Univ i e v r e si s t i à à deg e li i Stud u i i di i Fi F r i en e ze S i t m i a m de d ll l lene n rg r i g a i d i d

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Univ i e v r e si s t i à à deg e li i Stud u i i di i Fi F r i en e ze S i t m i a m de d ll l lene n rg r i g a i d i d"

Transcript

1 Università egli Stui i Firenze Dipartimento i Meccanica e Tecnologie Inustriali Stima ell energia i eformazione: Metoo el Triangolo applicato all urto auto-moto Aprile 0

2 Metoo i ampbell (rash 3) Normalizzano la forza rispetto alla larghezza el frontale el veicolo: F forza totale F A B A G B A forza max per unità i larghezza che non prouce eformazioni permanenti (N/m) B coeff. angolare ella retta: inica la rigiezza ella struttura nell unità i larghezza (N/m) G energia elastica per unità i larghezza (J/m)

3 Energia i eformazione metoo RASH 3 F A B Ea allora sarà ata alla forza per la eformazione, estesa a tutto il frontale el veicolo E a G 0 0 F( ) l E a 0 G A B l

4 Metoo el triangolo Il metoo trae origine all osservazione che la maggior parte elle eformazioni sui veicoli può essere approssimata meiante eformazioni i tipo rettangolari e/o triangolari (linearizzazione el profilo i anno)

5 00 Velocità i impatto (km/h) ,5,5 Deformazione resiua (m) a linearizzazione ella curva Forza/eformazione implica che sia lineare anche la relazione tra velocità i impatto e eformazione (ampbell) F A B V b b0 m A b m 0 b B b

6 00 Velocità i impatto (km/h) ,5,5 Deformazione resiua (m) F A B M F ( bb0 b ) E a 0 G A B l M b b E a bb l 0 0 0

7 In caso i approssimazione el anno con triangoli, rettangoli e trapezi, o combinazione i queste figure geometriche, è possibile eterminare la formulazione per il calcolo ell energia i eformazione a priori

8 Triangolo varia lungo lo spessore: E M b b bb l a Vale anche per triangolo tipo urto contro palo M b0 ( b 0 Ea 00 b b 6 )

9 Triangolo EES b b0 b0b Può essere graficata: 3 00 EES eformazione Anamento lineare con penenza funzione i b

10 In generale, per varie geometrie i anno: Rettangolo EES ( b0 b0b b ) Triangolo EES b 00 b 0 b0b 3 Trapezio EES b 0 b 0 b( α) b ( α α ) 3 Offset 40%,4b EES (0,6b0 b0b 3 )

11 Tutte possono essere approssimate come: EES k0 b0 kb In cui: k 0 è praticamente unitario, k ipene al tipo i geometria el anno EES b kb 0

12 Il metoo el triangolo prevee i eterminare prima il parametro b utilizzano un veicolo i riferimento i cui sia noto l EES EES b b R 0 EES R b k b 0 b R R k R R Noto il parametro b, utilizzano la meesimo formula si calcola l EES el veicolo in oggetto e quini l E, teneno conto ella correzione per il PDOF

13 Metoo el triangolo Tutto ciò può essere svolto con una sola formula: EES EESRσR σo kr R k OO In cui si tiene conto el PDOF attraverso: 00 σ R, O cos( PDOF)

14 Valutazione i k: Triangolo Trapezio Offset 40% k 0,564 Rettangolo k k 0,564 k 0,653 σ k

15 Parametri caratteristici ell urto con moto arghezza ella zona i eformazione ell auto: Massima profonità i intrusione sull Auto: Accorciamento el passo ella moto: X

16 Anamento eformazione sull auto: triangolare eformazione plastica sull auto c ( l) l l eformazione plastiche elastica sull auto Sommo δ: δ c ( l) l δ δ δ l

17 Anamento elle Forze zona Plastica Fmax δ F(l) c(l)δ F max : F( l) δ : c( l) δ Fmax F( l) δ ( c( l) δ) l Ricorano che l l c ( l) δ δ F( l) F max l δ δ

18 Anamento elle Forze zona eformazione Elastica δ h h F Fmax ( h) tot F tot Fmax ( δ) F max F tot ( δ)

19 Energia i eformazione per unità i larghezza zona eformazione Plastica Fmax F(l) F( l) c ( l) F max l δ δ l δ δ l e l F ( l) ) ( c( l δ)

20 Energia i eformazione zona eformazione Plastica Energia i eformazione per unità i larghezza è: e F l max δ δ energia i eformazione globale può essere ricavata integrano e tra zero e ossia nella zona ell auto interessata all urto E 0 F max δ l δ l

21 δ δ δ δ δ δ δ δ δ δ δ F F l l l F l l F E max max 0 max 0 max 3 3 Sostitueno la relazione trovata in preceenza che lega la forza Energia i eformazione zona eformazione Plastica massima a quella totale ( ) δ δ δ F E tot 3 Energia i eformazione assorbita Energia i eformazione assorbita all Auto all Auto ( ) δ F F tot max

22 Energia i eformazione zona eformazione Plastica Energia i eformazione assorbita all Auto,introucento il coefficiente i forma K, si può approssimare con E Ftot ( k δ ) F( kδ ) cos( PDOF) F tot è la forza normale al profilo ineformato, ivieno per cos(pdof) si ottiene la forza F risultante

23 Valutazione Parametro aratteristiche rigiezza ell auto: relazione lineare tra la forza e la Deformazione plastica δ A B Frontale 7, aterale 3,64 Posteriore 7,98 onsierano le 5 classi NHTSA in cui sono suivisi i veicoli in funzione el passo, risulta varia in funzione ella zona ella vettura : Frontale, aterale, Posteriore

24 orrelazioni Sperimentali - caratterizzazione comportamento Moto

25 orrelazioni Sperimentali - caratterizzazione comportamento Moto Moticli, ciclomotori e scooter

26 orrelazioni Sperimentali - caratterizzazione comportamento Moto EES-Accorciamento el Passo EES (m/s). 5,0 0,0 5,0 0,0 5,0 y 36,37x 3,846 R 0,996 0,0 0,00 0,0 0,0 0,30 0,40 0,50 Accorciamento el Passo (m) EES 3,85 36, 4 P Relazione sperimentale tra EES e Accorciamento el passo (risulta inipenente alla massa ella moto/scooter)

27 Energia i eformazione ella MOTO Dalla misura ell accorciamento el passo ella moto con la relazione sperimentale si etermina il valore ell EES e quini ell energia assorbita alla moto E moto m moto ( EES) E moto mmoto P ( 36,4 3,85) a massa è quella ella sola moto, senza persona

28 Forza risultante nell urto a forza ha anamento anch esso lineare, come l EES, con l accorciamento el passo, come el resto si verifica per le auto con il moello massa-molla (ampbell) EES b0 b EES 3,85 36, 4 P F mb ( b b 0 ) F tot m moto ( 39,4 36,4 P)

29 Energia i eformazione ell AUTO Si stima l introflessione massima sull auto () e con il valore ella forza calcolato e quello ell introflessione si calcola il valore ell energia assorbita alla vettura E auto F ( kδ ) E auto ( 39,4 36,4 p) ( δ ) MM k E E totale auto E moto

30 ESEMPIO Hona B50N e una Peugeot 305 moto Viniziale (m/s) 6,4 Vfinale (m/s) Massa (kg) 83? P (m) 0,34 auto Viiniziale (m/s) 0 Vfinale (m/s) 7, Velocità angolare finale (ra/s) 3,5 Massa (kg) 93 (m) 0,6 river Viniziale (m/s) 6,4 Vfinale (m/s) Massa(kg) 85 Da rash Test: E,TOT (J)

31 ESEMPIO

32

33 ESEMPIO E moto mmoto P ( 36,4 3,85) E auto ( 39,4 36,4 p) ( δ ) MM k Applicano il metoo el Triangolo per la moto, si ha: E M M M (3,85 36,4 p) 83(3,85 36,4 0,34) 389 J mentre per l auto, si ha: E ( 36,4 0,34) (0,564 0,6 0,0364) 93 39,4 000 J a cui l energia globalmente issipata risulta 4389 J, molto vicina al valore sperimentale.

34 Kawasaki 000 police motorcycles e una For Thunerbirs ESEMPIO Moto Velocità iniziale: 73km/h Velocità post urto:,8km/h Massa: 79kg Accorciamento el passo:? P0,7m Auto Forma el anno: triangolare Deformazione massima: 0,3m Massa: 6kg Velocità iniziale: 0km/h Velocità post urto: 4,km/h Rotazione: 35 Da rash Test: E,TOT (J)

35 ESEMPIO E moto mmoto P ( 36,4 3,85) E auto ( 39,4 36,4 p) ( δ ) MM k energia issipata alla moto è: E moto ( 36,4 0,7 3,85) J energia issipata all auto è: ( 36,4 0,7) (0,564 0,3 0,0364) J E auto 79 39, energia globale issipata risulta: J

ESTENSIONE del Metodo del Triangolo. Auto-Auto (conosco le deformate dei 2 veicoli e 1 solo crash di riferimento)

ESTENSIONE del Metodo del Triangolo. Auto-Auto (conosco le deformate dei 2 veicoli e 1 solo crash di riferimento) STNSION el Metoo el Triangolo uto-uto (conosco le eformate ei veicoli e 1 solo crash i riferimento) namento eformazione sull auto: Triangolo eformazione plastica sull auto L : l : c( l) L l c( l) l L eformazione

Dettagli

SOFTWARE PRO IMPACT 4.0

SOFTWARE PRO IMPACT 4.0 SOFTWARE PRO IMPACT 4.0 Seminario 2013 Nola 31 maggio e 1 giugno 2013 Esempi applicazione 2 Sommario 1 Caso Studio n 1... 4 1.1 Veicoli coinvolti... 4 1.2 Stato dei luoghi... 4 1.3 Planimetria... 6 1.4

Dettagli

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE.

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE. POBLEMA 11 SIA DATO UN SOLENOIDE ETTILINEO DI LUNGHEZZA, AGGIO e COSTITUITO DA N SPIE. A) DETEMINAE IL CAMPO MAGNETICO PODOTTO LUNGO L ASSE DEL SOLENOIDE. Un solenoie rettilineo è costituito a un filo

Dettagli

APPENDICE. Dati. Per l'analisi delle velocità dei veicoli si assumono i seguenti dati: Caratteristiche dei veicoli:

APPENDICE. Dati. Per l'analisi delle velocità dei veicoli si assumono i seguenti dati: Caratteristiche dei veicoli: APPENDICE Di seguito si riporta il computo delle velocità dei due veicoli al momento dell'urto, utilizzando le leggi del moto e la conservazione della quantità di moto. Il calcolo è stato svolto utilizzando

Dettagli

8. Muri di sostegno e NTC 2008

8. Muri di sostegno e NTC 2008 8. Muri i sostegno e NTC 008 Normativa (NTC 008, par. 5.3..) Le combinazioni i carico per le azioni sono poste nella forma: F = γ G G + γ G G + γ Q Q + γ Q Q + γ Q3 Q 3 +... Le spinte ella terra e ell

Dettagli

Studio del comportamento. Esercitazione 02

Studio del comportamento. Esercitazione 02 DINAMICA DELLE MACCHINE E DEGLI IMPIANTI ELETTRICI: Stuio el comportamento inamico i i un elettromagnete t Esercitazione Moellizzazione i un sistema i inuttori Sistema i inuttori: i è un multiporta Legame

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

OSCILLAZIONI TORSIONALI

OSCILLAZIONI TORSIONALI OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella

Dettagli

11.2 Software Calcolo Energia di Deformazione

11.2 Software Calcolo Energia di Deformazione 11.2 Software Calcolo Energia di Deformazione 61 il software calcola l energia di deformazione di un veicolo o di una coppia di veicoli che si sono urtati a partire dalla conoscenza del coefficiente di

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

Legge di conservazione dell Energia Meccanica

Legge di conservazione dell Energia Meccanica 4-SBAC Fisica / ENERGIA e LAVORO Leggi ella Dinamica e spesso un problema molto complicato!!! risolverle e trovare la legge el moto r(t) Esempio Leggi i VARIAZIONE Leggi i CONSERVAZIONE energia massa carica

Dettagli

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii)

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii) Si usano ue metoi ifferenti per misurare il carico i rottura i un filo i acciaio e si fanno 0 misure per ognuno ei metoi. I risultati, espressi in tonnellate, sono i seguenti: Metoo :..5.7..6.5.6.4.6.9

Dettagli

Energia di deformazione

Energia di deformazione Energia di deformazione EBS, EES: Teoria e Pratica Mandatari per l Italia della Sommario Energia di deformazione: EBS EES Applicazioni pratiche 2 Energia di deformazione Sviluppo storico, EBS, EES 3 Campbell

Dettagli

FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA

FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA DELLE COSTRUZIONI MECCANICHE, NUCLEARI, AERONAUTICA E DI METALLURGIA TESI DI LAUREA in Laboratorio di CAD Studio

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d Esercizi svolti i geometria elle aree Alibrani U., Fuschi P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale

Dettagli

IL TRASPORTO DEGLI INQUINANTI

IL TRASPORTO DEGLI INQUINANTI La iffusione molecolare La ispersione avviene principalmente in irezione longituinale rispetto al flusso meio, e le variazioni i velocità non spiegano l aumento l i ampiezza in irezione normale al moto

Dettagli

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I sistemi termici La resistenza termica Se ue corpi aventi temperature iverse vengono messi a contatto, si ha un passaggio i quantità i calore al corpo a temperatura maggiore verso quello a temperatura

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

è definito in tutto il dielettrico e dipende dalla sola carica libera

è definito in tutto il dielettrico e dipende dalla sola carica libera Dielettrici I. Un conensatore a facce piane e parallele, i superficie S e istanza fra le armature, h, viene parzialmente riempito con un ielettrico lineare omogeneo i costante ielettrica.e spessore s Il

Dettagli

ESERCIZIO 1 (Punti 9)

ESERCIZIO 1 (Punti 9) UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data

Dettagli

1 Progettare e verificare la trave di colmo con sezione presunta di mm2, che viene appoggiata sui pilastri prolungati

1 Progettare e verificare la trave di colmo con sezione presunta di mm2, che viene appoggiata sui pilastri prolungati 4 Il legno 4. Elementi strutturali e strutture in legno ESERCIZI SVOLTI 4.. Coperture Progettare e verificare la trave i colmo con sezione presunta i 0 0 mm, che viene appoggiata sui pilastri prolungati

Dettagli

La portata in uscita viene calcolata moltiplicando la velocità per l area della luce e per il coefficiente di contrazione, nel modo seguente:

La portata in uscita viene calcolata moltiplicando la velocità per l area della luce e per il coefficiente di contrazione, nel modo seguente: Problema Calcolare la portata d acqua effluente dal serbatoio nel caso indicato in figura. Si supponga ce il livello nel serbatoio rimanga costante. Si ripeta l esercizio in due situazioni: -. si supponga

Dettagli

GIUNTO SALDATO: ESEMPIO [EC3 Appendice J]

GIUNTO SALDATO: ESEMPIO [EC3 Appendice J] GIUNTO SALDATO: ESEPIO [EC3 Appenice J] (revisione..3) HE A h (mm) b (mm) tw (mm) 7 tf (mm) r (mm) 8 A (cm) 64,34 Iy (cm4) 54 Wy (cm3) 55, Wpl,y (cm3) 568,5 IPE 3 h (mm) 3 b (mm) 5 tw (mm) 7, tf (mm),7

Dettagli

18/06/2009. F =σ S F 1 F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa]

18/06/2009. F =σ S F 1 F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa] ES. Sforzo Azioni interne (definizione di tensione o sforzo) Una barra di acciaio AISI 34 a sezione tonda, di diametro pari a 1 mm, deve sorreggere una massa di t. Qual è lo sforzo a cui è soggetta la

Dettagli

Coppia differenziale con BJT e carico passivo

Coppia differenziale con BJT e carico passivo oppia ifferenziale con BJ e carico passivo tensione ifferenziale e i moo comune: v v v B1 B v M v + v B1 B risposta al segnale i moo comune G. Martines 1 oppia ifferenziale con BJ e carico passivo Saturazione

Dettagli

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La livellazione trigonometrica

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La livellazione trigonometrica Università egli stui i rescia Facoltà i Ingegneria Corso i Topografia Nuovo Orinamento La livellazione trigonometrica 1 Misura ei islivelli: livellazione trigonometrica Dislivello tra i punti e : Differenza

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-2009, 2 settembre 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale

Dettagli

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0 Moulo i Elementi i Fluioinamica Corso i Laurea in Ingegneria ei Materiali/Meccanica AA 00/005 Ing Paola CINNELLA ESERCIZI SVOLTI I FLUIOINAMICA Parte 3: Equazione i Bernoulli Versione 10 Esercizio 1 Si

Dettagli

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA 1) Descrivi, per quanto possibile, il moto rappresentato in ciascuno dei seguenti grafici: s a v t t t S(m) 2) Il moto di un punto è rappresentato

Dettagli

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo.

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. C Si consideri il veicolo rappresentato in figura per il quale valgono le seguenti

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema esame 7 giugno 011 Esercizio 1. Nel meccanismo in figura una massa puntiforme m è vincolata a scorrere orizzontalmente a una scanalatura orizzontale, per effetto el

Dettagli

ESERCITAZIONE 1 ESTENSIMETRIA

ESERCITAZIONE 1 ESTENSIMETRIA UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA E ARCHITETTURA DIPARTIMENTO DI MECCANICA, CHIMICA E MATERIALI CORSO DI LAUREA IN INGEGNERIA MECCANICA ESERCITAZIONE 1 ESTENSIMETRIA Relazione del

Dettagli

AICAP - ASSOCIAZIONE ITALIANA CALCESTRUZZO ARMATO E PRECOMPRESSO

AICAP - ASSOCIAZIONE ITALIANA CALCESTRUZZO ARMATO E PRECOMPRESSO AICAP - ASSOCIAZIONE ITALIANA CALCESTRUZZO ARMATO E PRECOMPRESSO Guida all uso dell Eurocodice 2 nella progettazione strutturale Facoltà di Ingegneria - Università degli Studi di Pisa Pisa, 26 Gennaio

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

Università del Salento Facoltà di Ingegneria Costruzione di Macchine

Università del Salento Facoltà di Ingegneria Costruzione di Macchine Università del Salento Facoltà di Ingegneria Costruzione di Macchine Lezione 3 Prova di trazione a cura del prof. ing. Vito Dattoma e dell ing. Riccardo Nobile 1 Prove di caratterizzazione meccanica Prova

Dettagli

Lezione 5 I mercati finanziari: il ruolo delle banche

Lezione 5 I mercati finanziari: il ruolo delle banche Lezione 5 I mercati finanziari: il ruolo elle banche Macroeconomia C. Petraglia Unibas 2012/13 1 Intermeiari finanziari Intermeiari finanziari : istituzioni che ricevono foni e li usano per accorare prestiti

Dettagli

17/03/2014. Le prove meccaniche distruttive. Tipologie di deformazione. Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T.

17/03/2014. Le prove meccaniche distruttive. Tipologie di deformazione. Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T. Le prove meccaniche distruttive Le prove meccaniche distruttive Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T. Editrice, 2008 capitolo 3 Tecnologia meccanica S. Kalpakjian, S. R. Schmid Pearson

Dettagli

Proprieta' meccaniche del corpo

Proprieta' meccaniche del corpo Proprieta' meccaniche del corpo Fino ad adesso abbiamo considerato il corpo umano come un corpo rigido, in realta' ogni parte del corpo ha una certa elasticita' che gli permette di deformarsi, se la forza

Dettagli

Cap.7 Volo livellato. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. Coiro / Nicolosi

Cap.7 Volo livellato. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. Coiro / Nicolosi PRESTAZIONI IN VOLO NON ACCELERATO Velocità massima in volo livellato Velocità i crociera (a un grao i ammissione

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

MECCANICA APPLICATA ALLE MACCHINE L

MECCANICA APPLICATA ALLE MACCHINE L Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico

Dettagli

INDICE CAPITOLO 6 CAPITOLO 6

INDICE CAPITOLO 6 CAPITOLO 6 NDCE CTOLO 6 6. Teoremi sulle reti 6.. Teorema el Massimo trasferimento i otenza ttiva... Caso impeenza interna el eneratore reale e carico reale... Caso impeenza interna el eneratore reattiva e carico

Dettagli

Giacomo Sacco Appunti di Costruzioni Edili

Giacomo Sacco Appunti di Costruzioni Edili Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono

Dettagli

6. Applicazione di curve di probabilità pluviometrica in ambito di verifica.

6. Applicazione di curve di probabilità pluviometrica in ambito di verifica. 6. Applicazione i curve i probabilità pluviometrica in ambito i verifica. Viene qui riportato un esempio i applicazione i curve i probabilità pluviometrica per la eterminazione el perioo i ritorno i un

Dettagli

ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI

ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI Via Clotilde Tambroni, RIMINI ( RN ) Anno scolastico 2016-2017 Classe I A Materia: FISICA Insegnante : Prof. GIUSEPPE

Dettagli

TRAM DI CAGLIARI SPECIFICHE COMPORTAMENTO IN CASO DI URTO. Contenuto: 1. RIFERIMENTI 3 2. SCOPO 3 3. INTRODUZIONE 3 4. DATI CONSIDERATI: MASSE.

TRAM DI CAGLIARI SPECIFICHE COMPORTAMENTO IN CASO DI URTO. Contenuto: 1. RIFERIMENTI 3 2. SCOPO 3 3. INTRODUZIONE 3 4. DATI CONSIDERATI: MASSE. Pagina 2 di 11 Contenuto: 1. RIFERIMENTI 3 2. SCOPO 3 3. INTRODUZIONE 3 4. DATI CONSIDERATI: MASSE. 4 5. REQUISITI. 5 5.1. SCENARI. 5 5.2. CRITERI DI CONVALIDA PROGETTO. 6 6. DIMENSIONAMENTO DI BASE DEGLI

Dettagli

LEZIONE 1. IL PROGETTO STRUTTURALE Parte 2. La modellazione. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A

LEZIONE 1. IL PROGETTO STRUTTURALE Parte 2. La modellazione. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIONE 1 IL PROGETTO STRUTTURALE Parte 2. La modellazione LA MODELLAZIONE INPUT

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

INTERVENTO 6 - solaio di calpestio piano 1 (stanze 13,14,15) STANZA 13-1 (PORZIONE SOPRA STANZA 4)

INTERVENTO 6 - solaio di calpestio piano 1 (stanze 13,14,15) STANZA 13-1 (PORZIONE SOPRA STANZA 4) e-mail: ing.enrico@stuiomangoni.it INTERENTO 6 - solaio i calpestio piano 1 (stanze 13,14,15) L intervento 6 consiste nel rinforzo con profili metallici elle travi in legno a supporto el solaio i calpestio

Dettagli

Meccanica parte seconda: Perche' i corpi. si muovono? la Dinamica: studio delle Forze

Meccanica parte seconda: Perche' i corpi. si muovono? la Dinamica: studio delle Forze Meccanica parte seconda: Perche' i corpi si muovono? la Dinamica: studio delle Forze Il concetto di forza Le forze sono le cause del moto o meglio della sua variazione Se la velocita' e' costante o nulla

Dettagli

31. LE MOLLE = (31.1,2)

31. LE MOLLE = (31.1,2) . Petrucci ezioni i Costruzione i Macchine. E MOE e molle sono elementi meccanici in grao i assorbire grani quantità i energia elastica senza che le tensioni agenti raggiungano livelli critici. A questo

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI Vogliamo determinare una funzione lineare che meglio approssima i nostri dati sperimentali e poter decidere sulla bontà di questa approssimazione. Sia f(x) = mx + q, la coppia di dati (x i, y i ) appartiene

Dettagli

Giunti di trasmissione

Giunti di trasmissione Giunti caranici i precisione - in acciaio Serie «G» - Stanar I giunti i questa serie sono provvisti i ussole i scorrimento. Sono composti a ue segmenti terminanti a forcella e un nucleo centrale a crociera.

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università egli Stui i Palermo Facoltà i Economia Dipartimento i Scienze Economice, Azienali e Statistice Appunti el corso i Matematica 08 - Derivate Anno Accaemico 2015/2016 M. Tumminello, V. Lacagnina,

Dettagli

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ Equilibrio dei corpi Leggi di Newton e momento della forza, τ Corpi in equilibrio 1. Supponiamo di avere due forze di modulo uguale che agiscono lungo la stessa direzione, ma che siano rivolte in versi

Dettagli

Risoluzione problema 1

Risoluzione problema 1 UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta

Dettagli

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006 a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006 Deformazione dei materiali Un asta di acciaio posta su due appoggi si flette sotto l azione del suo

Dettagli

Industria 2015 Bando Mobilità Sostenibile Progetto MS01_00027 SIFEG - Sistema Integrato trasporto merci FErro-Gomma

Industria 2015 Bando Mobilità Sostenibile Progetto MS01_00027 SIFEG - Sistema Integrato trasporto merci FErro-Gomma Industria 05 Bando Mobilità Sostenibile Progetto MS0_0007 SIFEG - Sistema Integrato trasporto merci FErro-Gomma Politecnico di Milano Dipartimento di Meccanica Ing. Stefano Melzi Attività del Dipartimento

Dettagli

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 17/11/2006

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 17/11/2006 PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 17/11/00 Esercizio n 1 Sia ata la soletta a salzo i c.a. i luce l =,0 m rappresentata in figura. La soletta può essere consierata i lunghezza inefinita perpenicolarmente

Dettagli

Progetto di elementi strutturali per solaio: trave secondaria, trave principale, giunto trave secondaria-principale, giunto trave-trave

Progetto di elementi strutturali per solaio: trave secondaria, trave principale, giunto trave secondaria-principale, giunto trave-trave Progetto i elementi strutturali per solaio: trave seconaria, trave principale, giunto trave seconaria-principale, giunto trave-trave La seguente esercitazione ha come scopo la progettazione i una trave

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1 Formulazione dell equazione del moto Prof. Adolfo Santini - Dinamica delle Strutture 1 Sistema a un grado di libertà In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati

Dettagli

3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA

3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA 3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA Quanto segue ci consente di dimensionare l altezza di una trave inflessa con un criterio di imporre che la tensione massima agente sulla sezione della trave sia

Dettagli

268 MECCANICA DEL VEICOLO

268 MECCANICA DEL VEICOLO LISTA SIMBOLI a accelerazione longitudinale veicolo [ms -2 ]; a distanza tra il baricentro e l avantreno veicolo [m]; a parametro caratterizzante la taratura del giunto viscoso; a fm decelerazione veicolo

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) Prova in Itinere 22 Giugno 2012 SOLUZIONI Domana 1 Con riferimento al sistema rappresentato in figura, enunciare con precisione il criterio i Boe per la stabilità a

Dettagli

QUADERNI DI PROGETTAZIONE Franco Concli. Collegamenti a vite. il progettista industriale GIUGNO 2017

QUADERNI DI PROGETTAZIONE Franco Concli. Collegamenti a vite. il progettista industriale GIUGNO 2017 QUADERI DI PROGETTAZIOE Franco Concli Collegamenti a vite 44 LA VITE FILETTATA È SEZA DUBBIO UA TRA LE PIÙ UTILI IVEZIOI ELLA STORIA DELLA MECCAICA. ESSA PERMETTE DI TRASFERIRE GRADI FORZE PUR RIMAEDO

Dettagli

Analisi a crash per microvettura con telaio tubolare

Analisi a crash per microvettura con telaio tubolare ALMA MATER STUDIORUM - UNIVERSITA' DI BOLOGNA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA ELABORATO FINALE DI LAUREA In Laboratorio CAD Analisi a crash per microvettura con telaio tubolare

Dettagli

Metallurgia e Materiali non Metallici. Prova di trazione. Marco Colombo.

Metallurgia e Materiali non Metallici. Prova di trazione. Marco Colombo. Metallurgia e Materiali non Metallici Prova di trazione Marco Colombo marco1.colombo@polimi.it 16/03/2016 La prova di trazione uniassiale Una delle più comuni e importanti prove distruttive, si ricavano

Dettagli

La conservazione dell energia nel tiro con l arco

La conservazione dell energia nel tiro con l arco Michela Eccher Istituto d Arte A. Vittoria, Trento La conservazione dell energia nel tiro con l arco (Pervenuto il 30.12.2009, pprovato il 17.5.2010) ABSTRACT The article describes a simple but effective

Dettagli

Meccanica dei sistemi di punti materiali

Meccanica dei sistemi di punti materiali Meccanica dei sistemi di punti materiali Centro di massa Conservazione della quantità di moto Teorema del momento angolare Conservazione del momento angolare Teoremi di König Urti Antonio Pierro @antonio_pierro_

Dettagli

modulo E Le volte f 2 + l2 4 2 f Con i valori numerici si ha: 1, , , 40 = 5,075 m r =

modulo E Le volte f 2 + l2 4 2 f Con i valori numerici si ha: 1, , , 40 = 5,075 m r = Unità Il metodo alle tensioni ammissibili 1 ESERCIZIO SVOLTO Le volte Verificare una volta circolare a sesto ribassato in muratura di mattoni pieni che presenta le seguenti caratteristiche geometriche:

Dettagli

Corso di Elettromagnetismo Prova scritta / recupero esoneri: a.a. 2014/15, 13 Luglio 2015 Proff. S. Giagu, F. Lacava, D. Trevese

Corso di Elettromagnetismo Prova scritta / recupero esoneri: a.a. 2014/15, 13 Luglio 2015 Proff. S. Giagu, F. Lacava, D. Trevese Corso i Elettromagnetismo Prova scritta / recupero esoneri: a.a. 214/15, 13 Luglio 215 Proff. S. Giagu, F. Lacava, D. Trevese - intero scritto: risolvere i problemi 1, 2 e 3: tempo a isposizione 3.5; -

Dettagli

Proprieta' meccaniche del corpo

Proprieta' meccaniche del corpo Proprieta' meccaniche del corpo Fino ad adesso abbiamo considerato il corpo umano come un corpo rigido, in realta' ogni parte del corpo ha una certa elasticita' che gli permette di deformarsi, se la forza

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Comportamento meccanico dei materiali

Comportamento meccanico dei materiali Comportamento meccanico dei materiali Riferimento: capitolo 2 del Kalpakjian Importante per comprendere il comportamento dei materiali durante le lavorazioni Introduzione Tensione e compressione Torsione

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I Appello, 10 luglio 2013

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I Appello, 10 luglio 2013 POLITECNICO DI MILNO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 0-3 I ppello, 0 luglio 03 Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esercizi Schea N. 45 Fisica II Esercizio. Esercizi con soluzione svolti Si calcoli la capacità ei conensatori a piatti paralleli riempiti a iversi ielettrici come in figura caso a) caso b) caso c) 3 a)

Dettagli

Costruzione di Macchine Verifica a fatica degli elementi delle macchine

Costruzione di Macchine Verifica a fatica degli elementi delle macchine Costruzione di Macchine Verifica a fatica degli elementi delle macchine In figura 1 è rappresentato schematicamente un mescolatore: l albero con la paletta è mosso da un motore elettrico asincrono trifase

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

Barriere paramassi rigide ed elastiche

Barriere paramassi rigide ed elastiche GeoStru Sotware www.geostru.com Barriere paramassi rigie e elastiche Le barriere paramassi a rete sono generalmente composte a una struttura intercettazione, a una struttura i sostegno, a una struttura

Dettagli

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 11 Aprile 2006

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 11 Aprile 2006 SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI NUOVO ORDINAMENTO DIDATTICO Aprile 26 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI ESERCIZIO (8 punti) Progettare

Dettagli

ANALISI SPERIMENTALE PARAMETRICA SULL ASSORBIMENTO ACUSTICO DI RISONATORI ACUSTICI A CAVITÀ

ANALISI SPERIMENTALE PARAMETRICA SULL ASSORBIMENTO ACUSTICO DI RISONATORI ACUSTICI A CAVITÀ Associazione Italiana di Acustica 41 Convegno Nazionale Pisa, 17-19 giugno 214 ANALISI SPERIMENTALE PARAMETRICA SULL ASSORBIMENTO ACUSTICO DI RISONATORI ACUSTICI A CAVITÀ Paolo Ruggeri (1), Fabio Peron

Dettagli

I dati di alcuni esercizi sono differenziati secondo il numero di matricola. u rappresenta l ultima cifra del numero matricola.

I dati di alcuni esercizi sono differenziati secondo il numero di matricola. u rappresenta l ultima cifra del numero matricola. I Prova in Itinere del orso di MENI PPLIT LLE MHINE L - nno ccademico 009-00 ognome Nome Matricola I dati di alcuni esercizi sono differenziati secondo il numero di matricola u rappresenta l ultima cifra

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è il lavoro di una forza? Una forza F compie lavoro quando produce uno spostamento e ha una componente non nulla nella direzione dello spostamento.

Dettagli

Laboratorio per la Sicurezza e l Infortunistica Stradale PROCEDURA PER IL CALCOLO DELL ENERGIA DI DEFORMAZIONE DISSIPATA NEGLI URTI MOTO-AUTO

Laboratorio per la Sicurezza e l Infortunistica Stradale PROCEDURA PER IL CALCOLO DELL ENERGIA DI DEFORMAZIONE DISSIPATA NEGLI URTI MOTO-AUTO Laboratorio per la Sicurezza e l Infortunistica Stradale PROCDURA PR IL CALCOLO DLL NRGIA DI DFORMAZION DISSIPATA NGLI URTI MOTO-AUTO aprile 0 Introduzione L energia cinetica dissipata durante la collisione

Dettagli

Lezione 6b. Spettri di risposta. L equazione del moto assume la seguente forma:

Lezione 6b. Spettri di risposta. L equazione del moto assume la seguente forma: L equazione del moto assume la seguente forma: m u() t cu () t ku() t mu () t g Supponendo di risolvere tale equazione utilizzando l integrale di Duhamel, si ottiene: t 1 n ( t ) () sin[ D( )] ( ) m 0

Dettagli

PROVA SCRITTA DEL MODULO DI. NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 19 febbraio 2015 NOME: COGNOME: MATRICOLA:

PROVA SCRITTA DEL MODULO DI. NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 19 febbraio 2015 NOME: COGNOME: MATRICOLA: PROVA SCRITTA DEL MODULO DI NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 9 febbraio 205 NOME: COGNOME: MATRICOLA: ESERCIZIO (5-6 CFU: 0 punti; 7 CFU: 8 punti) Progettare una rete sequenziale che presenti

Dettagli

Lezione 1. Introduzione

Lezione 1. Introduzione Lezione 1 Introuzione L automatica Con il termine automatica si fa riferimento a una isciplina che stuia tutti gli aspetti metoologici e concettuali che stanno alla base ell automazione, ossia el trasferimento

Dettagli

MECCANICA Prof. Roberto Corradi Allievi informatici AA Prova del Problema N.1

MECCANICA Prof. Roberto Corradi Allievi informatici AA Prova del Problema N.1 MECCANICA Prof. Roberto Corradi Allievi informatici AA.2009-2010 Prova del 29-06-2010 1 Problema N.1 AC=140mm M=0.5 kg J G =0.005 kg m 2 M C =1 kg f d =0.3 v C =10m/s a C =25m/s 2 Il sistema articolato

Dettagli

Prova del 6 Marzo, Traccia della soluzione. Problema n. 1. BDA = α 2. sin α α = 1 e che analogamente si dimostra l altro limite notevole tan α

Prova del 6 Marzo, Traccia della soluzione. Problema n. 1. BDA = α 2. sin α α = 1 e che analogamente si dimostra l altro limite notevole tan α IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv Problemi sul lavoro Problema Un corpo di massa 50 kg viene trascinato a velocità costante per 0 m lungo un piano orizzontale da una forza inclinata di 45 rispetto all orizzontale, come in figura. Sapendo

Dettagli

Dipartimento di Ingegneria Civile e Industriale Sezione Aerospaziale. Convenzione Università di Pisa DeltaTech del 26/03/2014

Dipartimento di Ingegneria Civile e Industriale Sezione Aerospaziale. Convenzione Università di Pisa DeltaTech del 26/03/2014 Dipartimento di Ingegneria Civile e Industriale Sezione Aerospaziale Convenzione Università di Pisa DeltaTech del 26/03/2014 Rapporto Attività di Ricerca Prove di Impatto Ing. R. Lazzeri e-mail: r.lazzeri@ing.unipi.it

Dettagli

Lavorazioni per asportazione di truciolo

Lavorazioni per asportazione di truciolo Lavorazioni per asportazione di truciolo Distacco di alcune parti di materiale dal pezzo attraverso l interazione con utensili che agiscono in maniera progressiva - cinematica del taglio - meccanica del

Dettagli