Termodinamica della radiazione di corpo nero

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Termodinamica della radiazione di corpo nero"

Transcript

1 Termodnamca della radazone d corpo nero L. P. 5 Dcembre 2007 La teora termodnamca della radazone d corpo nero, svluppata da Stefan, Boltzmann e Wen negl ultm decenn del 19 secolo, è d estrema mportanza storca. Infatt l esstenza d questa potente teora motvò lo studo spermentale dettaglato dello spettro della radazone d corpo nero, da parte d Lummer e Prngshem, e pù tard, con grande accuratezza, da Rubens e Kurlbaum. A loro volta, quest rsultat motvarono la teora d Planck della radazone d corpo nero, che costtuì l occasone per l entrata n scena de quant. 1. Legg d Krchhoff sull emssone e l assorbmento della radazone Supponamo che della radazone elettromagnetca d frequenza angolare ω colpsca un corpo alla temperatura T. Una parte d questa radazone verrà rflessa e una parte verrà assorbta dal corpo. Detta I(ω) la potenza della radazone ncdente, la potenza assorbta dal corpo sarà par a α(ω, T)I(ω), che defnsce l coeffcente d assorbmento α(ω, T). D altra parte, trovandos a temperatura T, l corpo emetterà della radazone elettromagnetca. Indchamo con di out (ω, T) la potenza emessa dall untà d superfce del corpo n onde elettromagnetche d frequenza compresa fra ω e ω + dω. Possamo qund defnre l emttvtà ǫ(ω, T) del corpo medante la relazone di out (ω, T) = ǫ(ω, T) dω. (1) Krchoff mostrò che, se l concetto d equlbro termodnamco vale per l energa radante, l rapporto fra ǫ(ω, T) e α(ω, T) è una funzone unversale, proporzonale alla denstà spettrale Ψ(ω, T) dell energa radante all equlbro alla temperatura T, coè alla denstà d energa, per untà d volume e d frequenza, contenuta dalla radazone elettromagnetca d frequenza angolare compresa fra ω e ω + dω. In effett, supponamo che l nostro corpo s trov contenuto entro una cavtà contenente energa radante, e che tutto l sstema sa n equlbro alla temperatura T. Allora, stante per stante, l corpo verrà ad essere colpto da radazone. Per fssare le dee, mmagnamo d rcoprre l corpo con uno schermo rflettente, che rfletta perfettamente la radazone, tranne per una pccola superfce d area S, che lasca

2 Termodnamca della radazone d corpo nero 2 passare solo la radazone d frequenza angolare compresa fra ω + dω. Qund l corpo rceve una radazone d ntenstà di(ω, T) = κsψ(ω, T) dω, dove κ è una costante che, come vedremo pù avant, vale c/4, dove c è la veloctà della luce. D questa radazone, ne vene assorbta una frazone α(ω, T). Qund la temperatura del corpo camberebbe, a meno che la potenza ǫ(ω, T)S dω emessa dal corpo non sa esattamente uguale a di(ω, T). Ottenamo così ǫ(ω, T) = κα(ω, T) Ψ(ω, T). (2) In partcolare, se l corpo è perfettamente nero (coè assorbe totalmente tutte le frequenze che lo colpscono), s ha α = 1, per cu ǫ(ω, T) = κ Ψ(ω, T). (3) Lo spettro d emssone del corpo nero è qund proporzonale alla denstà spettrale dell energa radante alla temperatura T. Questa relazone c nsegna anche come realzzare un corpo perfettamente nero: basta consderare una cavtà contenente energa radante, che comunch con l esterno tramte un pccolo foro. In effett n questo caso samo perfettamente scur che l suo spettro d emssone sa propro uguale a Ψ(ω, T). In pratca, tutte le frequenze che entrano dal foro vengono rflesse un gran numero d volte dalle paret della cavtà fno ad essere prma o po assorbte. 2. Relazone fra pressone ed energa nterna Consderamo ora un treno d onde elettromagnetche caratterzzato dal vettore k che s muove nella drezone determnata da k alla veloctà della luce c. Indchamo con E la denstà d energa per untà d volume assocata a questo treno d onde. Allora la quanttà d energa trasportata dall onda, che passa per una superfce d area S normale ad n nell untà d tempo è data da E = ESc. Inoltre l onda elettromagnetca trasporta anche quanttà d moto. La quanttà d moto trasportata dall onda attraverso la superfce d area S normale a k è data da E k/(ck). Pù n generale, ndcando con n l vettore normale alla superfce consderata, la quanttà d moto trasportata dall onda che passa attraverso questa superfce è data da E ks cos θ/ck = E S cos θ k/k, dove θ è l angolo compreso fra k e n. Supponamo adesso che la radazone sa contenuta n una cavtà cubca dalle parat rflettent, poste n x = ±L/2, y = ±L/2, z = ±L/2. A un onda d vettore d onda k = (k x, k y, k z ), con k x > 0, che s drge verso la parete posta n x = L/2, è assocata l onda rflessa d vettore d onda k = ( k x, k y, k z ) che se ne allontana. Qund la quanttà d moto dell onda è varata, e questo è dovuto al fatto che la parete esercta una forza sull energa radante. Questa forza è par alla varazone della quanttà d moto subta dall onda nell untà d tempo. Usando la relazone appena ottenuta, s ha F k = 2E S cos 2 θ, dove è l versore dell asse x. La pressone eserctata dalla parete sulla radazone s ottene sommando questo contrbuto su tutt valor d k relatv alla radazone che colpsce la parete consderata

3 Termodnamca della radazone d corpo nero 3 (n cu coè k x > 0), e dvdendo per l area L 2 della parete. Supponendo una dstrbuzone sotropa della radazone, questo corrsponde a 2E cos 2 θ, dove cos 2 θ è dato da cos 2 θ = 1 π/2 2π dθ sn θ dφ cos 2 θ = 1 4π (4) Questo rsultato s può ottenere medante un calcolo esplcto, o tenendo presente che esso corrsponde alla metà del valor medo d kx 2 dvso per k 2, valutato a k fsso su tutte le drezon: e questo valor medo è evdentemente par a k 2 /3. Da questo ragonamento, ottenamo la relazone fra la pressone p eserctata dalla radazone e la denstà E/V della radazone stessa: p = 1 E 3 V. (5) 3. Teorema del vrale È struttvo dervare questa relazone con un altro procedmento, che fa uso del teorema del vrale. Dervamolo dapprma per un sstema d partcelle lbere d massa m, contenute entro un recpente cubco d volume V. Consderamo la quanttà K = r p. (6) Calcolamone la dervata rspetto al tempo. S ha K = ṙ p + r ṗ = r F + p 2 m. (7) Calcolamo adesso la meda temporale d questa relazone su un tempo molto lungo, per un gas all equlbro. Poché l sstema è all equlbro, K const., e qund dk/dt 0. Qund all equlbro s ha E kn = p 2 2m = 1 r F. (8) 2 La meda che appare a secondo membro è chamata vrale. Nel caso d partcelle ndpendent contenute entro un recpente, essa può essere calcolata come segue. Consderamo le paret parallele al pano yz, una posta n x, l altra n x L. In corrspondenza della prma, s ha r F = pl 2 x, e l altra dà pl 2 (x L). La somma de due contrbut è qund pl 3 = pv. Sommando sulle altre facce ottenamo fnalmente 3pV. Qund E kn = 3 pv. (9) 2 Nel caso dell energa radante, dobbamo tenere conto del fatto che ṙ p = cp = ε, per cu l secondo termne della (7) è uguale all energa totale. Qund, nvece della (9) abbamo E = 3pV, come volevamo dmostrare. (10)

4 Termodnamca della radazone d corpo nero 4 4. Legge d Stefan-Boltzmann Sulla base d questo rsultato, possamo ottenere la relazone fra la denstà d energa per untà d volume e la temperatura assoluta. Sappamo nfatt che la pressone eserctata dalla radazone è ndpendente dal volume, per cu E = 3p(T) V. D altra parte, s ha n generale ) E = T p ) V T Qund ovvero T T p ) T V p T 4, = 4p, V p. (11) che equvale a E T 4 per una cavtà d volume fssato. Questa relazone è nota come legge d Stefan-Boltzmann. S può scrverla facendo ntervenre la costante unversale σ S che esprme l energa rradata per untà d superfce e d tempo da un corpo nero alla temperatura T. Poché l ntenstà dell energa rradata I è espressa n funzone della denstà E/V dell energa radante medante la I = c E 4 V. (13) Abbamo così ottenuto l valore della costante κ che esprme la potenza emessa n funzone della denstà spettrale. Ottenamo così (12) I = 3 4 cp = σ ST 4, (14) dove la costante d Stefan σ S vale σ S = W/m 2 K 4. (15) Per ottenere questa relazone, s consder un pccolo cclo d Carnot, operante fra le temperature T e T + dt, e fra volum V e V + dv. Il lavoro computo nel cclo è par a dw = (p + dp)dv p dv = p/ T) V dt dv. D altra parte, per l prncpo d Carnot, esso è anche uguale al calore dq assorbto alla temperatura pù elevata per l rendmento η = dt/t. Utlzzando l prmo prncpo, s ha dq = de +dw = E/ V ) T dv +pdv. Qund T dw = T p/ T) V dv dt = ( E/ V ) T +p)dv dt. Il fattore 1/4 n questa espressone derva dal fatto che l energa rradata da una superfce d area S è dretta n tutte le drezon. Un onda d vettore d onda k passa attraverso una superfce d sezone apparente par a S cosθ, dove θ è l angolo fra k e la normale alla superfce. Medando cosθ su tutte le drezon possbl dell onda uscente s ottene 1/4.

5 Termodnamca della radazone d corpo nero 5 5. Espansone adabatca e legge d spostamento d Wen Supponamo adesso che l volume della cavtà n cu s trova l energa radante venga aumentatato adabatcamente da V a V + dv. In questa stuazone, l prmo prncpo della termodnamca mplca che l energa nterna E dmnusca d una quanttà par al lavoro nfntesmo dw computo dal sstema: s ha così de = p dv. In conseguenza d questa dmnuzone, anche la pressone dmnurà. Dato che E = 3pV, avremo Qund ovvero de = 3d (pv ) = 3p dv + 3V dp. V dp = 4 3 p dv, p 3/4 V = const. (16) Poché p T 4, questa equazone mplca anche T 3 V = const. (17) Indchamo con Ψ(ω, T) la denstà spettrale della radazone, coè l energa, per untà d volume e untà d frequenza angolare, delle onde elettromagnetche d frequenza angolare compresa fra ω e ω + dω. L energa totale contenuta nella cavtà può essere espressa n termn d Ψ(ω, T), medante la E = V dω Ψ(ω, T). (18) Wen fece l potes che l espansone adabatca dell energa radante agsse allo stesso modo su tutte le frequenze. In questo modo la denstà spettrale Ψ(ω, T ) nella cavtà dopo l espansone deve poter essere espressa semplcemente n funzone della denstà spettrale Ψ(ω, T) prma dell espansone, se le frequenze ω e ω s corrspondono. Ora, dato che ω = ck, e che k è nversamente proporzonale alla lunghezza d onda, c aspettamo che ω = ω/η, dove η = (1 + dv/3v ) è l fattore d cu s sono dlatate le lunghezze. D altra parte, la (17) dce che, n corrspondenza d questa dlatazone, la temperatura passa da T a T = T/η. Inoltre, per la legge d Stefan-Boltzmann, s ha ( ) T 4 dω Ψ(ω, T ) = dω Ψ(ω, T). T 4 Qund, se è possble fare corrspondere le frequenze n questa espressone, secondo l potes d Wen, s deve avere ( ω Ψ η, T ) = 1 Ψ(ω, T). (19) η η3 Ponendo η = T n questa espressone, e rsolvendo rspetto a Ψ(ω, T), ottenamo ( ) ( ) ω ω Ψ(ω, T) = T 3 Ψ T, 1 = T 3 ψ. (20) T

6 Termodnamca della radazone d corpo nero 6 Questo rsultato è noto come legge d spostamento d Wen. La denstà spettrale della radazone d corpo nero è qund espressa da una funzone unversale d una sola varable. Inoltre le frequenze caratterstche, n partcolare la frequenza cu corrsponde la radazone pù ntensa, sono proporzonal alla temperatura assoluta T. Quest rsultat seguono dalle legg della termodnamca, dell potes d sotropa, e dalla legge d dspersone ω = ck, assocata alla relazone P = E k/ck. Dalle prme msure della denstà spettrale della radazone d corpo nero s osservò che essa decresce esponenzalmente alle grand frequenze. Per la legge d spostamento d Wen, l coeffcente che moltplca ω all esponente deve essere nversamente proporzonale a T. S ottene così una legge della forma Ψ(ω, T) e hω/k BT, (21) dove la costante d Boltzmann k B è stata ntrodotta per comodtà. In questa espressone appare la costante unversale h, d dmenson energa tempo, che è chamata costante d Planck. Le msure pù recent danno per essa l valore h = Js. (22) Notamo che, se la termodnamca classca c permette d concludere che esste una denstà spettrale unversale Ψ(ω, T) che soddsfa la legge d spostamento d Wen, essa non c dce nulla della sua forma. Tuttava la legge d spostamento d Wen mplca l esstenza d una costante unversale delle dmenson d h, almeno fn tanto che ψ(x) non è una semplce potenza.

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Correnti e circuiti resistivi

Correnti e circuiti resistivi Corrent e crcut resstv Intensta d corrente Densta d corrente Resstenza Resstvta Legge d Ohm Potenza dsspata n una resstenza R Carche n un conduttore cos(θ ) v m N v 0 Se un conduttore e n equlbro l campo

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO ε T A Q ε T A Trasmssone del calore per rraggamento Indce. Lo spettro elettromagnetco e la radazone termca. Interazone della radazone termca con la matera 3. La

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 10 TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 10 TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO TERMODINAMICA E TERMOFLUIDODINAMICA Cap. 0 TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO ε 2 T 2 A 2 Q 2 ε T A G. Cesn Termodnamca e termofludodnamca - Cap. 0_Irraggamento Cap. 0 Trasmssone del calore per

Dettagli

CAPITOLO 2: PRIMO PRINCIPIO

CAPITOLO 2: PRIMO PRINCIPIO Introduzone alla ermodnamca Esercz svolt CAIOLO : RIMO RINCIIO Eserczo n 7 Una certa quanttà d Hg a = atm e alla temperatura = 0 C è mantenuta a = costante Quale dventa la se s porta la temperatura a =

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Gas ideale (perfetto):

Gas ideale (perfetto): C.d.L. Scenze e ecnologe grare,.. 2015/2016, Fsca Gas deale (perfetto): non esste n realtà drogeno e elo assomglano d pù a un gas deale - le molecole sono puntform; - nteragscono tra loro e con le paret

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

II PRINCIPIO DELLA TERMODINAMICA. G. Pugliese 1

II PRINCIPIO DELLA TERMODINAMICA. G. Pugliese 1 II PRINCIPIO DELLA ERMODINAMICA G. Puglese 1 Le macchne termche Il I prncpo: ΔU = Q W = 0 Q = W Calore può essere trasormato n lavoro meccanco. Un espansone soterma trasorma tutto l Q n W Le macchne termche

Dettagli

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA GUGLIOTTA CALOGERO Lceo Scentco E.Ferm Men (Ag.) ENTROIA Il concetto d processo termodnamco reversble d un dato sstema è collegato all dea che s possa passare dallo stato allo stato attraverso una successone

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015 FISICA per SCIENZE BIOLOGICHE, A.A. 04/05 Prova scrtta del 4 Febbrao 05 ) Un corpo d massa m = 300 g scvola lungo un pano nclnato lsco d altezza h = 3m e nclnazone θ=30 0 rspetto all orzzontale. Il corpo

Dettagli

Il lavoro L svolto da una forza costante è il prodotto scalare della forza per lo spostamento del punto di applicazione della forza medesima

Il lavoro L svolto da una forza costante è il prodotto scalare della forza per lo spostamento del punto di applicazione della forza medesima avoro ed Energa F s Fs cos θ F// s F 0 0 se: s 0 θ 90 Il lavoro svolto da una orza costante è l prodotto scalare della orza per lo spostamento del punto d applcazone della orza medesma [] [M T - ] N m

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema DINAMICA DEI SISTEMI Sstema costtuto da N punt materal P 1, P 2,, P N F E rsultante t delle forze esterne agent su P F E F forza eserctata t sul generco punto P j del sstema da P : forza nterna al sstema

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

Il diagramma cartesiano

Il diagramma cartesiano Il dagramma cartesano Il pano cartesano Il dagramma cartesano è costtuto da due ass: uno orzzontale, l asse delle ascsse o della varable X, e uno vertcale, l asse delle ordnate o della varable Y. I due

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

Lez. 10 Forze d attrito e lavoro

Lez. 10 Forze d attrito e lavoro 4/03/015 Lez. 10 Forze d attrto e lavoro Pro. 1 Dott., PhD Dpartmento Scenze Fsche Unverstà d Napol Federco II Compl. Unv. Monte S.Angelo Va Cnta, I-8016, Napol mettver@na.nn.t +39-081-676137 1 4/03/015

Dettagli

Significato delle EQUAZIONI COSTITUTIVE dei tessuti viventi

Significato delle EQUAZIONI COSTITUTIVE dei tessuti viventi Per flud n movmento occorre consderare l campo delle veloctà. Inun sstema cartesano Oxyz l campo è descrtto dal vettore v(x,y,z) che defnsce le component della veloctà del fludo n ogn punto x,y,z : v (x,y,z)

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

links utili:

links utili: dspensa d Govann Bachelet Meccanca de Sstem, maggo 2003 lnks utl: http://scenceworld.wolfram.com/physcs/angularmomentum.html http://hyperphyscs.phy-astr.gsu.edu/hbase/necon.html Momento della quanttà d

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Lezione 14 I PRINCIPI DELLA MECCANICA DEI FLUIDI

Lezione 14 I PRINCIPI DELLA MECCANICA DEI FLUIDI Appnt de cors d Idralca 1 e Idrodnamca 1 Lezone 14 I PRINCIPI DELLA ECCANICA DEI FLUIDI Il moto de fld è controllato da alcn prncp fondamental della fsca. Ennceremo nel segto: - l prncpo d conservazone

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova Scritta del 16/11/ NOME matricola:

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova Scritta del 16/11/ NOME matricola: Corso d Laurea n Scenze Ambental Corso d Fsca Generale II a.a. 2014/15 Prova Scrtta del 16/11/2015 - NOME matrcola: 1) Un clndro contene 2 mol d gas deale alla temperatura d 340 K. Se l gas vene compresso

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Determinazione del momento d inerzia di una massa puntiforme

Determinazione del momento d inerzia di una massa puntiforme Determnazone del momento d nerza d una massa puntorme Materale utlzzato Set d accessor per mot rotator Sensore d rotazone Portamasse e masse agguntve Statvo con base Blanca elettronca Calbro nteracca GLX

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Misure Topografiche Tradizionali

Misure Topografiche Tradizionali Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone

Dettagli

Dispersione magnetica nei trasformatori monofase

Dispersione magnetica nei trasformatori monofase Dspersone magnetca ne trasformator Supponamo che l avvolgmento l prmaro d un trasformatore sa percorso dalla corrente e supponamo d mantenere 0, 0, l avvolgmento l prmaro concatenerà un flusso φ che nel

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita Teora degl error Processo d msura defnsce una grandezza fsca. Sstema oggetto. Apparato d msura 3. Sstema d confronto La msura mplca un gudzo sull uguaglanza tra la grandezza ncognta e la grandezza campone

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

PERDITE DI POTENZA NEI TRASFORMATORI Prof.

PERDITE DI POTENZA NEI TRASFORMATORI    Prof. EDITE DI OTENZA NEI TASFOATOI www.elettrone.altervsta.org www.proessore.mypoast.com www.marcochrzz.blogspot.com ro. arco Chrzz EESSA Il trasormatore è una mchna elettrca statca, coè prva d part n movmento.

Dettagli

Trasformazioni termodinamiche - I parte

Trasformazioni termodinamiche - I parte Le trasormazon recproche tra le energe d tpo meccanco e l calore, classcato da tempo come una delle orme nelle qual avvene lo scambo d energa, sono l oggetto d studo su cu s onda la Termodnamca, una mportante

Dettagli

Variazione di entropia in trasformazioni irreversibili

Variazione di entropia in trasformazioni irreversibili Varazone d entropa n trasormazon rreversbl er calcolare la varazone d entropa tra due stat d equlbro conness da una trasormazone rreversble s srutta l atto che l entropa è una unzone d stato. Allo scopo

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Legge di Fick. Diffusione del vapore - 1

Legge di Fick. Diffusione del vapore - 1 Legge d Fck Dffusone del vapore - 1 dc m = dff M D B kg / s Nel 1855 Fck propose una legge per valutare l flusso dffusvo d una spece gassosa all nterno d una mscela. Egl trovò che tale flusso era proporzonale:

Dettagli

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

Fondamenti di meccanica classica: simmetrie e leggi di conservazione Fondament d meccanca classca: smmetre e legg d conservazone d Marco Tulu A. A. 2005/2006 1 Introduzone Un corpo s dce omogeneo se ha n ogn suo punto ugual propretà fsche e chmche, ed è sotropo se n ogn

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per Captolo : IL METODO DEI MINIMI QUADRATI. La mglor retta Nel Captolo precedente c samo post l problema d determnare la mglor retta che passa per cert punt spermental, ed abbamo dscusso un metodo graco.

Dettagli

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione Introduzone 2 Problema I sal present nell acqua (all estrazone) causano problem d corrosone Soluzone Separazone delle fas (acquosa ed organca) Estrazone petrolo Fase gassosa Fase lquda (acqua + grezzo)

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 22 febbraio 2011

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 22 febbraio 2011 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello d FISICA, febbrao 11 1) Un autocarro con massa a peno carco par a M = 1.1 1 4 kg percorre con veloctà costante v = 7 km/h, un tratto stradale rettlneo. A causa

Dettagli

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che Fsca Tecnca G. Grazzn Facoltà d Ingegnera In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per

Dettagli

CMPE, Economia Industriale. Lezione 11. Costi di entrata, struttura di mercato e benessere

CMPE, Economia Industriale. Lezione 11. Costi di entrata, struttura di mercato e benessere LIUC AA 2008-2009 CMPE, Economa Industrale Anals della Concorrenza e Anttrust Lezone 11 Cost d entrata, struttura d mercato e benessere 1 Sommaro della lezone: 1 Concentrazone, cost d entrata e dmensone

Dettagli

Cap.2 2T + U =0. si applica ai più svariati sistemi di N corpi: N~10 _. Stelle (fluido, N _ > ) Ammassi di stelle (N*~ ) (aperti-globulari)

Cap.2 2T + U =0. si applica ai più svariati sistemi di N corpi: N~10 _. Stelle (fluido, N _ > ) Ammassi di stelle (N*~ ) (aperti-globulari) Cap.2 Teorema del Vrale s applca a pù svarat sstem d N corp: N~10 _ Stelle (fludo, N _ > ) Ammass d stelle (N*~10 2-10 6 ) (apert-globular) Galasse (N*~10 11 ) Grupp d galasse (N g ~10-10 2 ) Ammass d

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE aptolo6 ETODO DEE FORZE - IOSTZIOE GEERE 6. ETODO DEE FORZE IOSTZIOE GEERE ssocamo al sstema perstatco un altro sstema, denomnato sstema prncpale. Il sstema prncpale è un sstema statcamente determnato,

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 4

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 4 Teora de Goch Dr. Guseppe Rose Unverstà degl Stud della Calabra Corso d Laurea Magstrale n Economa Applcata a.a 011/01 Handout 4 1 L equlbro d Bertrand Nel modello d Bertrand, abbamo un duopolo esattamente

Dettagli

Lezione n. 1 Crisi della meccanica classica

Lezione n. 1 Crisi della meccanica classica Lezone n. 1 Crs della meccanca classca Fsca dello Stato Soldo Fsca per la Bongegnera Scarcable al sto: ttp://www.de.unf.t/fsca/bruzz/fss.tml 1 SOMMARIO In questa lezone rpercorramo prncpal fatt ce agl

Dettagli

lim Flusso Elettrico lim E ΔA

lim Flusso Elettrico lim E ΔA Flusso lettrco Nel caso pù generale l campo elettrco può varare sa n ntenstà che drezone e verso. La defnzone d flusso data n precedenza vale solo se l elemento d superfce A è suffcentemente pccolo da

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Ability of matter or radiation to do work because of its motion or its mass or its electric charge

Ability of matter or radiation to do work because of its motion or its mass or its electric charge L energa Una defnzone (Oxford Dctonary) Ablty of matter or radaton to do work because of ts moton or ts mass or ts electrc charge L energa è l concetto fsco pù mportante che s ncontra n tutta la scenza.

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

L = L E k 2 ENERGIA CINETICA DI ROTAZIONE. Espressione generica dell energia cinetica di rotazione: 1 ω

L = L E k 2 ENERGIA CINETICA DI ROTAZIONE. Espressione generica dell energia cinetica di rotazione: 1 ω NRGIA CINTICA DI ROTAZION k m R ) ( k R m R m spressone generca dell energa cnetca d rotazone: I k Se la rotazone aene ntorno ad un asse prncpale d nerza, allora: I L da cu: I L k NRGIA CINTICA DI ROTOTRASLAZION

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

Propagazione del suono in ambiente esterno. Propagazione Sferica

Propagazione del suono in ambiente esterno. Propagazione Sferica Lezone XXX 8/5/3 ora 14:3 16:3 "ropagazone delle onde, eq. campo lbero, nterferenza" Orgnal d Ferrar Matteo, Caramasch Alesso e Gandolf Mauro. ropagazone del suono n ambente esterno Gl esemp che s possono

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II. Corso d Logca I. Modulo sul Calcolo de Sequent. Dspensa Lezone II. Govann Casn Teorema d corrspondenza fra l calcolo su sequent SND e l calcolo de sequent SC. Rproponamo per esteso la dmostrazone della

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato lqudo Lo stato lqudo Lqud: energa de mot termc confrontable con quella delle forze coesve. Lmtata lbertà d movmento delle molecole, che determna una struttura

Dettagli

Teorema di Bernoulli

Teorema di Bernoulli eorema d Bernoull Ø Consderamo un fludo a denstà costante che scorre n regme stazonaro attraverso l tubo d flusso ( o reale) a sezone varable mostrato n fgura. Ø In un ntervallo d tempo Δt una certa quanttà

Dettagli