( ) p x t x t x t (, ;, ;...;, ) Utilizzando il concetto di probabilità condizionata possiamo scrivere la funzione di densità di probabilità come:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "( ) p x t x t x t (, ;, ;...;, ) Utilizzando il concetto di probabilità condizionata possiamo scrivere la funzione di densità di probabilità come:"

Transcript

1 GENERLITÀ SUI PROESSI STOSTII I Pocessi Socasici Pediamo X() come u ocesso socasico eale ovveo ua vaiabile casuale eale che evolvoo co deemiae leggi el emo. Da u uo di visa maemaico esso è comleamee defiio se si cooscoo ue le fuzioi desià di obabilià cogiua defiie i modo che ( ; ;...; ) ( ) ; ;...; d d... d aesei la obabilià che il ocesso assuma u valoe a k e k +d k al emo k e ogi k da a. Uilizzado il coceo di obabilià codizioaa ossiamo scivee la fuzioe di desià di obabilià come: ( ; ;...; ) ( ;...; )... ( ) ( ) Dove co (......) si è idicao la fuzioe di desià di obabilià codizioaa subodiaa all avveasi delle codizioi che si ovao a desa della sbaea veicale. Valgoo iole le elazioi fodameali deivai dalla defiizioe di fuzioe desià di obabilià: ( ) d I geeale sommado su ui gli evei muuamee esclusivi di u io i ua obabilià cogiua si elimia quella vaiabile: ( ; ; ;...; ) ( ; ; ;...; ; ) d Ricodiamo oa le defiizioi di media auocoelazioe (R) e auocovaiaza () di ua vaiabile socasica.

2 Dao il valo medio di (): η R ( ) E[ ( ) ] ( ) ( ) E[ ( ) ( )] ( ; ) ( ) E{ [ ( ) η( )] [ ( ) η( )]} [ ( ) η( )] [ ( ) η( )] ( ; ) d d d d d Dove co E[ ] si iede la media di isieme ovveo la media faa su u isieme di ealizzazioi divese dello sesso ocesso socasico Si ha: ( ) R( ) η( ) η( ) Ioduciamo oa il coefficiee di auocoelazioe: ρ ( ) ( ) ( ) dove () è la vaiaza ovveo il aicolae valoe della fuzioe di auocovaiaza defiio come: ( ) ( ) E ( ( ) η( ) ) [ ] Teedo coo della defiizioe di obabilià codizioaa si oiee: [ ( ) ( )] ( ) 0 ( 0) ( ) E d Sazioaieà U ocesso socasico si dice sazioaio i seso seo quado le sue caaeisiche saisiche o cambiao se si sosa l oigie dei emi vale cioè la seguee elazioe e qualuque : ( ; ;... ) ( + ε; + ε;...; + ε )

3 se quesa elazioe vale solo e ogi i k si dice che è sazioaio al k-esimo odie. Da quesa defiizioe segue che deve essee e quidi ( ) ( + ε ) e ogi ε ( ) ( ). alogamee ( ; ) ( + ε ; + ε ) e qualuque ε imlica ( ; ) ( ; τ ) co τ U ocesso si dice sazioaio i seso amio se: E R [ ( ) ] ( ) R( τ ) E[ ( + τ ) ( ) ] η cosae co τ cioe R diede solo dalla diffeeza a e e o dal emo assoluo. La fuzioe di auocoelazioe R() quaifica il icodo che il ocesso all isae +τ ha di quello che è successo all isae. Si uò dimosae che la sazioaieà i seso seo imlica la sazioaieà i seso amio. Egodicià U ocesso sazioaio si dice egodico se ue le oieà saisiche ossoo essee deemiae da u uica ealizzazioe del ocesso. I ale aole le medie di isieme ossoo essee sosiuie da medie emoali: T E[ ( ) ] ( ) d T η e T T

4 Pocesso di Rumoe iaco Si defiiscoo ocessi di umoe biaco i ocessi socasici caaeizzai dalle seguei oieà: E [ ( ) ] ( ) 0 cosae τ 0 essedo - ( τ ) 0 La fuzioe di desià di obabilià è Gaussiaa co media ulla e vaiaza cosae. Il fao che la covaiaza sia ulla sigifica che o c è coelazioe e emi diffeei. I siesi i u ocesso di umoe biaco i valoi di vaiabili casuali misuae ad u emo soo comleamee scoelai da quelli misuai ad u emo co cioè o vi è memoia del assao. Pocesso di Makov osideiamo u geeico ocesso socasico ed esimiamo la sua fuzioe di desià di obabilià i fuzioe della obabilià codizioaa ( ;...; ) > >... Se la geeica obabilià codizioaa uò essee esessa solo i fuzioe di alloa il ocesso si dice di Makov. ( ;...; ) ( ) Sosazialmee i queso io di ocessi la saisica del assao o iflueza quella del fuuo fissaa la codizioe del esee ( ). 4

5 5 licado la defiizioe di obabilià codizioaa si ha: ( ) ( ) ( ) ( ) ; d d che foisce la obabilià al emo > oa la obabilià codizioaa ( ). Pe la obabilià codizioaa si ha aalogamee: ( ) ( ) ( ) ( ) ; ; d d alicado ifie la defiizioe di ocesso di Makov si ha: ( ) ( ) ( ) ( ) ; d d e quidi ( ) ( ) ( ) d chiamaa equazioe di hama-kolmogoov che lega le obabilià codizioae l ua all ala. Si uò deivae la foma diffeeziale dell'equazioe di hama-kolmogoov: ( ) ( ) ( ) [ ] ( ) ( ) [ ] [ ] + + )' ( ) ( )' ( ) ( ' ' ' y z W y z z W dz y y y dove () è chiamao emie di dif (deiva) () emie di diffusioe e W( y) defiisce i ocessi di salo. e W soo fuzioi caaeisiche del aicolae oblema che si vuole sudiae.

6 U ocesso di Makov si dice coiuo se e qualuque ε>0 si ha: lim 0 d ( + z ) 0 z > 0 uifomemee i z e. I aicolae si uò dimosae che l'equazioe di hama-kolmogoov defiisce u ocesso coiuo se e'ullo il emie W. (figua) U caso aicolae dell equazioe di hama-kolmogoov che defiisce u ocesso makoviao coiuo è l equazioe di Fokke-Plack oeua dalla ecedee oedo a zeo il emie discoiuo W: ( y ) ' [ ( ) ( y ' )] + [ ( ) ( y ' )] Usado la elazioe: ( ) ( ; y ' ) dy ( y ' ) ( y ' ) dy si uò mosae che l equazioe di Fokke Plack è valida ache e la geeica () co la codizioe iiziale ( ) ( ) ' ' e quidi ossiamo iscivee quesa equazioe come ( ) + [ ( ) ( )] ( ) ( ) [ ] L equazioe di Fokke-Plack uò essee uilizzaa e la soluzioe ad esemio del oblema del moo owiao. Ifai si uò dimosae che esise ua elazioe a ques ulima e l equazioe di Lagevi equazioe socasica diffeeziale lagagiaa che descive queso io di moo. L equazioe di Lagevi uò essee scia come: ( ) ( ) ε ( ) d a d + b d dove a() e b() soo fuzioi iiche del aicolae oblema i esame e ε() è u emie casuale aidamee vaiabile ale che: ε( ) ε( ' ) δ ( ' ) 6

7 cioè u ocesso di umoe biaco. ( ) ε 0 E ossibile dimosae che u feomeo di queso io è aeseabile come u ocesso Makoviao e coiuo quidi descivibile dal uo di visa saisico da ua fuzioe di desià di obabilià ( ). Esisoo delle elazioi che legao le fuzioi a() b() e () () oeibili a aie dalla fomula di Io iguadae la defiizioe del diffeeziale di ua fuzioe f(()) dove ovviamee () aesea u ocesso socasico Makoviao coiuo (Gadie 990). Quese elazioi soo: a b ( ) ( ) ( ) ( ) Quidi ossiamo scivee l equazioe di Fokke-Plack come: ( ) [ ] [ a( ) ( ) ] + b ( ) ( ) Daa la fuzioe desià di obabilià () ossiamo usae l equazioe di Fokke- Plack e icavae le quaià a() e b() che uilizzae ell equazioe di Lagevi emeoo di descivee ad esemio il moo owiao o il moo di ua aicella i u camo di velocià uboleo. Pocesso di Wiee Ua aicolae soluzioe dell'equazioe di Fokke-Plack el caso i cui si abbia ()0 e () è il ocesso di Wiee u ocesso socasico co media ulla e vaiaza oozioale a e cui: E[ ( ) ] 0 E[ ( ( ) η( ) ) ] E[ ( ) ] α 7

8 La disibuzioe di obabilià di queso ocesso è Gaussiaa: ( ) e πα α Pe emi odiai > > vale ache la seguee codizioe: E [( ( ) ( )) ( ( ) ( ))] 0 che sigifica che gli icemei i u ocesso di Wiee soo scoelai (idiedei). U ocesso di Wiee uò essee scio come: ( ) ( τ ) dτ 0 dove (τ) è u ocesso di umoe biaco. Da ciò segue che: d( ) ( ) d quidi gli icemei ifiiesimi di queso io di ocesso cosiuiscoo u ocesso di umoe biaco. Il ocesso di Wiee uò essee cosideao come caso limie coiuo di u ocesso disceo deo di adom walk. 8

9 Momei di ua disibuzioe di obabilià La descizioe saisica di ua geeica vaiabile s uò essee oeua aaveso la coosceza dei suoi momei o equivaleemee della sua fuzioe di desià di obabilià (s). Si ha e il momeo di odie : e e il momeo ceao di odie : s s s ( s ) s ds ( s s) ( s) ds Teoicamee uò adae fio all ifiio cioè eoicamee ossoo esisee ifiii momei della gadezza saisica s. i fii aici ci si fema ad uilizzae i imi e o quao momei. la media o momeo del imo odie s s s ( s ) s s ds la vaiaza o momeo ceao del secodo odie s s (o ) - s ( s s) ( s ) s ds - la skewess (o omalizzaa) momeo ceao del ezo odie s s s ( s s) ( s ) s ds - la kuosis (o omalizzaa) momeo ceao del quao odie s 4 s 4 s 4 4 ( s s) 4 ( s ) s ds (Nomalmee co skewess e kuosis si iedoo i momei omalizzai co ooue oeze si ) - 9

10 Disibuzioe di obabilià (PDF) bi-gaussiaa La disibuzioe e oeua a aie da ua combiazioe lieae ella vaiabile w di due disibuzioi Gaussiae: ( ) ( ) + ( ) P w z P w P w a Quese due disibuzioi Gaussiae soo caaeizzae dall avee valoe medio o ullo (w e w iseivamee) e i geeale divesi valoi di vaiaza ( ). I coefficiei e egoo coo del eso delle due gaussiae. Si oi che la disibuzioe bi-gaussiaa uò essee esaa semlicemee come u aificio maemaico e oe iodue valoi dei momei sueioi al secodo. La coisodeza fisica co la disibuzioe eale e assicuaa uicamee dalla coicideza dei valoi assui da ali momei. Possiamo scivee quesa PDF quidi come: ( ) P w z e w w π + e w w π Si devoo quidi deemiae w w e i modo ale che la P(wz) soddisfi le equazioi e la defiizioe degli momei della disibuzioe: w ( w z) dw w P ( w z) dw + w P ( w z) w P dw dove w soo i momei misuai delle PDF eali. I aicolae assumedo il valo medio ullo e i imi quao momei si oegoo le seguei elazioi: + w + w 0 ( ) ( ) w + + w + w 0

11 ( ) ( ) w + w + w + w w ( 6 ) ( 6 ) w + w + + w + w + w Risolvedo queso sisema si deemiao i valoi di w w oi ovviamee i 4 momei della PDF. ome si uò vedee il sisema è fomao da 5 equazioi i cui comaioo 6 icogie. Pe essee isolo uivocamee occoe fissae ua codizioe sulemeae che ci emea di legae ua delle icogie alle ale o ad ua ae delle ale. E da oae che la coosceza del quio momeo della disibuzioe emeeebbe di oeee ua soluzioe esaa seza dove icoee a essua codizioe sulemeae. Nella ealà eò uò essee difficile i moli casi avee sime aedibili del quio momeo. Pe ovviae a quesi oblemi soo sai oosi divesi schemi di chiusua del sisema a i quali ioiamo il seguee valido el caso i cui si cooscao o si uilizzio solo i imi momei. Luha ad ie (985) uilizzado solo le ime 4 equazioi del sisema ooseo come codizioi di chiusua le seguei elazioi: oeedo: w w w ( ) 8 ( ) w w + w 4 w w w w w w w w

12 PDF di Gam-halie Il secodo io di PDF si basa su uo sviluo i seie di deivae della fuzioe Gaussiaa sadadizzaa (dove si è effeuaa la sosiuzioe α( ) e π µ ): se si idica co D d abbiamo che d ( D) α( ) H ( ) α ( ) co H () oliomio di Hemie di gado. Sciviamo quidi la PDF come: P( ) H ( ) α( ) j 0 j dove molilicado e ( ) H e iegado da a - si oiee eedo coo delle codizioi di oogoalià a oliomi di Hemie: P( ) H ( ) d! Sosiuedo gli eslicii valoi di ( ) H e cosideado i momei della disibuzioe ifeii ad u valo medio ullo i coefficiei soo defiii come: j 0 0 ( µ ) µ ( µ 6 µ ) 4 4 dove co µ si soo idicai i vai momei della disibuzioe. Oeiamo ifie che la PDF ella foma sadadizzaa è uguale a:

13 ( ) α( ) [ ] P H + H + H + H + H + ( ) [ H + H + H + ] ( ) α α + H + ( ) H +... µ µ dove co la sadadizzazioe si è sosiuio a il valoe µ da cui deiva ( i quao ella foma sadadizzaa µ µ / ). I aicolai valoi di µ µ 4 così sadadizzai soo chiamai iseivamee Skewess e Kuosis. Quesa aicolae esessioe della PDF è chiamaa esasioe i seie di Gam halie io. I aicolae ossiamo iscivela cosideado solo momei fio al ezo odie come: dove w w e: e P( z) ( + H) π H µ 6 6 w ( w )

Teoria delle distribuzioni Parte quinta Limiti nel senso delle distribuzioni

Teoria delle distribuzioni Parte quinta Limiti nel senso delle distribuzioni ezioi di Maemaica e disribuzioi pare 5 Teoria delle disribuzioi Pare quia imii el seso delle disribuzioi operazioe di limie i seso disribuzioale Passiamo a raare, araverso ua serie di esempi precedui da

Dettagli

Campionamento e conversione (parte II)

Campionamento e conversione (parte II) Appui di Misue Eleiche Capiolo 8 Campioameo e covesioe (pae II) Covesioe digiale-aalogico... Cocei geeali... Caaeisica eale pe la covesioe D A...4 Coveioi digiale-aalogico (DAC)...5 Covesioe aalogico-digiale...

Dettagli

Si dice che f è infinitesima o che è un infinitesimo per x x0 Un infinitesimo, quindi è una variabile che tende a zero.

Si dice che f è infinitesima o che è un infinitesimo per x x0 Un infinitesimo, quindi è una variabile che tende a zero. pag Appui elaborai dal collega Prof. Vicezo De Pasquale Ifiiesimi Si dice che f è ifiiesima o che è u ifiiesimo per se f ( ) U ifiiesimo, quidi è ua variabile che ede a zero. Es. - π y cos è u ifiiesimo

Dettagli

Sfere ed ellissoidi dielettrici hanno la peculiarità che E,P e D sono uniformi all interno e fra loro paralleli

Sfere ed ellissoidi dielettrici hanno la peculiarità che E,P e D sono uniformi all interno e fra loro paralleli Sfee ed ellissoidi dielettici hao la peculiaità che,p e D soo uifomi all iteo e fa loo paalleli Lezioi RNI Pof. G. Caboi - 5- sempi Lezioi RNI Pof. G. Caboi - 5- Lezioi RNI Pof. G. Caboi - 5- Calcolo del

Dettagli

maturità 2015

maturità 2015 wwwmatematicameteit matuità QUETIONIO Detemiae l esessioe aalitica della fuzioe =f saedo ce la etta =-+ è tagete al gafico di f el secodo quadate e ce f =- + Dimostae ce il volume del toco di coo è esesso

Dettagli

0 per x / ( 1, ). i) (4 p) Trovare per quali valori di α la funzione f è una densità di probabilità (non si chiede di calcolare C α ).

0 per x / ( 1, ). i) (4 p) Trovare per quali valori di α la funzione f è una densità di probabilità (non si chiede di calcolare C α ). Corsi di Probabilià, Saisica e Processi socasici per Ig dell Auomazioe, Iformaica e If Ges Azieda /5/ Esercizio U sisema di preallarme su u velivolo segala ua A allarme oppure ua N o allarme ogi dieci

Dettagli

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Adolfo Scimoe FORMULE INTEGRAZIONE Pag INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Iegrazioe delle fuzioi razioali frae Se la frazioe è impropria, cioè il grado del umeraore è maggiore o uguale

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Corso Sperimentale P.N.I. Tema di MATEMATICA - 23 giugno 2005

ESAME DI STATO DI LICEO SCIENTIFICO Corso Sperimentale P.N.I. Tema di MATEMATICA - 23 giugno 2005 ESAME DI STATO DI LICEO SCIENTIFICO -5 Corso Sperimeale PNI Tema di MATEMATICA - giugo 5 Svolgimeo a cura della profssa Sadra Berecoli e del prof Luigi Tomasi (luigiomasi@liberoi) RISPOSTE AI QUESITI DEL

Dettagli

Il modello di Black e Scholes come limite del modello binomiale multiperiodale

Il modello di Black e Scholes come limite del modello binomiale multiperiodale Capiolo Il modello di Blac e Scholes come limie del modello biomiale muliperiodale. Il Modello Biomiale Muliperiodale Ricordiamo brevemee il Modello Biomiale Muliperiodale o Cox-Ross-Rubisei.. Ipoesi e

Dettagli

Università di Camerino Corso di Laurea in Fisica: indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea in Fisica: indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Iegrali idefiii Geeralià Si è viso come, daa ua fuzioe di equazioe y = f(), si possa rovare la sua derivaa prima f (). Si è ache osservao che esise ua codizioe ecessaria, ma o sufficiee, affiché ua fuzioe

Dettagli

ELEMENTI DI TEORIA DELLE PROBABILITA

ELEMENTI DI TEORIA DELLE PROBABILITA ELEMENTI DI TEORIA DELLE PROBABILITA Nozioi base Spazio S S è l isieme di ui i possibili esii di u esperimeo. Esempio 1. Nel lacio di u dado abbiamo S{1,2,3,4,5,6}. Esempio 2. La duraa di ua lampadia S{x

Dettagli

SULLE SOLUZIONI A SIMMETRIA RADIALE DELLE EQUAZIONI DI TIPO ELLITTICO IN R 3

SULLE SOLUZIONI A SIMMETRIA RADIALE DELLE EQUAZIONI DI TIPO ELLITTICO IN R 3 M. G. BUSATO SULLE SOLUZIONI A SIMMETRIA RADIALE DELLE EQUAZIONI DI TIPO ELLITTICO IN R 3 mgbstudio.et PAGINA INTENZIONALMENTE VUOTA SOMMARIO I questo scitto viee bevemete affotato il poblema dell e- sisteza

Dettagli

Il valore temporale del denaro

Il valore temporale del denaro Il valoe empoale del denao onenui della lezione Definizione dei concei di valoe fuuo e valoe auale. Inoduzione alle endie e alle loo eole di uilizzo.. Le eole del asfeimeno del denao nel empo Pe valuae

Dettagli

Equazioni differenziali: formule

Equazioni differenziali: formule Equazioi differeziali: formule Equazioi a variabili separabili y ' A B y Vale eorema esiseza e uicià locale y ' dy Ad B y y y ' A B y y Si applicao le codizioi alla fie dei due iegrali idefiii, oppure

Dettagli

LE EQUAZIONI IRRAZIONALI

LE EQUAZIONI IRRAZIONALI LE EQUAZIONI IRRAZIONALI Per ricordare H Data ua qualsiasi equazioe A B, saiamo che ad essa si ossoo alicare i ricii di equivaleza che cosetoo di aggiugere o togliere esressioi ai due membri oure moltilicare

Dettagli

TRASFORMATA DI FOURIER. A.1 Segnali analogici, deterministici ed aleatori. A p p e n d i c e A

TRASFORMATA DI FOURIER. A.1 Segnali analogici, deterministici ed aleatori. A p p e n d i c e A A p p e d i c e A RASFORMAA DI FOURIER Uo degli aspei più imporai di uo il seore dell igegeria è sicuramee l aalisi di segali el domiio del empo e della frequeza. I segali aalogici si disiguoo i segali

Dettagli

BILANCI DI MASSA NEI COMPARTIMENTI AMBIENTALI

BILANCI DI MASSA NEI COMPARTIMENTI AMBIENTALI BILNI DI MSS NEI OMPTIMENTI MBIENTLI alisi di sigolo comparimeo ad esempio u piccolo lago m x m x 0 m 0 7 m pprossimazioe ST (oiously Sirred-Ta eacor) cocerazioe omogeea dei solui (iquiai) el comparimeo.

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

ALTRI ESERCIZI SULL INTEGRALE DI LEBESGUE. A. Figà Talamanca

ALTRI ESERCIZI SULL INTEGRALE DI LEBESGUE. A. Figà Talamanca ALTRI SRCIZI SULL INTGRAL DI LBSGU A. Figà Talamaca 29 ottobre 2006 2 L itegrale di Lebesgue che abbiamo defiito per le fuzioi misurabili, limitate defiite su u isieme misurabile di misura fiita, può essere

Dettagli

4πε. Teorema di Gauss

4πε. Teorema di Gauss A. Chiodoi esecizi di Fisica II Teoema di Gauss Esecizio 1 Ua caica è distibuita co desità spaziale uifome el volume di ua sfea di aggio. Calcolae il campo elettico E ei puti itei ed estei alla sfea. Data

Dettagli

Quelle che più frequentemente si verificano nell esercizio delle trasmissioni di potenza per ingranaggi sono:

Quelle che più frequentemente si verificano nell esercizio delle trasmissioni di potenza per ingranaggi sono: Il pogeo o la veiica di ua coppia di uoe deae, dal puo di visa della esiseza suuale, si basa sulla valuazioe delle possibili avaie. Quelle che più equeemee si veiicao ell esecizio delle asmissioi di poeza

Dettagli

SMSMW#300#130#1#220#210W#300#130#1#140#130W#220#13

SMSMW#300#130#1#220#210W#300#130#1#140#130W#220#13 Marice icideza La marice d'icideza complea A c di u grafo orieao G co N odi ed R rami, è ua marice reagolare di N righe ed R coloe che si cosruisce come segue: si umerao co =1,2,...,N ui i odi e co r=1,2,...,r

Dettagli

Detta H(ω) la funzione di trasferimento del filtro a parametri costanti, per sbiancare il rumore occorre un filtro che abbia

Detta H(ω) la funzione di trasferimento del filtro a parametri costanti, per sbiancare il rumore occorre un filtro che abbia esori egali Rumore - Prof.. Cova - aello 4/0/0 - P ag. PROBLEMA uadro dei dai Imulso di corree del rivelaore I s ( s / s ) () ex(-/ s ) s µs Preamlificaore Limie di bada Resiseza di igresso Caacià all

Dettagli

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 30 Gennaio 2019

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 30 Gennaio 2019 Uiversià di Roma Tor Vergaa - Corso di Laurea i Igegeria Aalisi Maemaica I - Prova scria del 3 Geaio 9 Esercizio. [5 pui] Calcolare lo sviluppo di Taylor dell ordie = 5 el puo x = per la seguee fuzioe:

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Flusso del campo elettrostatico. Teorema di Gauss

Flusso del campo elettrostatico. Teorema di Gauss Flusso del campo elettostatico d supeficie elemetae ell itoo del geeico puto P del campo Teoema di Gauss θ d vesoe della omale a d oietata positivamete i uo dei due possibili vesi d vettoe avete pe modulo

Dettagli

Ammortamento di un debito

Ammortamento di un debito Ammorameo di u debio /35 Ammorameo di u debio Che cosa si iede per ammorameo? Ammorameo coabile La quoa di ammorameo cosiuisce la pare del coso di u bee maeriale o immaeriale di ivesimeo da aribuire all

Dettagli

INGEGNERIA LOGISTICA E DELLA PRODUZIONE

INGEGNERIA LOGISTICA E DELLA PRODUZIONE A. Chiodoi esecizi di Fisica II TEZA LEZIONE: teoema di Gauss Esecizio 1 Ua caica è distibuita co desità spaziale ρ uifome el volume di ua sfea di aggio. Calcolae il campo elettico E ei puti itei ed estei

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Itroduzioe Distribuzioi di robabilità Fio ad ora abbiamo studiato ua secifica fuzioe desità di robabilità, la fuzioe di Gauss, che descrive variabili date dalla somma di molti termii idiedeti es. ua misura

Dettagli

Equazioni Differenziali

Equazioni Differenziali Equazioi Differeziali Nota itroduttiva: Lo scopo di queste dispese o è trattare la teoria riguardo alle equazioi differeziali, ma solo dare u metodo risolutivo pratico utilizzabile egli esercizi che richiedoo

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

A.A Ingegneria Gestionale 2 appello del 21 Luglio 2004

A.A Ingegneria Gestionale 2 appello del 21 Luglio 2004 Uivesià di ma La Sapieza Faclà di Igegeia FISIC.. 00-004 Igegeia Gesiale appell del Lugli 004 POLEMI. Due cpi di massa M Kg ed M Kg scivla lug u pia scab iclia di a0 ispe ad u pia izzale. Essi s uii a

Dettagli

STATISTICA INFERENZIALE: TRE FILE PDF

STATISTICA INFERENZIALE: TRE FILE PDF Uiversià C. Caaeo, Corso di STATISTICA. AA 008-9, Robero D Agiò STATISTICA INFERENZIALE: TRE FILE PDF Il file PDF Saisica Ifereziale (I) è il rimo dei seguei re file scaricabili dal Maeriale Didaico (soo

Dettagli

2. Moto browniano: prime proprietà Il moto browniano Processi stocastici gaussiani

2. Moto browniano: prime proprietà Il moto browniano Processi stocastici gaussiani 6. MOTO BROWNIANO: PRIME PROPRIETÀ. Moo browiao: prime proprieà I queso capiolo sviluppiamo la raazioe maemaica del moo browiao. Queso processo prede il ome dal boaico scozzese Rober Brow, che el 87 descrisse

Dettagli

1 α. Corso di Statistica Facoltà di Economia. θ θ. X σ. Lezione n 24. Francesco Mola INTERVALLI DI CONFIDENZA. Stime puntuali Stime intervallari

1 α. Corso di Statistica Facoltà di Economia. θ θ. X σ. Lezione n 24. Francesco Mola INTERVALLI DI CONFIDENZA. Stime puntuali Stime intervallari Corso di aisia Faolà di Eoomia Leioe 4 INTERVALLI DI CONFIDENZA ime uuali ime iervallari aa 000-00 00 Fraeso Mola θ θ θ θ 3 θ 4 aa 000-00 saisia-fraeso mola Iervalli di ofidea Livello di ofidea o Livello

Dettagli

2. FUNZIONE D ONDA, OSSERVABILI QUANTISTICHE ED EQUAZIONE DI SCHROEDINGER Ovvero: Gli strumenti della Meccanica Quantistica

2. FUNZIONE D ONDA, OSSERVABILI QUANTISTICHE ED EQUAZIONE DI SCHROEDINGER Ovvero: Gli strumenti della Meccanica Quantistica . FUNZIONE D ONDA OSSERVABILI QUANTISTICHE ED EQUAZIONE DI SCHROEDINGER Ovvero: Gli srumei della Meccaica Quaisica Sisema di ieresse (cosiderao come isolao: aomo/molecola Cofigurazioe del sisema: isieme

Dettagli

Lezione 3 Proprietà statistiche degli stimatori OLS - 1. Anche in questo capitolo si considera il modello di regressione lineare.

Lezione 3 Proprietà statistiche degli stimatori OLS - 1. Anche in questo capitolo si considera il modello di regressione lineare. Lezioe 3 Proprieà saisiche degli simaori OLS - Ache i queso capiolo si cosidera il modello di regressioe lieare y x β + u co E( u Ω ) 0, x appariee a Ω per,,, e si assume che sia assegao il processo (fiio)

Dettagli

ESERCITAZIONE: FEM. Consideriamo un elemento triangolare. y 3

ESERCITAZIONE: FEM. Consideriamo un elemento triangolare. y 3 ESERCITAZIONE: FEM L aalisi agli elemei fiii è u ipo di aalisi che si rifà alla meccaica dei solidi e rasforma il coiuo i u discreo composo da umerosi elemei dei quali se e cooscoo le proprieà. Le relazioi

Dettagli

y(t) o complesse non tutte nulle, fa corrispondere un'uscita data dalla:

y(t) o complesse non tutte nulle, fa corrispondere un'uscita data dalla: Capiolo V TRASFORMAZIOI LIEARI DEI SEGALI V. - Defiizioi. Proprieà geerali. x( ) S y() Fig. VI. Trasformazioe di segali S ed è simbolicamee rappreseaa dalla relazioe: y () = S x () I (V..) { } U sisema

Dettagli

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE Sia V uo spazio vettoriale sul campo K. Siao v, v,..., v vettori dati apparteeti a V e siao, ioltre, assegati scalari k, k,..., k apparteeti a K. Si defiisce

Dettagli

Studio matematico dei sistemi di controllo

Studio matematico dei sistemi di controllo Studio matematico dei sistemi di cotrollo Studio di u sistema fisico x(t segale di igresso (eccitazioe SISTEMA FISIO y(t segale di uscita (risosta y(t è legata a x(t da u equazioe differeziale che diede

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018 Primo appello di Calcolo delle probabilità Laurea Trieale i Matematica 22/0/20 COGNOME e NOME... N. MATRICOLA... Esercizio. Siao X e Y due variabili aleatorie idipedeti, co le segueti distribuzioi: X Uif(0,

Dettagli

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A =.........

Dettagli

R chi h ami m sul u cana n le di d com o u m n u i n cazion o e n radi d o

R chi h ami m sul u cana n le di d com o u m n u i n cazion o e n radi d o Richiami sul caale di comuicazioe radio 1 Fadig leo shadowig è causao da osacoli di gradi dimesioi palazzi ra TX e RX Il pah loss è proporzioale a r α, dove α è i geere ra 2.5 e 5 i ambiee urbao Erambi

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Lezione 7. Il Metodo GLS (Minimi Quadrati Generalizzati) e FGLS

Lezione 7. Il Metodo GLS (Minimi Quadrati Generalizzati) e FGLS Lezioe 7 Il Meodo (Miimi Quadrai Geeralizzai) e F Nei meodi di sima OLS e NLS, reseai ei recedei caioli, l eveuale reseza di eeroschedasicià egli errori (ed ache la reseza di auocorrelazioe) iflueza solao

Dettagli

Retta di minima distanza, sfere e circonferenza nello spazio Alcuni esercizi svolti

Retta di minima distanza, sfere e circonferenza nello spazio Alcuni esercizi svolti Rea di minima disana sfee e ciconfeena nello spaio Alcuni esecii svoli. Sabilie se le ee ed s sono complanai o sghembe. Nel pimo caso pecisae se esse sono paallele oppue incideni e ovae l equaione di un

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

Successioni e Progressioni

Successioni e Progressioni Successioi e Pogessioi Ua successioe è ua sequeza odiata di umei appateeti ad u isieme assegato: ad esempio, si possoo avee successioi di umei itei, azioali, eali, complessi Il pimo elemeto della sequeza

Dettagli

Tecnica delle misurazioni applicate Esame del 7 gennaio 2008

Tecnica delle misurazioni applicate Esame del 7 gennaio 2008 Tecica delle misurazioi applicae Esame del 7 geaio 008 Problema 1. La Beloiglio rl è u impresa che alleva idusrialmee coigli e da lugo empo uilizza il magime ProRabbi 10% che ha sempre garaio, i u presabilio

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

Trasmissione del calore con applicazioni numeriche: informatica applicata

Trasmissione del calore con applicazioni numeriche: informatica applicata Corsi di Laurea i Igegeria Meccaica Trasmissioe del calore co applicazioi umerice: iformatica applicata a.a. 5/6 Teoria Parte IV Ig. Nicola Forgioe Dipartimeto di Igegeria Civile e Idustriale E-mail: icola.forgioe@ig.uipi.it;

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Verificare l ipotesi che le scelte non siano casuali, ma dettate da effettive capacità di attrazione dei diversi colori ( =.01)

Verificare l ipotesi che le scelte non siano casuali, ma dettate da effettive capacità di attrazione dei diversi colori ( =.01) PSICOMETRIA ES ERCIZI 07-0 Viee codoa ua iceca di mecao pe decidee il coloe della coezioe di u podoo X desiao ai bambii. Si vuole veiicae se i bambii soo più aai da paicolai coloi piuoso che da ali. Vego

Dettagli

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del Matematica III Corso di Igegeria delle Telecomuicazioi Prova scritta del -2-27 Esercizio. puti) Sia = {, y) R 2 :, y 3 + }. a) 3 puti) Utilizzare il teorema di Stokes o Poicaré-Carta) per calcolare d dy

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La edita fiaziaia U ispamiatoe, alla fie di ogi ao, vesa ua ata R di 6000 a ua baca che la capitalizza a u tasso d iteesse auo i del 3,5% Il motate M matuato alla fie

Dettagli

Problema 1 PROBLEMA 1. Sia f la funzione definita da f ( x) = 1 + x e. dove n è un intero positivo e x R

Problema 1 PROBLEMA 1. Sia f la funzione definita da f ( x) = 1 + x e. dove n è un intero positivo e x R Problema PROBLEMA Sia f la fuzioe defiita da f ( ) + + +... + e!! dove è u itero positivo e R. Si verifichi che la derivata di f è: f '( ) e!. Si dica se la fuzioe f ammette massimi e miimi (assoluti e

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

Università di Roma La Sapienza Facoltà di Ingegneria FISICA Facoltativo: 3. 4.

Università di Roma La Sapienza Facoltà di Ingegneria FISICA Facoltativo: 3. 4. Uiversià di Roma a Sapieza Facolà di Ieeria FISIC.. 014-015 Ieeria Gesioale (-Z) Esoero del 4 prile 015 1. Ua moile lua 4 m viaia su srada. I u rao reilieo decide di effeuare il sorpasso di u reo luo 10

Dettagli

Simmetrie e Leggi di Conservazione II Isospin, Stranezza, G-parità

Simmetrie e Leggi di Conservazione II Isospin, Stranezza, G-parità immetrie e Leggi di Coservazioe sosi traezza G-arità Elemeti di Fisica delle Particelle Elemetari Diego Bettoi Ao Accademico 4-5 ommario sosi Defiizioe coservazioe sosi el sistema N traezza G-arità sosi

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Soluzione. La curva di equazione y = 6 x è una parabola con vertice in V = (0,6)

Soluzione. La curva di equazione y = 6 x è una parabola con vertice in V = (0,6) Sessioe ordiaria LS_ORD 5 Soluzioe ) La curva di equazioe y è ua parabola co verice i (,) e cocavià rivola verso il basso, ed ierseca l asse delle ascisse ei pui (,), B (,) come soo rappreseao: La figura

Dettagli

Un segnale periodico è manifestamente un segnale a potenza finita. Infatti è: s t dt. kt0 kt0. T0 s t dt+

Un segnale periodico è manifestamente un segnale a potenza finita. Infatti è: s t dt. kt0 kt0. T0 s t dt+ Cpiolo II RAPPRESENAZIONE DEI SEGNALI NEL DOMINIO DELLA REQUENZA. II. - Segli periodici. U segle, rppreseo d u fuzioe rele o compless s( di vribile rele, si dice periodico se esisoo vlori di li che, per

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE:

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE: Prova scritta di Aalisi Matematica 1 Prima parte, Tema A Igegeria dell Eergia, Uiv. di Pisa 19 giugo 2013 COGNOME: NOME: MATR.: RISPOSTE: A B C D E 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 1 Prima parte,

Dettagli

Unità Didattica N 33 L algebra dei vettori

Unità Didattica N 33 L algebra dei vettori Uità Didattica N 33 Uità Didattica N 33 0) La ozioe di vettore 02) Immagie geometrica di u vettore umerico 03) Somma algebrica di vettori 04) Prodotto di u umero reale per u vettore 05) Prodotto scalare

Dettagli

Grandezze significative (dinamiche e cinematiche)

Grandezze significative (dinamiche e cinematiche) Gradezze sigificaie diamiche e ciemaiche Romao Lapasi DMRN - Uiersià di Triese Corso di Reologia Uiersià di Triese Obieio geerale defiire u equazioe cosiuia adaa a descriere il comporameo meccaico del

Dettagli

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO CENR DI AGLI E RSINE SPURIA IN RAVI A PAREE SILE ESERCIZI La sezioe di figura, sierica riseo ad u asse orizzoale assae er, è soggea all azioe di aglio agee i direzioe vericale e assae er il uo. Deermiare:

Dettagli

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado.

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado. Capitolo 3 3.1 Defiizioi e proprietà La comparsa dei umeri complessi è legata, da u puto di vista storico, alla risoluzioe delle equazioi di secodo grado. L equazioe ammette le soluzioi x 2 + 2px + q =

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei polemi a) Sudiamo il gafico di f ( ) D: R -]- ; [ - (-) f( ) - - - - - f ( ), quindi la funzione è dispai - Le inesezioni con l asse delle hanno ascisse + e - lim f ( ) lim " + " + - si

Dettagli

1. Generalità sull energia potenziale elettrica. Supponiamo di avere un sistema di due cariche elettriche positive, Q

1. Generalità sull energia potenziale elettrica. Supponiamo di avere un sistema di due cariche elettriche positive, Q UNITÀ 9 IL POTENZIALE ELETTRICO. Geealità sull eegia poteziale elettica.. L eegia poteziale elettica di due caiche putifomi e di più caiche putifomi.. Il poteziale elettico. 4. Poteziale elettico geeato

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

Convertitoriditipospot (convertono, idealmente, il valore istantaneo del segnale); V ts

Convertitoriditipospot (convertono, idealmente, il valore istantaneo del segnale); V ts Pare II (Coversioe D/A e A/D) La coversioe A/D I coveriori A/D si dividoo i: Coverioridiipospo (coveroo, idealmee, il valore isaaeo del segale); s s Si raa di disposiivi veloci ma sesibili al rumore di

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso ISTITUZIONI DI ANALISI SUPEIOE 2-2 Esercizi di metà corso Silvia Ghiassi 22 ovembre 2 Esercizio Diamo u esempio di fuzioe u: tale che u 6, u 6, u 6. se x

Dettagli

Sia dato un esperimento casuale individuato da uno spazio di probabilità S=

Sia dato un esperimento casuale individuato da uno spazio di probabilità S= Capiolo II CARATTERIZZAZIONE STATISTICA DEI SEGNALI II. - Fuzioi di proailià del primo ordie. Sia dao u eperimeo cauale idividuao da uo pazio di proailià S (, F,Pr) Ω. Per egale aleaorio reale iede u applicazioe

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

SECONDO ESONERO DI AM1 10/01/ Soluzioni

SECONDO ESONERO DI AM1 10/01/ Soluzioni Esercizio. Calcolare i segueti iti: Razioalizzado si ottiee SECONDO ESONERO DI AM 0/0/2008 - Soluzioi 2 + 2, 2 + 2 = 2 + 2 + 2 + 2 = Per il secodo ite ci soo vari modi, e mostro tre. Ora ( ) ( + si = +

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Probabilità CENNI DI PROBABILITÀ

Probabilità CENNI DI PROBABILITÀ CENNI DI PROBABILITÀ Itroduzioe I queste pagie verrao esposti i breve i cocetti base della teoria delle probabilità. Lo scopo è quello di forire le basi i modo che siao più compresibile l uso che e viee

Dettagli

Lezione 3: Segnali periodici

Lezione 3: Segnali periodici eoria dei segali Segali a poteza media fiita e coversioe A/D Lezioe 3: Aalisi i frequeza Esempio di calcolo 005 Politecico di orio eoria dei segali aalisi i frequeza Poteza media Sia dato u segale (t)

Dettagli

OPERAZIONI SUI SEGNALI DETERMINISTICI, ENERGIA, VALOR MEDIO, POTENZA, ANALISI DI FOURIER, CONVOLUZIONE. A cos 2 / 2

OPERAZIONI SUI SEGNALI DETERMINISTICI, ENERGIA, VALOR MEDIO, POTENZA, ANALISI DI FOURIER, CONVOLUZIONE. A cos 2 / 2 OPERAZIONI SUI SEGNALI DEERMINISICI, ENERGIA, VALOR MEDIO, POENZA, ANALISI DI FOURIER, CONVOLUZIONE Esercizio Calcolare la poeza, l eergia e il valor medio dei seguei segali a) x()a; b) x()u() ; c) x()acos(oφ)

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Compito di Matematica II - 12 Settembre 2017

Compito di Matematica II - 12 Settembre 2017 Compito di Matematica II - Settembre 7 Corso di Laurea i Ottica e Optometria - A.A. 6/7 Soluzioi degli esercizi. Esercizio. a) Il domiio C è il cerchio di raggio uitario. La fuzioe fx y) = x + y è defiita

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Fig.1 Modello ingresso-uscita del filtro lineare. Nel continuo per un sistema lineare e causale, si può scrivere:

Fig.1 Modello ingresso-uscita del filtro lineare. Nel continuo per un sistema lineare e causale, si può scrivere: Coso di Lauea Secialistica i Igegeia Biomedica Elaboazioe di Segali Biomedici Modelli Stocastici Itoduzioe I modelli stocastici a cui faemo ifeimeto soo basati sull'iotesi,(yule),che ua seie temoale si

Dettagli

Risoluzione del compito n. 3 (Febbraio 2018/2)

Risoluzione del compito n. 3 (Febbraio 2018/2) Risoluzioe del compito. 3 (Febbraio 08/ PROBLEMA a Determiate le soluzioi τ C dell equazioe τ iτ +=0. { αβ =4 b Determiate le soluzioi (α, β, co α, β C,delsistema α + β =i. c Determiate tutte le soluzioi

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Demodulazione I & Q. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza DEMODULAZIONE I&Q - 1

Demodulazione I & Q. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza DEMODULAZIONE I&Q - 1 Demodulazione I & Q Telecomunicazioni pe l Aeospazio P. Lombado DIET, Univ. di oma La Sapienza DEMODULAZIONE I&Q - 1 Fase di aivo e popagazione I Si considei il segnale eale g Il suddeo segnale è asmesso

Dettagli

IL PRINCIPIO DI INDUZIONE MATEMATICA

IL PRINCIPIO DI INDUZIONE MATEMATICA IL PRINCIPIO DI INDUZIONE MATEMATICA Suppoiamo di vole dimostae ua ceta poposizioe Ρ che dipede da u umeo atuale; l idea che abbiamo dei umei atuali ci suggeisce che: se Ρ è vea pe il umeo 0, e se iolte

Dettagli

L INTERVALLO DI CONFIDENZA

L INTERVALLO DI CONFIDENZA L INTERVALLO DI CONFIDENZA http://www.biostatistica.uich.itit POPOLAZIONE POPOLAZIONE CAMPIONAMENTO CAMPIONE PARAMETRO INFERENZA CAMPIONAMENTO? STIMA CAMPIONE Stimare i Parametri della Popolazioe Itervallo

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova).

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizi di Probabilità e Statistica della 2 a settimaa (Corso di Laurea i Matematica, Uiversità degli Studi di Padova). Esercizio. Sia (Ω, A, P) uo spazio probabilizzato e B A o trascurabile. Dimostrare

Dettagli