Il concetto delle equazioni reciproche risale ad A. De Moivre ( ) ed il nome è dovuto a L. Euler ( ).

Documenti analoghi
LE EQUAZIONI DI SECONDO GRADO

Equazioni di grado superiore al secondo

DIPARTIMENTO DI MATEMATICA A.S EQUAZIONI DI GRADO SUPERIORE AL 2

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

Un polinomio è un espressione algebrica data dalla somma di più monomi.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

3. EQUAZIONI DI GRADO SUPERIORE AL SECONDO

3. EQUAZIONI DI GRADO SUPERIORE AL SECONDO

1 Fattorizzazione di polinomi

TEOREMA DEL RESTO E REGOLA DI RUFFINI

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

Equazioni di secondo grado

Equazioni di Primo grado

3 Equazioni e disequazioni.

Anno 2. Equazioni di secondo grado

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

CONTENUTI. Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti. I grado II grado

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

CORSO ZERO DI MATEMATICA

raggruppiamo il quadrato di binomio dividiamo per 0 effettuiamo i calcoli a secondo membro Distinguiamo i tre casi: 2 ± 2 ; 2 = 0 ; + si ottiene, =

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Precorso di Matematica

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

1 Disquazioni di primo grado

Equazioni di 2 grado

1 Ampliamento del piano e coordinate omogenee

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

ESERCIZI SUI NUMERI COMPLESSI

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Radicali. 2.1 Radici. Il simbolo

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m

Esercizi svolti sugli integrali

Anno 1. Divisione fra polinomi

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

Equazioni di primo grado ad un incognita

EQUAZIONI. 2 x 1. = 1; x 2

Esercizi svolti sui sistemi lineari

Geometria analitica del piano pag 12 Adolfo Scimone

EQUAZIONI E SISTEMI DI 2 GRADO

l articolo Problema delle tangenti e delle aree. 1

Definizione 1.6 (di grado di una equazione) Si dice grado di una equazione intera ridotta in forma normale il massimo esponente dell incognita.

ESERCIZI SULLE DISEQUAZIONI I

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Scomposizione in fattori

Prodotti Notevoli. 1. Prodotto della somma di due monomi per la loro differenza

Anno 1. m.c.m. fra polinomi

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

CORSO ZERO DI MATEMATICA

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

Appunti sulla circonferenza

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Le equazioni di I grado

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Equazioni frazionarie e letterali

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Appunti ed esercizi sulle coniche

Espressioni algebriche: espressioni razionali

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

I sistemi di equazioni di primo grado

SISTEMI LINEARI MATRICI E SISTEMI 1

Equazioni di grado superiore al II

LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09. Scomposizioni in fattori dei polinomi. Frazioni algebriche

Equazioni algebriche di terzo grado: ricerca delle soluzioni

Chi non risolve esercizi non impara la matematica.

Dipendenza e indipendenza lineare (senza il concetto di rango)

Sistemi lineari - Parte Seconda - Esercizi

Le equazioni. 2x 3 = x + 1. Definizione e caratteristiche

z =[a 4 a 3 a 2 a 1 a 0 ] 10

04 - Numeri Complessi

Equazioni di I e II grado

1 Il polinomio minimo.

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Richiami di Matematica - Esercizi 21/98

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Equazioni intere...1 Equazioni fratte...3 Equazioni irrazionali...4 Equazioni in valore assoluto...5

EQUAZIONI DI PRIMO GRADO

Esercizi sui sistemi di equazioni lineari.

Equazione irrazionale

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona

Prontuario degli argomenti di Algebra

MATEMATICA LA CIRCONFERENZA GSCATULLO

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

Equazioni di 2 grado

Esercizi sulle radici

Anno 3 Equazione dell'ellisse

Geometria BIAR Esercizi 2

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

CALCOLO DEGLI INTEGRALI

UNITÀ DIDATTICA 5 LA RETTA

Transcript:

Il concetto delle equazioni reciproche risale ad A. De Moivre (1667-1754) ed il nome è dovuto a L. Euler (1707-1783). Girard nel 1629 enunciò, e Gauss poi dimostrò rigorosamente nel 1799, che un equazione di grado n ha n radici (nell insieme dei numeri complessi). Poiché la conoscenza del metodo di risoluzione di nuovi tipi di equazioni, consente la risoluzione delle equazioni determina il contemporaneo progredire degli studi sulla risoluzione dei sistemi. Un equazione razionale intera, ridotta a forma normale, si dice reciproca se i suoi coefficienti equidistanti dagli estremi sono uguali od opposti; se sono uguali l equazione si dice reciproca di prima specie, se sono opposti si dice reciproca di seconda specie. Ad esempio l equazione 3x 3 +13x 2 +13x+3=0 è reciproca di prima specie. L equazione: 1 / 21

2x 3-6x 2 +6x-2=0 è reciproca di seconda specie. Alcune delle classi di equivalenza di cui ci occuperemo sono del tipo: ax 3 +bx 2 +bx+a=0 ax 4 +bx 3 +cx 2 +bx+a=0 ax 5 +bx 4 +cx 3 +cx 2 +bx+a=0 Queste sono le equazioni reciproche di prima specie, rispettivamente di terzo, quarto e quinto grado, a coefficienti reali, mentre le analoghe di seconda specie sono ax 3 +bx 2 -bx+a=0 ax 4 +bx 3 bx-a=0 ax 5 +bx 4 +cx 3 -cx 2 -bx-a=0 Il nome di reciproche a queste equazioni deriva dal fatto che se una di esse ha come radice un numero a, anche il reciproco di quel numero, cioè 1/a, è radice dell equazione. Ciò si potrebbe facilmente dimostrare, ma sarà sufficiente il constatarlo nella risoluzione di queste equazioni. 2 / 21

Osserviamo che: Ogni equazione reciproca di grado dispari ha come radice 1 se è di prima specie e +1 se è di seconda specie. Ogni equazione reciproca di grado pari e di seconda specie ha come radici 1 e +1. Esaminiamo separatamente i vari casi di risoluzione delle equazioni reciproche. Risoluzione delle equazioni reciproche di prima specie e di terzo grado Una equazione reciproca di terzo grado e quindi di grado dispari, ha sempre come radice: -1 se è di prima specie +1 se è di seconda specie Ed allora, essendo in ogni caso nota una radice, l equazione si può sempre scindere in due: una di primo grado, avente come radice la radice nota, e l altra di secondo grado avente come radici le due rimanenti radici dell equazione data. Consideriamo l equazione: ax 3 +bx 2 +bx+a=0 3 / 21

Avvalendoci della regola di Ruffini scomponiamo nel seguente modo: Quindi: ax 3 + bx 2 + bx + a = (x + 1) [ax 2 (a b)x + a] = 0 e otteniamo: x 1 = -1 Basandoci su queste formule risolutive possiamo avendo in input i valori di a, b e c generare un elaborato in linguaggio Visual Basic che ci consente di giungere al calcolo dell equazione reciproca proposta. 4 / 21

Se il discriminante =(a-b) 2-4a 2 si annulla allora: e ciò accade se: a-b = ± 2a da cui: a=-b b=3a quindi: x 2 = x 3 = -b Possiamo determinare le condizioni affinché le radici x 2, x 3 abbiano per valore proprio il coefficiente a o il suo reciproco imponendo che: Con semplici passaggi algebrici perveniamo ad un equazione irrazionale: 5 / 21

che è equivalente al sistema: e supposta soddisfatta la prima condizione, otteniamo dalla seconda l equazione: a 2 -a+b+1=0 la quale, risolta rispetto al parametro b fornisce: b=-(a 2 -a+1). Sostituendo tale valore nell equazione reciproca iniziale abbiamo: ax 3 -(a 2 -a+1)x 2 -(a 2 -a+1)x-a=0 Allo stesso risultato saremmo pervenuti se avessimo imposto l uguaglianza di una delle radici dell equazione al parametro a in luogo del suo reciproco. Ad esempio sia data l equazione: 6 / 21

3x 3 +13x 2 +13x+3=0 Essa ha come radice 1 e quindi il suo primo membro è divisibile per x meno la radice nota, cioè per x+1. Eseguendo tale divisione si ha: (3x 3 +13x 2 +13x+3) : (x+1) = 3x 2 +10x+3 Quindi: (3x 3 +13x 2 +13x+3) = (x+1) (3x 2 +10x+3) (x+1) (3x 2 +10x+3) = 0 E così l equazione data si scinde nelle due seguenti: (x+1) = 0 che ha come radice -1 (3x 2 +10x+3) = 0 che ha come radici 3 e 1/3 Quindi le tre radici dell equazione sono: -1, -3 e 1/3. 7 / 21

Osserviamo che le radici 3 e 1/3 sono una la reciproca dell altra e la radice 1 è reciproca di sé stessa. Risoluzione delle equazioni reciproche di seconda specie e 3 grado Un equazione reciproca di terzo grado e seconda specie ha come radici 1 e +1. Quindi il primo membro di tale equazione è divisibile sia per x+1 che per x-1 e, di conseguenza, l equazione si scinde in tre equazioni: due di primo grado che hanno come radici le due radici già note 1 e +1, ed una di secondo grado che ha come radici le rimanenti due radici dell equazione data. Tale tipo di equazione ha la seguente formula: ax 3 +bx 2 -bx-a=0 Poiché per x=1 il polinomio al primo membro dell equazione si annulla, abbiamo: Quindi: ax 3 + bx 2 - bx - a = (x - 1) [ax 2 + (a b)x + a] = 0 da cui: 8 / 21

x 1 =1 Con l utilizzo di queste formule è possibile generare un algoritmo in linguaggio Visual Basic per la risoluzione di questo tipo di equazioni reciproche. Notiamo che se il discriminante: =(a-b) 2-4a 2 si annulla abbiamo: a+b = ± 2a allora: b = -3a b = a e quindi: x 2 = x 3 =1 e cioè l equazione ha la radice x=1 con molteplicità tre. 9 / 21

Infine anche per tali classi di equazioni possiamo dedurre le condizioni, perché una delle radici sia uguale al coefficiente a o al suo reciproco, pervenendo questa volta all equazione: ax 3 -(a 2 +a+1)x 2 +(a 2 +a+1)x-a=0 Risoluzione delle equazioni reciproche di prima specie e 4 grado L equazione reciproca di quarto grado e prima specie sono del tipo: ax 4 +bx 3 +cx 2 +bx+a=0 In tal caso, dopo aver notato che una delle radici dell equazione è senz altro diversa da zero (in quanto se così non fosse avremmo l annullamento del coefficiente a dividendo i due membri per x 2 abbiamo: allora: Posto: 10 / 21

Allora: da cui: otteniamo l equazione, detta risolvente: ay 2 +by+c-2a=0 da cui: Pertanto: 11 / 21

e e quindi le equazioni da risolvere sono: x 2 -y 1 x+1=0 e x 2 -y 2 x+1=0 e le soluzioni sono: 12 / 21

Per la nostra procedura risulta utile verificare se le due quantità: 1 2 e 1-4 2 possono = y 2 2 - coincidere. 4 Ammettendo che ciò si realizzi: Una delle condizioni conduce al valore: B=0 (biquadratica) mentre l altra: da cui che bcioè: 2 equivale 4ac + 8aa: 2 = 0 =0Viceversa, =b 2 se: allora: -4ac+8a 2 =0 per cui: 1= 2 Pertanto per ciò che concerne le radici, risulta: allora: xin 1 =x 3 x 2 =x =0 conclusione: Þ se 4 1 annullarsi, = 2 Tale seguente: si per annulla. circostanza cui se e uno viceversa qualunque può essere se entrambi dei da due noi assumono utilizzata precedenti per lo discriminanti stesso la costruzione valore, si annulla, allora del diagramma il discriminante anche l altro ad albero deve 0 1 Esponiamo prima Sia 6x 2 Dividiamo 4-5x data specie 3-38x l equazione: tutti il 2-5x+6=0 riferendoci metodo i termini 0 di per risoluzione al seguente x 2. Si ha da così: esempio. seguire per le equazioni reciproche di quarto grado e Raccogliendo a fattore comune i coefficienti uguali si ha: Introduciamo ora un incognita ausiliaria y, ponendo: da cui, elevando a quadrato: e quindi: L equazione 6(y 6y 2 2) - 5y data - 38 diventa: Da 2 cui: - 12 5y - 5y 50 - = 38 0 = 0 Ora dell equazione dai valori così data, trovati tenendo dell incognita presente la ausiliaria relazione y dedurremo che lega fra quelli loro queste dell incognita due incognite, x cioè: Sostituendo ad y ciascuno dei suoi due valori sopra calcolati, si hanno le due equazioni: Risolvendole xi Osserviamo 1 quattro =-2, valori anche si così ha: x 2 determinati =-1/2, questo esempio xper 3 =1/3, x sono che esse le x 4 =3 quattro sono radici a due dell equazione a due reciproche. reciproca data. Risoluzione delle equazioni reciproche di seconda specie e 4 grado Le equazioni reciproche di quarto grado e seconda specie hanno la seguente espressione: ax 4 +bx 3 -bx-a=0 Osserviamo che mancando del termine centrale (coefficiente nullo) ed essendo questi equidistante dagli estremi, il suo coefficiente deve essere uguale al suo opposto: zero. Le sue radici sono: x 1 = -1 e x 2 =+1 come si vede dalla struttura stessa dell equazione, di conseguenza il polinomio al primo membro risulta divisibile sia per il binomio x -1 che per x +1 cioè, in definitiva, per il binomio x 2-1 e quindi: 13 / 21

Pertanto: ax 4 +bx 3 -bx-a=(x 2-1)(ax 2 +bx+a)=0 da cui segue: x 1 =-1 x 2 =+1 Osserviamo che volendo ricercare le radici uguali al parametro a o al suo reciproco basta imporre che sia: 14 / 21

e che Pertanto l equazione si riduce alla: ax 4 -(a 2 +1)x 3 +(a 2 +1)x-a=0 Consideriamo ad esempio l equazione: 2x 4 +5x 3-5x-2=0 osserviamo, anzitutto, che un equazione di grado pari se fosse completa dovrebbe avere un numero dispari di termini (uno di più del grado), e quindi dovrebbe avere un termine centrale, equidistante dagli estremi. Ma in una equazione reciproca di seconda specie il coefficiente di questo termine dovendo essere uguale al suo opposto non può che essere zero e quindi questo termine deve mancare. 15 / 21

L equazione data ha come radici 1 e +1 e quindi il suo primo membro è divisibile per x+1 e x-1. Eseguendo, successivamente, queste due divisioni l equazione data si è trasformata in: (x + 1)(x 1)(2x 2 + 5x + 2) = 0 E questa si scinde nelle equazioni: x+1=0 che ha come radice 1 x-1=0 che ha come radice +1 (2x 2 + 5x + 2) = 0 E risolvendo l ultima equazione si ha che le radici dell equazione reciproca data sono: x 1 =-1, x 2 =1, x 3 =-2, x 4 =-1/2. Risoluzione delle equazioni reciproche di prima specie e 5 grado Un equazione reciproca di quinto grado se è di prima specie è del tipo: 16 / 21

ax 5 +bx 4 +cx 3 +cx 2 +bx+a=0 ha come radice 1 in quanto l equazione è di grado dispari e quindi il suo primo membro è divisibile per x+1. Allora In tal modo essa si scinde in due equazioni: una di primo grado, che ha come radice 1, e l altra di quarto grado: ax 5 +bx 4 +cx 3 +cx 2 +bx+a=(x+1)[ax 4 +(b-a)x 3 +(a-b+c)x+a]=0 ma: ax 4 +(b-a)x 3 +(a-b+c)x+a=0 è una equazione reciproca di quarto grado e di prima specie che abbiamo già visto in precedenza, per cui dividendo per x 2 diverso da 0 abbiamo: 17 / 21

aggiungiamo e sottraiamo 2a: otteniamo Poniamo: possiamo scrivere: per cui: Essendo: risulta: quindi: +1=yx -yx+1=0 pertanto x 2 -y 1 1 =-1 2 x+1=0 le soluzioni dell equazione sono: Risoluzione delle equazioni reciproche di seconda specie e 5 grado L equazione reciproca di quinto grado è di seconda specie ha la seguente forma: ax 5 +bx 4 +cx 3 -cx 2 -bx-a=0 essa ha come radice +1 e quindi il suo primo membro è divisibile per x-1. Per cui applicando Ruffini, otteniamo: In tal modo essa si scinde in due equazioni: una di primo grado e l altra di quarto grado. Quindi: ax 5 +bx 4 +cx 3 -cx 2 -bx 2 -bx-a=(x+1)[ax 4 +(a+b)x 3 +(a+b+c)x 2 +(a+b)x+a]=0 Per la legge di annullamento del prodotto, abbiamo la radice x=-1 e: ax 4 +(a+b)x 3 +(a+b+c)x 2 +(a+b)x+a=0 18 / 21

Questa è una equazione di prima specie e di quarto grado, poiché abbiamo una radice non nulla possiamo dividere per x 2 e otteniamo: Aggiungiamo e sottraiamo 2a: Poniamo: otteniamo: ay 2 + (a + b)y + b + c a = 0 19 / 21

che risolta ci fornisce i valori: Essendo: risulta: x 2 +1=yx x 2 -yx+1=0 quindi y 1 e y 2 rappresentano i coefficienti del termine lineare in x delle equazioni: x 2 -y 1 x+1=0 x 2 -y 2 x+1=0 20 / 21

pertanto le soluzioni dell equazione sono: x 1 =+1 Risoluzione delle equazioni reciproche di seconda specie e 6 grado Un equazione reciproca di sesto grado e seconda specie ha come radici 1 e +1 e quindi il suo primo membro è divisibile per x+1 e per x-1. Di conseguenza, l equazione si scinde in tre equazioni: due di primo grado, che hanno come radici 1 e +1, ed una di quarto grado, che risulta reciproca di prima specie e che si risolve, quindi, come già visto in precedenza. (Registrati e scarica l'allegato per saperne di più) 21 / 21