Corso di Metodi Matematici per la Finanza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Metodi Matematici per la Finanza"

Transcript

1 Corso di Metodi Matematici per la Finanza Soluzioni degli esercizi su EDO/ED lineari del secondo ordine a coecienti costanti Es. 1 a) x (t) 4x (t) + 4x(t) = 0, x(0) = 1, x (0) = 0 Equazione caratteristica: λ 4λ + 4 = (λ ) = 0; λ 1 = λ =. Soluzione generale: x(t) = c 1 e t + c te t, c 1, c R. Calcoliamo la derivata: x(t) = c 1 e t +c e t +c e t e imponiamo le condizioni iniziali, ottenendo un sistema lineare di equazioni nelle incognite c 1 e c : 1 = x(0) = c 1 + c 0 = x (0) = c 1 + c. Si ha: c 1 = 1, c =. Pertanto la soluzione particolare relativa ai dati iniziali assegnati è: x(t) = e t te t. b) x (t) + 4x (t) + 5x(t) = 0, x(0) = 1, x (0) = 0 Equazione caratteristica: λ + 4λ + 5 = 0; λ 1 = iλ = + i. Soluzione generale: x(t) = e t (c 1 cos t + c sin t), c 1, c R. Calcoliamo la derivata: x(t) = e t (c 1 cos t + c sin t) + e t ( c 1 sin t + c cos t) e imponiamo le condizioni iniziali, ottenendo un sistema lineare di equazioni nelle incognite c 1 e c : 1 = x(0) = c 1 0 = x (0) = c 1 + c. Si ha: c 1 = 1, c =. Pertanto la soluzione particolare relativa ai dati iniziali assegnati è: x(t) = e t (cos t + sin t). Es. a) x(t + ) 3x(t + 1) + x(t) = 0, x(0) = 1, x(1) = Equazione caratteristica: λ 3λ + 1 = 0; λ 1 = 1, λ = 1. Soluzione generale: x(t) = c 1 ( 1 ) t + c, c 1, c R. Imponiamo le condizioni iniziali, ottenendo un sistema lineare di equazioni nelle incognite c 1 e c : 1 = x(0) = c 1 + c = x(1) = c 1 + c. Si ha: c 1 =, c = 3. Pertanto la soluzione particolare relativa ai dati iniziali assegnati è: x(t) = ( 1 ) t

2 b) x(t + ) 4x(t + 1) + 4x(t) = 0, x(0) = x(1) = 1 Equazione caratteristica: λ 4λ + 4 = (λ ) = 0; λ 1 = λ =. Soluzione generale: x(t) = c 1 t + c t t, c 1, c R. Imponiamo le condizioni iniziali, ottenendo un sistema lineare di equazioni nelle incognite c 1 e c : 1 = x(0) = c 1 1 = x(1) = c 1 + c. Si ha: c 1 = 1, c = 1. Pertanto la soluzione particolare relativa ai dati iniziali assegnati è: x(t) = t 1 tt. c) x(t + ) + x(t + 1) + x(t) = 0, x(0) = 0, x(1) = 1 Equazione caratteristica: λ + λ + = 0; λ 1 = 1 i, λ = 1 + i. Si ha: ρ = a + b = pertanto la soluzione generale è x(t) = c 1 ρ t cos(θt) + c ρ t sin(θt) ( ) t ( ) 3 = c 1 cos 4 πt (, θ = arctan b ) + π = π a 4 + π, + c ( ) t ( ) 3 sin 4 πt, c 1, c R. Imponiamo le condizioni iniziali, ottenendo un sistema lineare di equazioni nelle incognite c 1 e c : 0 = x(0) = c 1 ( ) ( ) = x(1) = c 1 cos 4 π + c sin 4 π. Si ha: c 1 = 0, c =. Pertanto la soluzione particolare relativa ai dati iniziali assegnati è: ( ) t ( x(t) = sin 3 4 πt). Es. 3 a) x (t) + 5x (t) + 4x(t) = 3 t Equazione omogenea associata: z (t)+5z (t)+z(t) = 0; equazione caratteristica: λ +5λ+4 = 0; λ 1 = 4, λ = 1; soluzione generale equazione omogenea associata: z(t) = c 1 e 4t + c e t, c 1, c R. Quindi la soluzione generale sarà della forma: x(t) = c 1 e 4t + c e t + x(t), c 1, c R, dove x(t) è una soluzione particolare dell'equazione non omogenea. Dato che il termine noto dell'equazione è f(t) = 3 t = P 1 (t), i.e. un polinomio di grado 1 e il termine in x(t) dell'equazione è non degenere (il coeciente è diverso da 0), allora cerchiamo una soluzione particolare della forma x(t) = at + b, a, b R,

3 i.e. un polinomio di grado 1. Poiché x(t) è una soluzione particolare deve soddisfare l'equazione non omogenea. Allora, dopo aver calcolato le derivate (prima e seconda) di x(t) andiamo a sostituire nell'equazione e riordinando i termini otteniamo: 4at + (5a + 4b) = 3t + 3. Utilizzando il principio di identità dei polinomi, si ha: 4a = 5a + 4b = 3. Otteniamo a = 1, b = Quindi x(t) = 1 t e la soluzione generale è: b) x (t) x(t) = te t x(t) = c 1 e 4t + c e t 1 t , c 1, c R. Equazione omogenea associata: z (t) z(t) = 0; equazione caratteristica: λ 1 = 0; λ 1 = 1, λ = 1; soluzione generale equazione omogenea associata: z(t) = c 1 e t + c e t, c 1, c R. Quindi la soluzione generale sarà della forma: x(t) = c 1 e t + c e t + x(t), c 1, c R, f(t) = te t = P 1 (t)e αt, dove P 1 (t) denota un polinomio di primo grado e α = 1. Poiché α = 1 è radice di molteplicità 1 dell'equazione caratteristica, allora cerchiamo una soluzione particolare della forma x(t) = t 1 (at + b)e t = t(at + b)e t, a, b R. Poiché x(t) è una soluzione particolare deve soddisfare l'equazione non omogenea. calcoliamo le derivate (prima e seconda) di x(t): Allora, x (t) = (at + b)e t + ate t + t(at + b)e t x (t) = ae t + (at + b)e t + ae t + ate t + (at + b)e t + ate t + t(at + b)e t, andiamo a sostituire nell'equazione e semplicando e t e riordinando i termini otteniamo: 4at + a + b = t. Utilizzando il principio di identità dei polinomi, si ha: 4a = 1 a + b = 0. Otteniamo a = 1 4, b = 1 4. Quindi x(t) = t ( 1 4 t 4) 1 e t e la soluzione generale è: ( 1 x(t) = c 1 e t + c e t + t 4 t 1 ) e t, c 1, c R. 4 3

4 c) x (t) x(t) = 3e t cos t Equazione omogenea associata: z (t) z(t) = 0; equazione caratteristica: λ 1 = 0; λ 1 = 1, λ = 1; soluzione generale equazione omogenea associata: z(t) = c 1 e t + c e t, c 1, c R. Quindi la soluzione generale sarà della forma: x(t) = c 1 e t + c e t + x(t), c 1, c R, f(t) = 3e t cos t = P 0 (t)e αt cos (βt), dove P 0 (t) denota un polinomio di grado 0, ovvero una costante e α = e β = 1. Poiché α+iβ = +i non è radice dell'equazione caratteristica, allora cerchiamo una soluzione particolare della forma x(t) = e αt (k cos (βt) + h sin (βt)) = e t (k cos t + h sin t), k, h R. Poiché x(t) è una soluzione particolare deve soddisfare l'equazione non omogenea. calcoliamo le derivate (prima e seconda) di x(t): Allora, x (t) = e t (k cos t + h sin t) + e t ( k sin t + h cos t) x (t) = 4e t (k cos t + h sin t) + 4e t ( k sin t + h cos t) + e t ( k cos t h sin t), andiamo a sostituire nell'equazione e semplicando e t e riordinando i termini otteniamo: da cui (k + 4h) cos t + (k 4h) sin t = 3 cos t, k + 4h = 3 k 4h = 0 e in denitiva: k = 3 10 e h = 3 5. Soluzione particolare: x(t) = ( et 3 10 cos t sin t) Soluzione generale: ( 3 x(t) = c 1 e t + c e t + e t 10 cos t + 3 ) 5 sin t, c 1, c R. Es. 4 a) x(t + ) 3x(t + 1) + x(t) = 3 t Equazione omogenea associata: z (t) 3z (t)+z(t) = 0; equazione caratteristica: λ 3λ+ = 0; λ 1 = 1, λ = ; soluzione generale equazione omogenea associata: z(t) = c 1 1 t + c t = c 1 + c t, c 1, c R. Quindi la soluzione generale sarà della forma: x(t) = c 1 + c t + x(t), c 1, c R, 4

5 f(t) = 3 t = P 0 (t)σ t, dove P 0 (t) denota un polinomio di grado 0, ovvero una costante e σ = 3. Poiché σ = 3 non è radice dell'equazione caratteristica cerchiamo una soluzione particolare della forma x(t) = k3 t, k R. Calcoliamo x(t + 1) = k3 t+1 x(t + ) = k3 t+ e sostituiamo nell'equazione alle dierenze assegnata (essendo una soluzione particolare la deve soddisfare): k3 t+ 3k3 t+1 + k3 t = 3 t. Semplicando 3 t, otteniamo k = 1. Pertanto x(t) = 1 3t e la soluzione generale è: x(t) = c 1 1 t + c t = c 1 + c t + 1 3t, c 1, c R. b) x(t + ) 4x(t + 1) + 4x(t) = t Equazione omogenea associata: z (t) 4z (t)+4z(t) = 0; equazione caratteristica: λ 4λ+4 = 0; λ 1 = λ = ; soluzione generale equazione omogenea associata: z(t) = c 1 t + c t t, c 1, c R. Quindi la soluzione generale sarà della forma: x(t) = c 1 t + c t t + x(t), c 1, c R, f(t) = t = P 0 (t)σ t, dove P 0 (t) denota un polinomio di grado 0, ovvero una costante e σ =. Poiché σ = 3 è radice di molteplicità dell'equazione caratteristica cerchiamo una soluzione particolare della forma Calcoliamo x(t) = kt t, k R. x(t + 1) = k(t + 1) t+1 x(t + ) = k(t + ) t+ e sostituiamo nell'equazione alle dierenze assegnata: k(t + ) t+ 4k(t + 1) t+1 + 4kt t = t. Semplicando t, otteniamo k = 1 8. Pertanto x(t) = 1 8 t e la soluzione generale è: x(t) = c 1 t + c t t t, c 1, c R. 5

Corso di Laurea in Ingegneria dell Energia ANALISI MATEMATICA I. Prova scritta del 9 Giugno 2012 FILA 2

Corso di Laurea in Ingegneria dell Energia ANALISI MATEMATICA I. Prova scritta del 9 Giugno 2012 FILA 2 Corso di Laurea in Ingegneria dell Energia ANALISI MATEMATICA I Prova scritta del 9 Giugno FILA Esporre il procedimento di risoluzione degli esercizi in maniera chiara e leggibile. Allegare il presente

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Samuele MONGODI - 14/08/01 Un equazione differenziale è un equazione che coinvolge una funzione reale u : R R, le sue derivate e la variabile indipendente (u = u(t)). Esempi 1.

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve:

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve: Esercizi di riepilogo sulle curve. Si fornisca una parametrizzazione per le seguenti curve: (a) l ellisse = {(x, y) R x + y = } α(t) = (3 cost, sin t), t [, π]. (b) = {(x, y) R x + y =, x } α(t) = (3 cost,

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018 nalisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 218 1) ia data la funzione f(x, y, z) = (x 2 + y 2 1) 2 + 8 a) tudiare l esistenza di massimi e minimi assoluti della funzione f nella

Dettagli

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0

Dettagli

ẋ + a 0 x = 0 (1) Dimostrazione. Risolvendo la (1) per separazione di variabili, troviamo x(t) = c 0 e a0t (2) φ :R S 1 ẍ + a 1 ẋ + a 0 x = 0 (3)

ẋ + a 0 x = 0 (1) Dimostrazione. Risolvendo la (1) per separazione di variabili, troviamo x(t) = c 0 e a0t (2) φ :R S 1 ẍ + a 1 ẋ + a 0 x = 0 (3) Corso di laurea in Matematica - Anno Accademico 006/007 FM1 - Equazioni dierenziali e meccanica Il metodo della variazione delle costanti (Livia Corsi Il metodo della variazione delle costanti è una tecnica

Dettagli

Equazioni lineari secondo ordine a coefficienti continui. (Soluzione generale omogenea associata) + (Soluzione particolare).

Equazioni lineari secondo ordine a coefficienti continui. (Soluzione generale omogenea associata) + (Soluzione particolare). Equazioni differenziali Equazioni lineari secondo ordine a coefficienti continui Si tratta di equazioni del tipo y + a(ty + b(ty = f(t, t I. La soluzione generale è della forma (Soluzione generale omogenea

Dettagli

11.1. Esercizio. Dato il numero complesso z = 2 + i 2, calcolare z, z, scrivere la rappresentazione trigonometrica di z, calcolare z 8.

11.1. Esercizio. Dato il numero complesso z = 2 + i 2, calcolare z, z, scrivere la rappresentazione trigonometrica di z, calcolare z 8. ANALISI Soluzione esercizi gennaio 0.. Esercizio. Dato il numero complesso z = + i, calcolare z, z, scrivere la rappresentazione trigonometrica di z, calcolare z 8. z = i ( ) + ( ) =, π z = arg(z) = 4

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione.

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione. Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio 218 1) Data la funzione f(, ) = 4 + 4 4 2 7 a) Studiare l esistenza e la natura degli estremi liberi della funzione. b) Trovare il massimo

Dettagli

Equazioni differenziali del secondo ordine a coefficienti costanti Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo

Equazioni differenziali del secondo ordine a coefficienti costanti Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo 9 Lezione Equazioni differenziali del secondo ordine a coefficienti costanti Def. (C) Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo u + au + bu = f(t), dove a e b sono

Dettagli

EQUAZIONI DIFFERENZIALI CAPITOLO 4 EQUAZIONI DIFFERENZIALI LINEARI A COEFFICIENTI COSTANTI (III)

EQUAZIONI DIFFERENZIALI CAPITOLO 4 EQUAZIONI DIFFERENZIALI LINEARI A COEFFICIENTI COSTANTI (III) EQUAZIONI DIFFERENZIALI LINEARI A COEFFICIENTI COSTANTI (III) EQUAZIONI NON OMOGENEE L'equazione, dove f y py qy f nome di equazione non omogenea è una funzione non identicamente nulla, prende il Dimostriamo

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica Pisa, 0 giugno 019 e 1 se 0 Domanda 1 La funzione f : R R definita da 1 se = 0 A) ha minimo ma non ha massimo ) ha massimo ma non

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 21 Giugno 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 21 Giugno 2018 Analisi Matematica II - Ingegneria Meccanica/Energetica - 21 Giugno 218 1 Data la funzione f, y y 2 + y 4 α, α >. a Determinare al variare del parametro α > il dominio di definizione di f. b tudiare al

Dettagli

(a) è chiuso; (b) il punto (1, 1/e) è punto di accumulazione di A; (c) è convesso.

(a) è chiuso; (b) il punto (1, 1/e) è punto di accumulazione di A; (c) è convesso. Cognome Nome Matricola Laurea Civ Amb Gest Inf Eln Tlc Mec Non scrivere qui 1 3 4 5 6 Università degli Studi di Parma Dipartimento di Ingegneria e Architettura Esame di Analisi Matematica Soluzioni AA

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali In un equazione differenziale l incognita da trovare è una funzione, di cui è data, dall equazione, una relazione con le sue derivate (fino ad un certo ordine) e la variabile libera:

Dettagli

7. Equazioni differenziali

7. Equazioni differenziali 18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI Generalità sui sistemi Sia xt, yt la soluzione del problema di Cauchy Posto vt = e xtyt, calcolare v x = 3x x = y = x y = 0 Sia x = 3x y y = x + y Scrivere

Dettagli

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A.2009-2010 - Prof. G.Cupini Equazioni differenziali ordinarie del primo ordine (lineari, a variabili separabili, di Bernoulli) ed

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Algebra Lineare Ingegneria Chimica Anno Accademico 2018/19

Algebra Lineare Ingegneria Chimica Anno Accademico 2018/19 Algebra Lineare Ingegneria Chimica Anno Accademico 08/9 Caboara Esercitazione guidata 5 ottobre 08 Esercizio. Trovare le soluzioni in C dell equazione (z 4 + )(z + iz + i) = 0 Soluzione: Le soluzioni dell

Dettagli

CORSO DI LAUREA in Fisica, aa 2017/18 (canale Pb-Z)

CORSO DI LAUREA in Fisica, aa 2017/18 (canale Pb-Z) CORSO DI LAUREA in Fisica, aa 2017/18 (canale Pb-Z) Equazioni lineari del II ordine a coefficienti costanti: questo è un richiamo dei risultati con altri esempi svolti. Il testo di riferimento è Bramanti

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.:

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.: Compito di Analisi Matematica, Seconda parte, gennaio 9 Tema X COGNOME: NOME: MATR.: Esercizio. ( Determinare al variare di β R la soluzione di y (x + y (x + y(x = e x + x tale che y( = β = y (. ( Al variare

Dettagli

Equazioni differenziali lineari di ordine n

Equazioni differenziali lineari di ordine n Equazioni differenziali lineari di ordine n Si tratta di equazioni del tipo u (n) (t) + a 1 (t)u (n 1) (t) +... + a n 1 (t)u (t) + a n (t)u(t) = f(t), t I, (1) con n intero 2 ed I R intervallo reale, in

Dettagli

Ist. di Fisica Matematica mod. A Quarta esercitazione

Ist. di Fisica Matematica mod. A Quarta esercitazione Ist. di Fisica Matematica mod. A Quarta esercitazione Francesca Arici (farici@sissa.it Domenico Monaco (dmonaco@sissa.it 3 Novemre La numerazione seguita per gli Esercizi è quella delle note del corso.

Dettagli

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2014-15 autore: Giovanni Alberti Equazioni differenziali [versione: 2 gennaio 2015] Richiamo delle nozioni fondamentali

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Capitolo Quattordicesimo EQUAZIONI DIFFERENZIALI

Capitolo Quattordicesimo EQUAZIONI DIFFERENZIALI Capitolo Quattordicesimo EQUAZIONI DIFFERENZIALI. INTRODUZIONE DEFINIZIONE. Sono dette equazioni funzionali quelle equazioni in cui l'incognita è una funzione. ESEMPIO. ) Trovare una funzione f: Â Â tale

Dettagli

y 3y + 2y = 1 + x x 2.

y 3y + 2y = 1 + x x 2. Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 16 gennaio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 16 gennaio 2018 Università di Pisa - orso di Laurea in Informatica Analisi Matematica A Pisa, 6 gennaio 08 omanda La funzione f = e, nel suo insieme di definzione A ha minimo ma non ha massimo ha massimo ma non ha minimo

Dettagli

1. Equazioni differenziali del primo ordine. Si chiamano equazioni differenziali del primo ordine tutte quelle che si possono ricondurre alla forma

1. Equazioni differenziali del primo ordine. Si chiamano equazioni differenziali del primo ordine tutte quelle che si possono ricondurre alla forma appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2015-16 autore: Giovanni Alberti Equazioni differenziali [versione: 20 dicembre 2015] Richiamo delle nozioni

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012 Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9 settembre A) Data la funzione f(x, y) = { xy x se (x, y) (, ) se (x, y) = (, ), i) stabilire se risulta continua

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

Michela Eleuteri ANALISI MATEMATICA. Equazioni differenziali ordinarie del secondo ordine

Michela Eleuteri ANALISI MATEMATICA. Equazioni differenziali ordinarie del secondo ordine Michela Eleuteri ANALISI MATEMATICA Equazioni differenziali ordinarie del secondo ordine A Giulia con la speranza che almeno nella matematica non assomigli al papà Indice 1 Equazioni dierenziali lineari

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ.

Dettagli

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2013-14 autore: Giovanni Alberti Equazioni differenziali [versione: 22-12-2013] Richiamo delle nozioni fondamentali

Dettagli

Prova scritta di Algebra lineare e Geometria- 8 Settembre 2010

Prova scritta di Algebra lineare e Geometria- 8 Settembre 2010 CdL in Ingegneria d(el Recupero Edilizio ed Ambientale - - Ingegneria Edile-Architettura (A-L),(M-Z)- Ingegneria delle Telecomunicazioni - - Ingegneria Informatica (A-F), (R-Z) Prova scritta di Algebra

Dettagli

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 08 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi.

Dettagli

FM1 - Equazioni differenziali e meccanica. Il metodo di variazione delle costanti (Livia Corsi)

FM1 - Equazioni differenziali e meccanica. Il metodo di variazione delle costanti (Livia Corsi) Corso di laurea in Matematica - Anno Accademico 009/010 FM1 - Equazioni differenziali e meccanica Il metodo di variazione delle costanti (Livia Corsi Il metodo di variazione delle costanti è una tecnica

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 30 gennaio 2017

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 30 gennaio 2017 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 30 gennaio 2017 Cognome Nome Numero di matricola Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi. I soli risultati,

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 3 settembre 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 3 settembre 2018 Università di Pisa - orso di Laurea in Informatica nalisi Matematica Pisa, settembre 208 ( cos x sin se x 0 Domanda Sia f : R R definita da f(x = x 0 se x = 0. non esiste la derivata di f in x = 0 f (0

Dettagli

Analisi Matematica 3 - Soluzioni Tutorato 8

Analisi Matematica 3 - Soluzioni Tutorato 8 Analisi Matematica - Soluzioni Tutorato 8 Università degli Studi Roma Tre - Dipartimento di Matematica Docente: Luca Biasco Tutori: Patrizio Caddeo, Jacopo Tenan 9 dicembre 07. Risolvere i seguenti problemi:

Dettagli

Matematica - Prova d esame (09/09/2004)

Matematica - Prova d esame (09/09/2004) Matematica - Prova d esame (9/9/) Università di Verona - Laurea in Biotecnologie AI - A.A. /. Disegnare sul piano di Gauss i numeri z = i, w = i e z iw. Scrivere la forma trigonometrica di w e calcolare

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 27 Gennaio cos x

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 27 Gennaio cos x COGNOME... NOME... Matricola... Corso Prof.... Esame di ANALISI MATEMATICA II - 27 Gennaio 25 A ESERCIZIO. 4 punti) Verificare che la serie 7 2 cos x ) n è convergente per ogni x R, e calcolarne la somma.

Dettagli

ESERCIZI SUI NUMERI COMPLESSI

ESERCIZI SUI NUMERI COMPLESSI ESERCIZI SUI NUMERI COMPLESSI Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = ) 5 + i i) 7 Per risolvere l esercizio proposto applichiamo le formule per il calcolo

Dettagli

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 300607 Cognome e nome: Matricola: es es es3 es4 es es6 es7 somma cr 6 6 6 6 6 - - 30 9cr/6cr 3 30 Determinare, nel punto ( 0, 0, z 0 ), l equazione del piano tangente

Dettagli

Esercizi sulle funzioni f : R 2 R. Soluzioni

Esercizi sulle funzioni f : R 2 R. Soluzioni Esercizi sulle funzioni f : R R Soluzioni. Disegnare il grafico della funzione f : R R, nei casi: (a) f(, ) =. La funzione dipende solo dalla coordinata. In questo caso il grafico rappresenta un piano

Dettagli

Analisi dei Sistemi. Pre-esame 2 Novembre 2002

Analisi dei Sistemi. Pre-esame 2 Novembre 2002 Analisi dei Sistemi Pre-esame 2 Novembre 22 Esercizio Si consideri un sistema descritto dal seguente modello ingresso-uscita dove ϱ e η sono parametri reali costanti (4 punti) Individuare le proprietà

Dettagli

TEMA 1. F (x, y) = e xy + x + y.

TEMA 1. F (x, y) = e xy + x + y. FONDAMENTI DI ANALII MATEMATICA 2 Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 23 gennaio 217 Primo appello Avvertenza: Nella prima

Dettagli

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Gianluca Mereu, Alessandro Giua {gianluca.mereu,giua}@diee.unica.it 07/04/207 Soluzione Esercizio. Si risponda in modo chiaro ed

Dettagli

SOLUZIONI COMPITO del 10/01/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

SOLUZIONI COMPITO del 10/01/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A SOLUZIONI COMPITO del 0/0/209 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio Osserviamo che Pertanto, i = 2e iπ/, + i = 2e iπ/. e 7iπ/8, 2e iπ/ z = = e 2e 7iπ/2 = e 7iπ/8, iπ/ 2 8 2 e iπ/8, e

Dettagli

Istituzioni di Matematica II 3 luglio 2014

Istituzioni di Matematica II 3 luglio 2014 Istituzioni di Matematica II 3 luglio 14 1. i Si dica se la matrice é diagonalizzabile. A = 1 1 1 ii Si studi il carattere della forma quadratica q(, y, z = + y + z Soluzioni. i La matrice é simmetrica

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Esame scritto di fisica moderna

Esame scritto di fisica moderna Esame scritto di fisica moderna Traccia di soluzione 4 luglio 01 Esercizio 1. hamiltoniana data è quella di una buca di potenziale infinita, le cui autofunzioni sono date da due famiglie, dispari ψ n x

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica 2 Differenziabilità per funzioni di due variabili Differenziabilità per funzioni di due variabili CCS Ingegneria Meccanica e Ingegneria Chimica 1 / 26 Differenziabilitá Data la funzione

Dettagli

Addendum equazioni differenziali

Addendum equazioni differenziali é Dispense per Matematica - AA 2015-2016 Addendum equazioni differenziali Decio Levi, Valentino Lacquaniti levi@roma3.infn.it Corso di Laurea in Ottica ed Optometria Dipartimento di Scienze 1 Soluzione

Dettagli

Analisi Matematica 3 - Soluzioni Tutorato 7

Analisi Matematica 3 - Soluzioni Tutorato 7 Analisi Matematica 3 - Soluzioni Tutorato 7 Università degli Studi Roma Tre - Dipartimento di Matematica Docente: Luca Biasco Tutori: Patrizio Caddeo, Jacopo Tenan dicembre 07 Equazioni lineari a coefficienti

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

Alcuni esercizi sulle equazioni di erenziali

Alcuni esercizi sulle equazioni di erenziali Alcuni esercizi sulle equazioni di erenziali Calcolo dell integrale generale Per ciascuna delle seguenti equazioni di erenziali calcolare l insieme di tutte le possibili soluzioni. SUGGERIMENTO: Ricordatevi

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Esercizio 1 Analisi Matematica 2 12 gennaio 2017 Si consideri la curva piana γ di parametrizzazione α(t) = (sin(t), sin(2t)), t [0, π]. 1. Si disegni (approssimativamente) il suo sostegno, specificando

Dettagli

AM210 - Analisi Matematica 3: Soluzioni Tutorato 7

AM210 - Analisi Matematica 3: Soluzioni Tutorato 7 AM10 - Analisi Matematica 3: Soluzioni Tutorato 7 Università degli Studi Roma Tre - Dipartimento di Matematica Docente: Luca Biasco Tutori: Patrizio Caddeo, Davide Ciaccia Dobbiamo risolvere equazioni

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 21/211 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni dell'esame scritto del 1/6/211 1. Sia dato

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1 Secondo compitino e primo appello, gennaio 7 Testi Prima parte, gruppo.. Determinare l insieme di definizione della funzione arcsin(e ).. Determinare lo sviluppo di Taylor di ordine 4 (in ) della funzione

Dettagli

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2018 Soluzioni Scritto. f(x) = ( ln 1 + x + 1 ) =

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2018 Soluzioni Scritto. f(x) = ( ln 1 + x + 1 ) = Calcolo I - Corso di Laurea in Fisica - 8 Giugno 08 Soluzioni Scritto ) Data la funzione fx) = ln + x + ) a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; b) Calcolare, se esistono,

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018)

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Esercizio 1 Si consideri l insieme Esercizi sulla funzione implicita e superfici Z = {(x, y) R 2 2y xe y

Dettagli

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 7 Tema A Cognome e Nome Matr... Disegnare un grafico approssimativo della funzione f() log( ). Indicare sul grafico

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

y = cos x y = (y ) 2 + c : giustifichino le due affermazioni. y = y y = y 2 y = y(1 y) y = xy Applicazioni Equazioni delle cinetica chimica:

y = cos x y = (y ) 2 + c : giustifichino le due affermazioni. y = y y = y 2 y = y(1 y) y = xy Applicazioni Equazioni delle cinetica chimica: Corso di laurea in Chimica Industriale Matematica II A.A. 2015/2016 Argomenti delle lezioni Giovedí 3 marzo - 2 ore. Richiami sulle equazioni e sui metodi utilizzati nel risolverle. Equazioni differenziali.

Dettagli

Fondamenti di ALGEBRA LINEARE E GEOMETRIA

Fondamenti di ALGEBRA LINEARE E GEOMETRIA Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 7 Capitolo

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari Sito Personale di Ettore Limoli Lezioni di Matematica Prof. Ettore Limoli Sommario Lezioni di Matematica... Equazioni differenziali lineari... Generalità... Equazione differenziale lineare omogenea del

Dettagli

Analisi II. Foglio di esercizi n.2 10/10/2017 (Aggiornamento del 17/10/2017)

Analisi II. Foglio di esercizi n.2 10/10/2017 (Aggiornamento del 17/10/2017) Analisi II Foglio di esercizi n 10/10/017 (Aggiornamento del 17/10/017) Esercizi su massimi e minimi liberi con studi aggiuntivi 1 Siano K R n compatto e Ω R n un aperto contenente K Si consideri f C 1

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 00/0 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni all'esame scritto del 3/0/0 0 a 0 a. Dato

Dettagli

5 Un applicazione: le matrici di rotazione

5 Un applicazione: le matrici di rotazione 5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCIZI SULLE EQUAZIONI DIFFERENZIALI 1. Generalità 1.1. Verifica delle soluzioni. Verificare se le funzioni date sono soluzioni delle equazioni differenziali. xy = 2y, y = 5x 2. y = x 2 + y 2, y = 1

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 15 gennaio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 15 gennaio 2018 Testi 1 Secondo compitino e primo appello, 5 gennaio 8 Testi Prima parte, gruppo.. Calcolare la velocità (intesa come vettore) e il modulo della velocità di un punto che si muove nel piano con la seguente legge

Dettagli

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico 1. Dato il problema ai valori iniziali f (t) = f(t) + cos t f(0) = 1, (ii) determinarne la soluzione numerica per 0 t 2π utilizzando il metodo di 2. Calcolare analiticamente e numericamente la media della

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Soluzioni degli esercizi sulle equazioni alle differenze lineari

Soluzioni degli esercizi sulle equazioni alle differenze lineari Soluzioni degli esercizi sulle equazioni alle differenze lineari Bernardi Mauro Sapienza, University of Rome MEMOTEF Department April, 7th 2013 Mauro Bernardi (MEMOTEF) Soluzioni degli esercizi sulle equazioni

Dettagli

Richiami sulle Equazioni Differenziali

Richiami sulle Equazioni Differenziali Richiami sulle Equazioni Differenziali Ing. Alessio Merola Laboratorio di Biomeccatronica Università degli Studi Magna Græcia di Catanzaro II anno I semestre CdL in Informatica e Biomedica Generalità sulle

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 6 GIUGNO 7 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNTEGGIO: 3/3) Facendo uso delle proprietà della matrici di Pauli, si calcoli

Dettagli

Modelli lineari del second ordine

Modelli lineari del second ordine 1 Peccati, Salsa, Squellati, Matematica per l economia e l azienda, EGEA 2004 Modelli lineari del second ordine Modelli discreti Partiamo da un esempio d interesse economico per capire come problemi di

Dettagli

Alcune primitive. Francesco Leonetti (1) 5 giugno 2009

Alcune primitive. Francesco Leonetti (1) 5 giugno 2009 Alcune primitive Francesco Leonetti ) 5 giugno 009 Introduzione La risoluzione di alcune equazioni differenziali ci ha mostrato come sia importante la capacità di trovare le primitive di funzioni assegnate.

Dettagli

Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/01/2015

Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/01/2015 Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/0/205 (9 crediti) Esercizio. Si verifichi se nel punto (0, 0) la funzione 3 ye y 2 /x 4 se x 0 f (x, y) = 0 se x = 0, è

Dettagli

Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011)

Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011) Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011) ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola

Dettagli

Esercizi di ripasso. 17 Dicembre Federico Lastaria. Analisi e Geometria 1. Esercizi di ripasso (1) 1/10

Esercizi di ripasso. 17 Dicembre Federico Lastaria. Analisi e Geometria 1. Esercizi di ripasso (1) 1/10 Esercizi di ripasso 17 Dicembre 2018 Federico Lastaria. Analisi e Geometria 1. Esercizi di ripasso (1) 1/10 1 Trovare l integrale generale dell equazione: y + 1 y = 0, x ( 1, + ) (1) x + 1 2 Verificare,

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 6 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti

Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti Matrice esponenziale Sia A R n,n una matrice quadrata n n Per definire l esponenziale di A, prendiamo spunto dall identità e

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI prof. Vincenzo LIPPIELLO A.A. 05 06 Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL 5 FEBBRAIO 06

Dettagli