1. Esperimento aleatorio (definizione informale): è un esperimento che a priori può avere diversi esiti possibili

Dettagli

Statistica. Lezione : 17. Variabili casuali

Statistica. Lezione : 17. Variabili casuali Corsi di Laurea: a.a. 2018-19 Diritto per le Imprese e le istituzioni Scienze Internazionali dello Sviluppo e della Cooperazione Statistica Variabili casuali Lezione : 17 Docente: Alessandra Durio 1 Contenuti

Dettagli

distribuzione normale

distribuzione normale distribuzione normale Si tratta della più importante distribuzione di variabili continue, in quanto: 1. si può assumere come comportamento di molti fenomeni casuali, tra cui gli errori accidentali; 2.

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19

DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 DISTRIBUZIONI DI PROBABILITA (parte 1) 1 / 19 Variabili casuali (o aleatorie) 2 / 19 Disponendo di metodi corretti per raccogliere i dati e costruire i campioni data una popolazione, i valori numerici

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità A.A

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità A.A Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità A.A. 2004-05 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento suscettibile di più

Dettagli

Richiami di Teoria della probabilità (I)

Richiami di Teoria della probabilità (I) Richiami di Teoria della probabilità (I) ESPERIMENTO: ogni operazione il cui risultato non può essere predetto con certezza EVENTO: è il risultato di un esperimento Eventi semplici e composti Eventi disgiunti

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

o Si sceglie il modello che meglio si adatta alla realtà osservata, cioè quello per il quale risulta più probabile la realtà osservata.

o Si sceglie il modello che meglio si adatta alla realtà osservata, cioè quello per il quale risulta più probabile la realtà osservata. Introduzione alla Statistica Nella statistica, anziché predire la probabilità che si verifichino gli eventi di interesse (cioè passare dal modello alla realtà), si osserva un fenomeno se ne estraggono

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 2) 1 / 27

DISTRIBUZIONI DI PROBABILITA (parte 2) 1 / 27 DISTRIBUZIONI DI PROBABILITA (parte 2) 1 / 27 Funzione di ripartizione per variabili casuali discrete 2 / 27 Data una variabile casuale discreta possiamo calcolare, analogamente al caso continuo, la probabilità

Dettagli

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Il rumore

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure relative a una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata

Dettagli

Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A )

Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A ) Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A.-) Es. La variabile aleatoria ha densità di probabilità uniorme nell intervallo [,]. Trovare valor medio e varianza di. La densità di probabilità

Dettagli

Brevi richiami su variabili aleatorie e processi stocastici

Brevi richiami su variabili aleatorie e processi stocastici Appendice Parte 9, 1 Brevi richiami su variabili aleatorie e processi stocastici Richiami di teoria della probabilita` Appendice Parte 9, 2 Esperimento casuale: analisi degli elementi caratteristici dei

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

PROVA SCRITTA DI STATISTICA (COD COD ) 7 luglio 2005 APPROSSIMARE TUTTI I CALCOLI ALLA QUARTA CIFRA DECIMALE SOLUZIONI MODALITÀ A

PROVA SCRITTA DI STATISTICA (COD COD ) 7 luglio 2005 APPROSSIMARE TUTTI I CALCOLI ALLA QUARTA CIFRA DECIMALE SOLUZIONI MODALITÀ A PROVA SCRITTA DI STATISTICA (COD. 047 - COD. 403-37-377) 7 luglio 200 APPROSSIMARE TUTTI I CALCOLI ALLA QUARTA CIFRA DECIMALE SOLUZIONI MODALITÀ A Esercizio (9 punti) Supponiamo di aver osservato la seguente

Dettagli

Introduzione al modello Uniforme

Introduzione al modello Uniforme Introduzione al modello Uniforme Esempio: conversione Analogico/Digitale Errore di quantizzazione Ampiezza Continua Discreta x () t x ( t ) q Tempo Discreto Continuo Segnale Analogico ( ) x t k t t Segnale

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

Programma della parte introduttiva: Lezione 5

Programma della parte introduttiva: Lezione 5 Programma della parte introduttiva: Lezione 5 Cap. 3 Presentazione e confronto tra misure Cap. 4 Propagazione delle incertezze Cap 5 Misure ripetute e stimatori Cap.6 Organizzazione e presentazione dei

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 01 - Variabili aleatorie. Calcolo di densità di probabilità. Operatore di media

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 01 - Variabili aleatorie. Calcolo di densità di probabilità. Operatore di media IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 01 - Variabili aleatorie Motivazioni Densità di probabilità Operatore di media Densità di probabilità congiunta Densità di probabilità condizionata

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Distribuzioni di probabilità nel continuo

Distribuzioni di probabilità nel continuo Distribuzioni di probabilità nel continuo Prof.ssa Fabbri Francesca Classe 5C Variabili casuali continue Introduzione: Una Variabile Casuale o Aleatoria è una grandezza che, nel corso di un esperimento

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Modulazioni di ampiezza

Modulazioni di ampiezza Modulazioni di ampiezza 1) Si consideri un segnale z(t) modulato in ampiezza con soppressione di portante dal segnale di informazione x(t): z(t) = Ax(t)cos(2πf 0 t) Il canale di comunicazione aggiunge

Dettagli

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale; Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno

Dettagli

Laboratorio di Chimica Fisica. Analisi Statistica

Laboratorio di Chimica Fisica. Analisi Statistica Università degli Studi di Bari Dipartimento di Chimica 9 giugno F.Mavelli- Laboratorio Chimica Fisica - a.a. 3-4 F.Mavelli Laboratorio di Chimica Fisica a.a. 3-4 Analisi Statistica dei Dati Analisi Statistica

Dettagli

Statistica Corso Base (Serale) Dott.ssa Cristina Mollica

Statistica Corso Base (Serale) Dott.ssa Cristina Mollica Statistica Corso Base (Serale) Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Variabili casuali Esercizio 1. Determinare la distribuzione di probabilità e la funzione di ripartizione della variabile

Dettagli

Probabilità e Statistica Esercizi

Probabilità e Statistica Esercizi Corso di PIANIFICAZIONE DEI TRASPORTI 1 ing. Antonio Comi Marzo 2006 Probabilità e Statistica Esercizi 1 Variabile aleatoria X(E): funzione che associa ad un evento E dello spazio delle prove un numero

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

Significato probabilistico di σ: su 100 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo

Significato probabilistico di σ: su 100 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo Significato probabilistico di σ: su 1 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo x σ, x + σ e 99.7 nell intervallo x 3 σ, x + 3 Se si considerano campioni

Dettagli

Valutazione incertezza di categoria B

Valutazione incertezza di categoria B Valutazione incertezza di categoria B La valutazione consiste nell assegnare alla grandezza x uno scarto tipo σ in base alle informazioni disponibili Le informazioni riguardano: ) Gli estremi dell intervallo

Dettagli

Variabili aleatorie. Variabili aleatorie e variabili statistiche

Variabili aleatorie. Variabili aleatorie e variabili statistiche Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa

Dettagli

Teoria dei Segnali (19 dicembre 2002)

Teoria dei Segnali (19 dicembre 2002) Teoria dei Segnali (9 dicembre ) II Provetta Esercizio N. (per gli studenti della laurea quinquennale) All ingresso del modulatore in figura c è il segnale m() t cos( Ωt) l inviluppo complesso del segnale

Dettagli

LA DISTRIBUZIONE NORMALE. La distribuzione Gaussiana. Dott.ssa Marta Di Nicola

LA DISTRIBUZIONE NORMALE. La distribuzione Gaussiana. Dott.ssa Marta Di Nicola LA DISTRIBUZIONE NORMALE http://www.biostatistica.unich.itit «È lo stesso delle cose molto piccole e molto grandi. Credi forse che sia tanto facile trovare un uomo o un cane o un altro essere qualunque

Dettagli

TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE

TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE Errore di misura è la differenza fra l indicazione fornita dallo strumento e la dimensione vera della grandezza. Supponendo che la grandezza vera

Dettagli

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio)

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Analisi della disponibilità d acqua Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Approccio diverso a seconda del criterio di valutazione Nel caso di criterio statistico

Dettagli

1.1 Obiettivi della statistica Struttura del testo 2

1.1 Obiettivi della statistica Struttura del testo 2 Prefazione XV 1 Introduzione 1.1 Obiettivi della statistica 1 1.2 Struttura del testo 2 2 Distribuzioni di frequenza 2.1 Informazione statistica e rilevazione dei dati 5 2.2 Distribuzioni di frequenza

Dettagli

Statistica Applicata all edilizia: Stime e stimatori

Statistica Applicata all edilizia: Stime e stimatori Statistica Applicata all edilizia E-mail: orietta.nicolis@unibg.it 15 marzo 2011 Statistica Applicata all edilizia: Indice 1 2 Statistica Applicata all edilizia: Uno dei problemi principali della statistica

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

Statistica. Esercizi: 8. Statistica Descrittiva Bivariata 3 Probabilità 1

Statistica. Esercizi: 8. Statistica Descrittiva Bivariata 3 Probabilità 1 Corsi di Laurea: a.a. 2017-1 Diritto per le Imprese e le istituzioni Scienze dell Amministrazione e Consulenza del Lavoro sienze Internazionali dello Sviluppo e della Cooperazione Statistica Statistica

Dettagli

Teoria dei Segnali Introduzione ai processi stocastici

Teoria dei Segnali Introduzione ai processi stocastici Teoria dei Segnali Introduzione ai processi stocastici Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Introduzione ai processi

Dettagli

Prime nozioni sui segnali

Prime nozioni sui segnali Prime nozioni sui segnali Ø Conce'o di segnale Ø ed esempi di segnali elementari sia determinis4ci che casuali (media, deviazione standard, densità di probabilità) Ø Operazioni sui segnali Ø Energia, potenza,

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata ( )

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata ( ) Il Concetto di Distribuzione Condizionata Se B è un evento, la probabilità di un evento A condizionata a B vale: ponendo: P A B = ( ) P A B P B A = { x} si giunge al concetto di distribuzione condizionata

Dettagli

VARIABILI CASUALI CONTINUE

VARIABILI CASUALI CONTINUE p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale continua può assumere tutti gli infiniti valori appartenenti ad un intervallo di numeri reali. p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale

Dettagli

Università di Pavia Econometria. Richiami di teoria delle distribuzioni statistiche. Eduardo Rossi

Università di Pavia Econometria. Richiami di teoria delle distribuzioni statistiche. Eduardo Rossi Università di Pavia Econometria Richiami di teoria delle distribuzioni statistiche Eduardo Rossi Università di Pavia Distribuzione di Bernoulli La variabile casuale discreta Y f Y (y; θ) = 0 θ 1, dove

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. La variabile casuale normale Da un analisi di bilancio è emerso che, durante i giorni feriali

Dettagli

Statistica. Lezione : 18, 19. Variabili casuali

Statistica. Lezione : 18, 19. Variabili casuali Corsi di Laurea: a.a. 2017-18 Diritto per le Imprese e le istituzioni Scienze dell Amministrazione e Consulenza del Lavoro sienze Internazionali dello Sviluppo e della Cooperazione Statistica Variabili

Dettagli

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione del corso di Statistica Prof. Domenico Vistocco Alfonso Iodice D Enza May 30, 007 1 Esercizio Si consideri una popolazione caratterizzata dai numeri, 3, 6, 8, 11. Si considerino tutti i possibili

Dettagli

Statistica. Lezione 4

Statistica. Lezione 4 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela

Dettagli

Indice. centrale, dispersione e forma Introduzione alla Statistica Statistica descrittiva per variabili quantitative: tendenza

Indice. centrale, dispersione e forma Introduzione alla Statistica Statistica descrittiva per variabili quantitative: tendenza XIII Presentazione del volume XV L Editore ringrazia 3 1. Introduzione alla Statistica 5 1.1 Definizione di Statistica 6 1.2 I Rami della Statistica Statistica Descrittiva, 6 Statistica Inferenziale, 6

Dettagli

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )=

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )= VARIABILI ALEATORIE CONTINUE Esistono parecchi fenomeni reali per la cui descrizione le variabili aleatorie discrete non sono adatte. Per esempio è necessaria una variabile aleatoria continua ovvero una

Dettagli

( ) ( ) ( e la probabilità che si verifichi un evento compreso tra c e b a < c < b sarà data da:

( ) ( ) ( e la probabilità che si verifichi un evento compreso tra c e b a < c < b sarà data da: e la probabilità che si verifichi un evento compreso tra c e b a < c < b sarà data da: p ( ) ( c < X < b) f ( x) LA VC NORMALE O GAUSSIANA Una vc si dice normale o gaussiana (da Gauss che la propose come

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione Capitolo 9 Segnali aleatori a tempo continuo e a tempo discreto SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 9.3 Si osservi innanzitutto che, essendo il processo () t Gaussiano, anche il processo

Dettagli

Stima dei parametri. La v.c. multipla (X 1, X 2,.., X n ) ha probabilità (o densità): Le f( ) sono uguali per tutte le v.c.

Stima dei parametri. La v.c. multipla (X 1, X 2,.., X n ) ha probabilità (o densità): Le f( ) sono uguali per tutte le v.c. Stima dei parametri Sia il carattere X rappresentato da una variabile casuale (v.c.) che si distribuisce secondo la funzione di probabilità f(x). Per investigare su tale carattere si estrae un campione

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 A Garfagnini, M Mazzocco, C Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Teoria della Probabilità L ineliminabile

Dettagli

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k)

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k) Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k) Nel calcolo del numero di modalita' con cui si presenta un evento e' utile talvolta utilizzare le definizioni

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

Ulteriori Conoscenze di Informatica e Statistica. Popolazione. Campione. I risultati di un esperimento sono variabili aleatorie.

Ulteriori Conoscenze di Informatica e Statistica. Popolazione. Campione. I risultati di un esperimento sono variabili aleatorie. Ulteriori Conoscenze di Informatica e Statistica Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 (I piano) tel.: 06 55 17 72 17 meneghini@fis.uniroma3.it I risultati di un esperimento

Dettagli

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti:

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti: Lezione 1 La Probabilità Scopo del Corso: Introduzione alla probabilità e alle procedure di inferenza statistica Introduzione ad alcune importanti tecniche di analisi multivariata dei dati Organizzazione

Dettagli

C.I. di Metodologia clinica

C.I. di Metodologia clinica C.I. di Metodologia clinica Modulo 5. I metodi per la sintesi e la comunicazione delle informazioni sulla salute Quali errori influenzano le stime? L errore casuale I metodi per la produzione delle informazioni

Dettagli

Corso di STATISTICA EGA - Classe 1 aa Docenti: Luca Frigau, Claudio Conversano

Corso di STATISTICA EGA - Classe 1 aa Docenti: Luca Frigau, Claudio Conversano Corso di STATISTICA EGA - Classe 1 aa 2017-2018 Docenti: Luca Frigau, Claudio Conversano Il corso è organizzato in 36 incontri, per un totale di 72 ore di lezione. Sono previste 18 ore di esercitazione

Dettagli

CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità

CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità CORSO DI LAUREA IN INFERMIERISTICA LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità Lezioni di Statistica VARIABILITA Si definisce variabilità la proprietà di alcuni fenomeni di assumere

Dettagli

Lezione n. 1 (a cura di Irene Tibidò)

Lezione n. 1 (a cura di Irene Tibidò) Lezione n. 1 (a cura di Irene Tibidò) Richiami di statistica Variabile aleatoria (casuale) Dato uno spazio campionario Ω che contiene tutti i possibili esiti di un esperimento casuale, la variabile aleatoria

Dettagli

Modulo III. Definizione ed elementi di calcolo delle probabilità Le variabili casuali La distribuzione normale e la normale standardizzata

Modulo III. Definizione ed elementi di calcolo delle probabilità Le variabili casuali La distribuzione normale e la normale standardizzata Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea triennale Tecniche della Prevenzione PERCORSO SRTAORDINARIO 2007/08 Insegnamento di STATISTICA MEDICA Docente:Dott.ssa Egle

Dettagli

Metodi di Monte Carlo: un'applicazione

Metodi di Monte Carlo: un'applicazione Metodi di Monte Carlo: un'applicazione Metodi di Monte Carlo: definizione Brevi richiami sui concetti base utilizzati Variabile casuale Valore di aspettazione Varianza Densità di probabilità Funzione cumulativa

Dettagli

LE VARIABILI CASUALI A 1, A 2.,..., A k., p 2.,..., p k. generati da una specifica prova sono necessari ed incompatibili:

LE VARIABILI CASUALI A 1, A 2.,..., A k., p 2.,..., p k. generati da una specifica prova sono necessari ed incompatibili: LE VARIABILI CASUALI Introduzione Data prova, ad essa risultano associati i k eventi A, A,..., A k con le relative probabilità p, p,..., p k. I k eventi A i generati da una specifica prova sono necessari

Dettagli

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 7: Basi di statistica

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 7: Basi di statistica Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini Lezione 7: Basi di statistica Campione e Popolazione Estrazione da una popolazione (virtualmente infinita) di

Dettagli