LABORATORIO DI CHIMICA GENERALE E INORGANICA

Documenti analoghi
LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA

Lo stato gassoso e le caratteristiche dei gas

Definiamo Entalpia la funzione: DH = DU + PDV. Variando lo stato del sistema possiamo misurare la variazione di entalpia: DU = Q - PDV.

Lezione di Combustione

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Stati di aggregazione della materia unità 2, modulo A del libro

LA MOLE LA MOLE 2.A PRE-REQUISITI 2.3 FORMULE E COMPOSIZIONE 2.B PRE-TEST

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA

CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà

Selezione test GIOCHI DELLA CHIMICA

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

I GAS GAS IDEALI. PV=nRT. Pressione Volume numero di moli Temperatura Costante dei gas. P V n T R. n, T= cost Legge di Boyle

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione

Miscela omogenea monofasica i cui costituenti non è possibile separare meccanicamente

Stati di aggregazione della materia

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

SOLUZIONI COMPITO DI CHIMICA DEL

LE SOLUZIONI 1.molarità

I principio della termodinamica: E tot = 0 = E sistema + E ambiente. E=q+w

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO

METODI DI CONVERSIONE FRA MISURE

UNITA 3 COMBUSTIONE, CARBURANTI, LUBRIFICANTI

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1

STATO LIQUIDO. Si definisce tensione superficiale (γ) il lavoro che bisogna fare per aumentare di 1 cm 2 la superficie del liquido.

RICHIAMI DI TERMOCHIMICA

Dipartimento Scientifico-Tecnologico

MASSE ATOMICHE. 1,000 g di idrogeno reagiscono con 7,9367 g di ossigeno massa atomica ossigeno=2 x 7,9367=15,873 g (relativa all'idrogeno)

Gas perfetti e sue variabili

LABORATORIO DI CHIMICA GENERALE E INORGANICA

Ripasso sulla temperatura, i gas perfetti e il calore

K [H 2 O] 2 = K w = [H 3 O + ][OH ]

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi

DENSITA La densità è una grandezza fisica che indica la massa, di una sostanza o di un corpo, contenuta nell unità di volume; è data dal rapporto:

L EQUILIBRIO CHIMICO

SISTEMA BINARIO DI DUE LIQUIDI VOLATILI TOTALMENTE MISCIBILI che seguono Raoult

COMPITO DI CHIMICA DEL

IL NUCLEO ATOMICO E LA MOLE

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 2 LO STATO GASSOSO

Leggi dei Gas. 2 MnO H 2 O 2 2 MnO O OH H 2 O (Mn: ; no = +3). 2 = +6e - (O: -1 0 ; no = -1; x 2 = -2).

I GAS POSSONO ESSERE COMPRESSI.

Fisiologia della Respirazione 1.Introduzione-Leggi dei Gas. FGE aa

13 La temperatura - 8. Il gas perfetto

Dipendenza della Solubilità dalla temperatura

6d. EQUILIBRI IONICI IN SOLUZIONE II: EQUILIBRI ACIDO-BASE parte seconda

Liquidi, Solidi e Forze Intermolecolari

L E L E G G I D E I G A S P A R T E I

Chimica. Ingegneria Meccanica, Elettrica e Civile Simulazione d'esame

BILANCI DI ENERGIA. Capitolo 2 pag 70

Leggi dei gas. PV = n RT SISTEMI DI PARTICELLE NON INTERAGENTI. perché le forze tra le molecole sono differenti. Gas perfetti o gas ideali

Ke = ] = Kw = 10 = 10-7 moli/litro, ed in base a quanto avevamo affermato in precedenza: [H + ] = [OH - ] = 10-7 moli/litro.

Università telematica Guglielmo Marconi

Esercizi sui Motori a Combustione Interna

TEORIA CINETICA DEI GAS

Quesiti e problemi. 12 Quali sono i fattori che influenzano la solubilità di. 13 Quali sono le differenze fra le solubilità di un solido

I TEST DI CHIMICA - INGEGNERIA DELL INFORMAZIONE AA 04/05

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA

Concetti fondamentali su acidità e basicità delle soluzioni acquose

CHIMICA GENERALE MODULO

LEZIONE 1. Materia: Proprietà e Misura

Equazioni dierenziali ordinarie del prim'ordine

Esercitazione 8. Gli equilibri acido-base: Ka, Kb. L autoprotolisi dell acqua. Misura del ph Soluzioni tampone 1,

CONCENTRAZIONE DELLE SOLUZIONI. Solvente: normalmente liquido in eccesso Soluto: gas, liquido o solido, normalmente in difetto

IL SISTEMA INTERNAZIONALE DI MISURA

Per la cinetica del 1 ordine si ha:

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Università telematica Guglielmo Marconi. Chimica

1 atm = 760 mm Hg = 760 torr = N/m 2 = Pa. Anodo = Polo Positivo Anione = Ione Negativo. Catodo = Polo Negativo Catione = Ione Positivo

Applicazioni della Termochimica: Combustioni

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

Acidi e basi. HCl H + + Cl - (acido cloridrico) NaOH Na + + OH - (idrossido di sodio; soda caustica)

Quesiti e problemi. 10 Un gas viene compresso a temperatura costante. 11 Un cilindro con un pistone ha un volume di 250 ml. v f. v f.

Esercizi di Chimica (2 a prova in itinere)

p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V

Scale aeree ad inclinazione variabile

L H 2 O nelle cellule vegetali e

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica

LEZIONE 12. Idrolisi salina Indicatori di ph Soluzioni tampone Titolazioni acido-base IDROLISI SALINA. Scaricato da Sunhope.it

Capitolo 7. Le soluzioni

Complementi di Termologia. I parte

affidati a VEM servizio chiavi in mano

Equilibri di precipitazione

Elettrolita forte = specie chimica che in soluzione si dissocia completamente (l equilibrio di dissociazione è completamente spostato verso destra)

DEFINIZIONE ACIDO/BASE SECONDO BRONSTED-LOWRY

REAZIONI ESOTERMICHE ED ENDOTERMICHE

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

Esercizi risolti di Chimica

Esame di Chimica Generale (M-Z) A.A (25 gennaio 2012)

Il trasporto di materia. Principi di Ingegneria Chimica Ambientale

See more about

Esercitazione X - Legge dei gas perfetti e trasformazioni

Chimica Fisica I. a.a. 2012/2013 S. Casassa

MACCHINE DA VERIFICARE (verifiche successive alla prima che è di competenza dell INAIL)

La combustione ed i combustibili

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Compito d esame di CHIMICA-FISICA. Appello del 25/3/2004

EQUILIBRI ACIDO-BASE

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Università degli Studi di Pavia Facoltà di Medicina e Chirurgia

ENERGIA NELLE REAZIONI CHIMICHE

Transcript:

UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli Anno Accademico 2009-2010

CAPITOLO 7 L equilibrio chimico 1

L equilibrio chimico e la costante di equilibrio Tutte le reazioni chimiche procedono fino a un punto in cui raggiungono uno stato di equilibrio in cui il numero delle molecole dei reagenti che si trasformano nei prodotti nell unità di tempo è uguale al numero di molecole di reagenti che si formano di nuovo a partire dai prodotti (equilibrio dinamico). Per conseguenza, quando una reazione ha raggiunto il suo stato di equilibrio, le quantità dei reagenti e dei prodotti di reazione non variano più col tempo. Supponiamo una reazione in fase gas: A + B diretta inversa C + D La reazione procede fino a che la velocità diretta non diventa uguale a quella della reazione inversa (n.b. velocità diversa da 0). Supponiamo che entrambe le reazioni procedano attraverso un unico urto tra due molecole (con diverse probabilità di successo, cioè alcuni urti non producono la reazione). Se abbiamo in un dato momento un certo numero di particelle di A e di B in un volume misurato, abbiamo una determinata probabilità di urti tra A e B. Supponiamo di raddoppiare la quantità di A. Il numero di urti raddoppierà, quindi possiamo dire che la velocità della reazione diretta sarà proporzionale al numero di particelle di A in quel volume (cioè alla sua concentrazione). Lo stesso vale per B. Lo stesso vale per la velocità della reazione inversa: La velocità globale è data da: 2

All equilibrio la velocità globale del processo sarà zero (velocità diretta = velocità inversa): Se A = B, cioè nel caso di reazioni tra due molecole uguali, varrà [A] 2. In generale, per la reazione: a A + b B diretta inversa c C + d D N.B.: quello appena visto è un trattamento statistico cinetico, che non sempre è corretto in effetti vale solo se la reazione procede in un unico stadio. Il valore di K eq rimane costante a temperatura costante, anche se esistono infiniti valori delle concentrazioni che soddisfano l equazione riportata sopra, ossia ci sono infiniti stati o posizioni di equilibrio. Dimensionalità delle costanti di equilibrio La costante di equilibrio espressa in funzione della concentrazione delle varie (c + d) (a + b) specie, K c, è espressa in (mol/l) Quando v = c + d a - b = 0 è un numero puro. v rappresenta la variazione del numero di molecole nella reazione. 3

La costante di equilibrio espressa in funzione della pressione parziale delle varie specie, K p, è espressa in (atm) v Lo stesso vale per la costante di equilibrio espressa in funzione della frazione molare delle varie specie, K, e per la costante di equilibrio espressa in funzione del numero di moli delle varie specie, K n. Tuttavia in termodinamica la K o, costante di equilibrio standard o costante di equilibrio termodinamica, è un numero adimensionale, che deriva dall equazione: dove è la variazione di energia libera standard di una reazione. L argomento di un logaritmo è infatti sempre un numero puro. Lo stesso risultato lo ottengo anche esprimendo la costante di equilibrio come: In termodinamica tutte le grandezze sono riferite ad uno stato standard: le concentrazioni sono per esempio sempre divise per la concentrazione standard, persa per convenzione uguale a 1 mol/dm 3. La scelta del valore 1 mol/dm 3 per la concentrazione standard fa si che la K o sia numericamente uguale alla K c : Per le pressioni invece lo stato standard preso come riferimento è 1 atm: 4

Di fatto, essendo = 1 atm, anche in questo caso i valori numerici della costante termodinamica e della K p coincidono, se le pressioni sono espresse in atmosfere. N.B. in realtà la IUPAC dal 1982 raccomanda l uso di 1 bar come stato standard della pressione! Esempio di reazione gassosa 2 NO 2 N 2 O 4 A 25 C vale: Se inizialmente P N2O4 = 0,200 atm e P NO2 = 0,300 atm, che cosa succederà? Supponiamo di avere un volume tale che inizialmente si abbiano 0,200 mol di N 2 O 4 e 0,300 mol di NO 2 con una P tot = 0,500 atm. La reazione procederà fino al raggiungimento dell equilibrio. Chiamo x il numero di moli di N 2 O 4 formate e 2x quelle di NO 2 consumate: c i) 0,300 0,200 v) - 2x + x eq) 0,300-2x 0,200 + x alla fine, se la reazione procede verso destra, le moli diminuiranno e avrò: (0,500 x) mol. Alla fine la pressione totale, P f, sarà data da: 5

Che deriva dall equazione di stato dei gas, PV = nrt, per RT/V = costante. Sostituendo i valori numerici, posso scrivere. Da cui: Ricaviamo le frazioni molari dei due rettivi: Risolvendo ottengo: 6

Controlliamo: 7

Considerazioni sulla reazione in fase gas Consideriamo ancora le reazione: 2 NO 2 N 2 O 4 A T e V costanti, la P parziale di ogni gas è proporzionale al numero di moli: per esempio, se partissi da un recipiente da 1 L che contiene 2 atm di NO 2 e la reazione presa in considerazione andasse a completezza, la pressione finale sarebbe di 1 atm. Analogamente: Da cui, se: 8

Relazioni tra le K a A + b B diretta inversa c C + d D E quindi: Analogamente: Per una miscela gassosa: Se v = 0, tutte le K hanno lo stesso valore numerico! 9

Relazioni tra le K Come si può ricavare dalla tabella, mentre K c e K p dipendono solo dalla temperatura, K dipende anche dalla P tot ; K n dipende anche dalla P tot e dalla n, dove nella sommatoria delle moli non sono comprese le moli di eventuali gas inerti. 10

Grado di dissociazione Quando si ha una reazione di dissociazione, per esempio. PCl 5 Si definisce grado di dissociazione dissociata all equilibrio. PCl 3 + Cl 2 b la frazione di mole del reagente che si è x 100 è la dissociazione percentuale del reagente. Il grado di dissociazione diminuisce all aumentare della concentrazione del reagente che si dissocia. 11

Lo spostamento dell equilibrio: principio di Le Châtelier Quando un sistema all equilibrio viene perturbato esso tende a reagire modificandosi in modo da neutralizzare in parte la variazione sopravvenuta. Se un sistema che si trova all equilibrio è soggetto a variazioni esterne (cambiamento di uno dei parametri T, P, V, c) che determinano lo stato di equilibrio, ha luogo quella reazione che sposta l equilibro nella direzione che tende ad annullare l effetto della variazione considerata (principio di Le Châtelier). Questo principio permette di predire qualitativamente in quale senso si sposta una reazione: 1) Quando si alza la temperatura in un sistema all equilibrio, l equilibrio viene spostato nella direzione che assorbe calore. Esempio: CO (g) + 2 H 2(g) CH 3 OH (g) H = - 22 kcal/mol T T K p K p 2) Quando si alza la pressione in un sistema all equilibrio, l equilibrio viene spostato nella direzione in cui si ha il minimo volume possibile, ossia si ha il minor numero di moli gassose (le moli di liquido e di solido sono ininfluenti). Esempio: CO (g) + 2 H 2(g) CH 3 OH (g) P P K p = cost K p = cost 12

3) le reazioni che avvengono in soluzione risentono delle variazioni delle quantità di solvente nello stesso modo in cui le reazioni che avvengono in fase gassosa risentono delle variazioni di pressione. Quando aumenta il solvente (diluizione) in un sistema all equilibrio, l equilibrio viene spostato nella direzione in cui si ha il maggior numero di moli disciolte. Esempio: 2 CH 3 COOH (CH 3 COOH) 2 V soluz V soluz K c = cost K c = cost 4) quando aumenta la concentrazione di un componente in un sistema all equilibrio, l equilibrio viene spostato nella direzione in cui si ha il consumo della sostanza aggiunta. Esempio: H 2 + I 2 2 HI H 2 H 2 K c = cost K c = cost 5) I catalizzatori accelerano in egual modo la reazione diretta e quella inversa; conseguentemente accelerano il raggiungimento dell equilibrio senza alterarne la posizione, ossia senza influenzare le concentrazioni finali. 13

Equilibrio: trattazione qualitativa Esempio: CO + 2 H 2 CH 3 OH Nelle condizioni iniziali varrà: Immaginiamo di raddoppiare la pressione totale; possiamo supporre che dopo un tempo molto breve tutte le pressioni parziali siano raddoppiate e solo dopo si abbia uno spostamento dell equilibrio. Cioè: Abbiamo aumentato il denominatore più di quanto non abbiamo aumentato il numeratore. Per ristabilire l equilibrio bisogna che parte di CO e H 2 si trasformino in CH 3 OH. Esercizio (Es. 4 pag 256 Sacco Freni) Una miscela contenente il 78% di O 2 e il 22% di SO 2 viene posta a reagire, in presenza di un catalizzatore, alla pressione di 3,0 atm, fino al raggiungimento dell equilibrio. Sapendo che il 90% della SO 2 viene ossidata a SO 3, calcolare la K p della reazione: 2 SO 2 + O 2 2 SO 3 i) 0,22 0,78 - supponendo di v) -2 x - x + 2 x partire da 1 mol eq) 0,22 2 x 0,78 x 2 x 14

Ma se il 90% della SO 2 viene ossidata a SO 3 (rapporto molare 1:1) io posso trovare il valore a cui corrisponde 2 x: All equilibrio: N.B. la P è costante, la T è costante, variano le moli ed il volume! All equilibrio quindi: N.B. se scrivessimo la reazione come: SO 2 + 1/ 2 O 2 SO 3 La K p sarebbe la radice quadrata di quella ottenuta prima. 15

Esercizio (Es. 5 pag 256 Sacco Freni) Per la reazione endotermica: N 2 (g) + O 2 (g) 2 NO (g) H = 43,3 kcal a T = 2000 C (P rif = 1 atm), la K eq vale 6,2 10-4. a) determinare come evolve il sistema costituita da 10-3 mol di N 2, 0,2 mol di O 2, 3 10-4 mol di NO, posto in un recipiente da 1 L e portato a T = 2000 C b) partendo da quantità stechiometriche di N 2 e O 2 calcolare inoltre le concentrazioni all equilibrio delle varie specie a T = 2000 C. a) N 2 (g) + O 2 (g) 2 NO (g) i) 10-3 0,2 3 10-4 v) -x - x + 2 x eq) 10-3 x 0,2 x 3 10-4 +2 x Poiché v = 0 le 4 costanti di equilibrio coincidono: Quindi: 16

Il numero negativo è da scartare, in quanto se lo tenessi in considerazione si dissocerebbero più moli di NO di quante non ne avessi inizialmente. Ha senso quindi solo la radice positiva, il che significa che il sistema evolve verso la formazione di NO Facciamo un controllo della validità della radice ottenuta: 17

b) supponiamo di avere 1 mole di N 2 e 1 mole di O 2 iniziali. N 2 (g) + O 2 (g) 2 NO (g) i) 1 1 - v) -x - x + 2 x eq) 1 x 1 x 2 x sostituendo nella K eq : Da cui: le concentrazioni all equilibrio possiamo esprimerle come: [NO] = 2,46 10-2 mol /L [O 2 ] = [N 2 ] = 0,988 mol /L Scarto il valore negativo perché impossibile 18

Esercizio (Es. 3 pag 264 Sacco Freni) Si pone a reagire una miscela equimolare di CO e vapore di H 2 O ad una determinata T. sapendo che a tale temperatura la reazione CO + H 2 O CO 2 + H 2 water gas shift ha una K p = 3,26, calcolare la composizione % (vol) della miscela all equilibrio. Possiamo supporre di partire da 1 mole di CO e 1 mole di H 2 O: CO + H 2 O CO 2 + H 2 i) 1 1 - - v) - x - x + x + x eq) 1 x 1 x x x Poiché v = 0 le 4 costanti di equilibrio coincidono: Quindi. Devo scartare il valore della seconda radice poiché non ha senso (avrei dei valori di moli negativi!). 19

All equilibrio ho quindi: Il fatto che le moli iniziali siano uguali alle moli finali era implicito nell espressione v = 0. Calcoliamo le %: Esercizio (problema dato a un compito il 5/7/2000) In un recipiente indeformabile del volume di 200 ml si introduce una certa quantità di Br 2(g). si riscalda il recipiente alla temperatura di 1558 K e si lascia instaurare l equilibrio: Br 2(g) 2 Br (g) a) sapendo che a questa temperatura la K c della reazione è pari a 1,0 10-3 e che, all equilibrio, sono presenti 0,080 moli di Br 2(g), calcolare quante moli di Br 2(g) erano state introdotte inizialmente nel recipiente. b) calcolare inoltre le pressioni parziali delle specie all equilibrio ed il valore della K p. 20

a) Chiamo x le moli di Br 2 iniziali: Br 2(g) 2 Br (g) i) x - - v) - y + 2 y eq) x y 2 y Le moli iniziali di Br 2 sono: b) dalla PV = nrt, ricaviamo: Oppure: 21

Esercizio (problema dato a un compito il 14/4/2000) Un reattore indeformabile del volume di 1,0 L contiene 0,050 mol di SO 2 Cl 2(g) e una quantità imprecisata di Cl 2(g). Sapendo che la costante di equilibrio, K p, per la reazione: SO 2 Cl 2(g) SO 2(g) + Cl 2(g) è pari a 2,4 atm a 300 K e che la pressione parziale di SO 2 Cl 2, ad equilibrio raggiunto, è pari a 1,0 atm, calcolare la pressione iniziale di Cl 2 nel reattore. (Le pressioni dei componenti gassosi sono misurate o calcolate a 300 K). Inizialmente 0,050 mol di SO 2 Cl 2 corrispondono ad una pressione di: SO 2 Cl 2(g) SO 2(g) + Cl 2(g) i) 1,23 - - x v) - y + y + y eq) 1,23 y y x + y noi sappiamo che 1,23 y = 1 atm; da cui y = 0,23 atm 22