Richiami di Matematica - Esercizi 21/98
|
|
|
- Gregorio Pinna
- 9 anni fa
- Visualizzazioni
Transcript
1 Richiami di Matematica - Esercizi 1/98 ESERCIZI. Principi di equivalenza: 1) A(x) > B(x) A(x) + C(x) > B(x) + C(x) ) Se k > 0 allora A(x) > B(x) ka(x) > kb(x) 3) Se k < 0 allora A(x) > B(x) ka(x) < kb(x) In conseguenza si hanno le seguenti equivalenze: a) A(x) > B(x) A(x) < B(x) b) A(x) > B(x) C(x) A(x) > C(x) B(x), per ogni x tale che C(x) > 0 c) A(x) B(x) > 0 A(x) B(x) > 0, per ogni x tale che B(x) 0. Disequazioni di primo grado. Se a > 0, ax + b > 0 x > b a Se a < 0, ax + b > 0 x < b a. 1. Risolvere le seguenti disequazioni. a) (x + ) 5(x + 3) 1 b) x x > 3x c) (x 1) 3(x + 1) > x(x + ) a) x 4 b) x c) x < 7.. Risolvere le seguenti disequazioni in dipendenza dal parametro a reale. a) ax 3(x 1) > x b) x 5 > (a + 1) x c) ax + 7 < (a 1)x. a) se a > 1, x > 3 3 se a = 1, x se a < 1, x < a 1 a 1 b) se a = 0, impossibile se a 0, x < 5 c) x < 7, a. a Disequazioni di secondo grado. Esaminiamo una disequazione di secondo grado nella forma ax + bx + c > 0, oppure ax +bx+c < 0, dove a > 0 (se a < 0, si perviene a questo caso moltiplicando entrambi i membri per 1 e cambiando verso alla disuguaglianza). Supponiamo allora a > 0, P (x) = ax + bx + c, := b 4ac
2 Richiami di Matematica - Esercizi /98 ( discriminante del trinomio di secondo grado). Allora 1) se > 0, allora P (x) = a(x x 1 )(x x ) ha due radici reali distinte: x 1 = b b 4ac, x = b + b 4ac, a a e P (x) > 0 x < x 1, x > x. ) se = 0, allora P (x) = a(x x 0 ) ha due radici reali coincidenti x 0 = b a, e P (x) > 0 x x 0 3) se < 0, P (x) non ha radici reali, e P (x) > 0 x R. 3. Risolvere le seguenti disequazioni. a) x x > 5 b) x + x c) 4x 1x d) x 5x + > 0 e) 4x 3x 1 f) (x + 1)(5x + 1) 4x( + x) g) 4x(x ) < 11 + (x 4) h) x 9 0 i) x < 4 (x ). a) Impossibile b) x c) x = 3 d) x < 5 17, x > e) 1 4 x 1 f) x = 1 g) 3 < x < 3 h) 3 x 3 i) impossibile. Disequazioni di grado superiore al secondo P n (x) > 0 o P n (x) < 0, n >. Nel caso in cui il polinomio P n si scompone in fattori di primo e secondo grado, si riportano i segni dei fattori in uno schema, e si conclude in accordo con la regola dei segni del prodotto. 4. Risolvere le seguenti disequazioni. a) x 3 x > x b) (x x )(x + x + 3)(1 x) 0 c) (x + x)(3x + 1) (6x + ) < 0 d) x 3 < 5x 6.
3 Richiami di Matematica - Esercizi 3/98 a) 1 < x < 1, x > b) x 1 3, 1 x c) 1 < x < 0, x 1 3 d) x < 1. Disequazioni razionali fratte A(x) B(x) > 0 o A(x) B(x) < 0. Si studia separatamente il segno di A(x) e di B(x), si riportano i segni in uno schema, e si conclude in accordo con la regola dei segni come per il prodotto. 5. Risolvere le seguenti disequazioni. 3x a) x + 1 (5x )3 b) 0 x 1 c) x + 1 x 1 > 1 d) x 3 x 4 x x e) x 3 x + 3 > x + 3 x 3 f) x 3 3x > 0. a)x <, x 1 b) 5 x < 1 c)x < 3, x > 1 d)x <, x > 4 e) 3 < x < 3, x 0 f) 9 < x < 1 3, x > 0. Sistemi di disequazioni. L insieme delle soluzioni è l intersezione degli insiemi delle soluzioni di ciascuna disequazione del sistema. 6. Risolvere i seguenti sistemi. { x a) 5 0 x + 5 > 0 x + 0 x b) x + 3 < 0 x > 0 c) x 16 0 x 3x 4 0 x + 3 > 0
4 Richiami di Matematica - Esercizi 4/98 x 5x 0 d) x 7x + 1 < 0 x + 5 > 0 { x e) x + 4 > 0 a) 5 < x 5 b) 0 < x < c) 3 < x 1, x = 4 d)3 < x < 4 e) impossibile. Disequazioni col valore assoluto. Sono importanti i due casi particolari seguenti. i) La disequazione x b se b 0, è verificata x, se b 0, è verificata sse x b x b. ii) La disequazione se b < 0, è impossibile, x b se b 0, è verificata sse b x b. 7. Risolvere le seguenti disequazioni. a) x + < 1 b) x 4x + < c) x 4x + d) x 3 > 5. e) 3x 1 > x. a) 3 < x < 1 b) 0 < x < 4, x c) 0 x 4 d) x < 1, x > 4 e) x < 1 4, x > 1. Disequazioni irrazionali. Per risolvere una disequazione irrazionale è utile ricordare che: se n è un intero positivo dispari allora A n (x) B n (x) A(x) B(x), se n è un intero positivo pari allora A n (x) B n (x) è equivalente a A(x) B(x) solo se A(x) 0 e B(x) 0. Se la disequazione contiene solo un radicale di indice n dispari, si isola il radicale e si elevano entrambi i membri a potenza uguale all indice del radicale, ottenendo una disequazione equivalente.
5 Richiami di Matematica - Esercizi 5/98 Se la disequazione contiene solo un radicale di indice n pari, si isola il radicale e si deve studiare il segno dell altro membro prima di elevare entrambi i membri a potenza uguale all indice del radicale. Ricordiamo inoltre che un radicale di indice pari è reale solo se il radicando è 0 (condizione di realtà), ed è sempre non negativo (quando reale). Sono importanti i due casi particolari seguenti (n = ). i) La disequazione P (x) b se b 0, è equivalente a P (x) 0 (cdr del radicale) se b 0, è equivalente a P (x) b. ii) La disequazione P (x) b se b < 0, è impossibile se b 0, è equivalente a 0 P (x) b. 8. Risolvere le seguenti disequazioni. a) x + 6 < 4 b) 4 x + x 0 c) x + 3 > d) 4 x 3 + x 0 e) 3 x 3 + 3x + 9 > x f) x x 3 > 0 g) x < x h) x < x i) x 3 < x l) x 4 < x. a) 3 x < 5 b) impossibile c) x > 1 d) impossibile e) x > 3 f) x > 9 (porre x = t 0) g) x < 1 h) x > 1 i)x 3 l) x, x.
1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari
Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler
Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.
1 Disquazioni di primo grado
1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica [email protected] EQUAZIONI DI SECONDO GRADO Definizione: Dicesi
3 Equazioni e disequazioni.
3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti
Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona
Matematica per le scienze sociali Equazioni e disequazioni Francesco Lagona University of Roma Tre F. Lagona ([email protected]) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado
Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n
Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni
3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.
1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4
Equazioni con valore assoluto
Equazioni del tipo A(x) =a, con a Є R Equazioni con valore assoluto 1. a
Studio del segno di un prodotto
Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare
DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa):
P. \ Disequazioni di secondo grado Maggio 0 Copyright-I.S. DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI INTERE DI SECONDO GRADO Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono
EQUAZIONI, DISEQUAZIONI E SISTEMI
EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme
raggruppiamo il quadrato di binomio dividiamo per 0 effettuiamo i calcoli a secondo membro Distinguiamo i tre casi: 2 ± 2 ; 2 = 0 ; + si ottiene, =
Equazioni di II grado Equazione di II grado completa Un equazione di II grado è un equazione che, ridotta a forma normale, è del tipo ++=0 con 0. Per risolverla occorre calcolare il discriminante dell
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella
CONTENUTI. Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti. I grado II grado
CONTENUTI Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti EQUAZIONI I grado II grado intere fratte intere fratte EQUAZIONI ALGEBRICHE generalità Dicesi
Elementi sulle diseguaglianze tra numeri relativi
Elementi sulle diseguaglianze tra numeri relativi Dati due numeri disuguali a e b risulta a>b oppure ao oppure a-b
Esercizi sulle Disequazioni
Esercizi sulle Disequazioni Esercizio Trovare le soluzioni delle seguenti disequazioni:.).).).) ).) ) ).).7) 8.8).) Esercizio Trovare le soluzioni delle seguenti disequazioni tratte dal secondo parziale
Risolvere una disequazione significa determinare tutti i valori della x per cui una certa proposizione è verificata.
B.0 Disequazioni B0. Introduzione Le disequazioni sono il prerequisito essenziale per lo studio dell analisi matematica. Nella risoluzione dei problemi di analisi si fa largo uso di disequazioni dando
La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:
Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione
Ripasso delle matematiche elementari: esercizi proposti
Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
DISEQUAZIONI ALGEBRICHE
UNITÀ. DISEQUAZIONI ALGEBRICHE. Generalità e definizioni sulle diquazioni algebriche.. Diquazioni di primo grado.. Diquazioni di condo grado.. Diquazioni di grado superiore al condo.. Diquazioni fratte.
ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI
ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x
Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi
Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui
ISTITUTO PROFESSIONALE PER I SERVIZI ALBERGHIERI E DELLA RISTORAZIONE B.BUONTALENTI,V. DE BRUNI, FIRENZE ANNO SCOLASTICO 2015/2016.
B.BUONTALENTI,V. DE BRUNI, 6-50133 FIRENZE Classe 1 A Richiami di matematica: formazione degli insiemi numerici i numeri naturali, interi, razionali, irrazionali i numeri reali proprietà delle quattro
DIPARTIMENTO DI MATEMATICA A.S EQUAZIONI DI GRADO SUPERIORE AL 2
DIPARTIMENTO DI MATEMATICA A.S. 00-05 EQUAZIONI DI GRADO SUPERIORE AL 1. EQUAZIONI RISOLVIBILI MEDIANTE SCOMPOSIZIONE. EQUAZIONI BINOMIE. EQUAZIONI TRINOMIE. EQUAZIONI RECIPROCHE 1. EQUAZIONI RISOLVIBILI
Istituto d Istruzione Superiore Francesco Algarotti
Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione
Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?
Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc
ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI
ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 18 Dicembre 2012 Esercizio
x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.
EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati
Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA
RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci
LE EQUAZIONI DI SECONDO GRADO
LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere
Precorso di Analisi Matematica - II parte
Precorso di Analisi Matematica - II parte Lezioni del 15-16 Settembre 2011 Antonio Leaci 1 1 Universitá del Salento Facoltá di Ingegneria Dipartimento di Matematica E. De Giorgi A.A. 2011/12 Antonio Leaci
ESERCIZI SULLE DISEQUAZIONI I
ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x
NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto
NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi
Equazione irrazionale
Equazione irrazionale In matematica, un'equazione irrazionale in una incognita è un'equazione algebrica in cui l'incognita compare all'interno del radicando di uno o più radicali. Ad esempio: Non sono
Anno 2. Equazioni di secondo grado
Anno Equazioni di secondo grado 1 Introduzione In questa lezione impareremo a utilizzare le equazioni di secondo grado. Al termine di questa lezione sarai in grado di: descrivere le equazioni di secondo
Argomento 2 IIparte Funzioni elementari e disequazioni
Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda
3. Segni della funzione (positività e negatività)
. Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della
Svolgimento degli esercizi del Capitolo 1
Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione
Premessa. retta orientata diseguaglianze diverso intervallo di estremi a e b 1) a < x < b aperto N.B.: 2) a x b chiuso N.B.: 3) a x < b semichiuso
Premessa. Ci sono problemi, alcuni appartenenti anche alla vita quotidiana, che possono essere risolti attraverso una disequazione, ossia un espressione algebrica formata da due membri, contenenti un incognita,
DISEQUAZIONI ALGEBRICHE
DISEQUAZIONI ALGEBICHE Classe II a.s. 00/0 prof.ssa ita Schettino INTEVALLI DI Impariamo cosa sono gli intervalli di numeri reali Sono sottoinsiemi continui di numeri reali e possono essere limitati o
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico
Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni
Disequazioni - ulteriori esercizi proposti 1
Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi
U. C. Utilizzare le tecniche e procedure di calcolo aritmetico e algebrico, rappresentandole anche sotto forma grafica
U. C. Utilizzare le tecniche e procedure di calcolo aritmetico e algebrico, rappresentandole anche sotto forma grafica U. d. A. Disequazioni algebriche isultato atteso Il soggetto deve essere in grado
Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di
DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza
Polinomi. Corso di accompagnamento in matematica. Lezione 1
Polinomi Corso di accompagnamento in matematica Lezione 1 Sommario 1 Insiemi numerici 2 Definizione di polinomio 3 Operazioni tra polinomi 4 Fattorizzazione Corso di accompagnamento Polinomi Lezione 1
Funzioni elementari: funzioni potenza
Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,
I RADICALI QUADRATICI
I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,
Esercizi di matematica della Scuola Secondaria
Esercizi di matematica della Scuola Secondaria 1. Quale é il risultato corretto della seguente operazione aritmetica? (dare la risposta senza eseguire la moltiplicazione) X = 23, 45 0, 0123 (A) X = 0,
Anno 2. Radicali algebrici e aritmetici: condizioni di esistenza
Anno 2 Radicali algebrici e aritmetici: condizioni di esistenza 1 Introduzione Perché studiare i radicali? In matematica ogni volta che facciamo un operazione dobbiamo anche vedere se è possibile tornare
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
Equazioni di grado superiore al secondo
Equazioni di grado superiore al secondo 5 51 L equazione di terzo grado, un po di storia Trovare un numero il cui cubo, insieme con due suoi quadrati e dieci volte il numero stesso, dia come somma 0 Il
Radicali. 2.1 Radici. Il simbolo
Radicali. Radici.. Radici quadrate Ricordiamo che il quadrato di un numero reale a è il numero che si ottiene moltiplicando a per se stesso. Il quadrato di un numero è sempre un numero non negativo; numeri
Disequazioni in una incognita. La rappresentazione delle soluzioni
Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla
Liceo Scientifico Statale G. Stampacchia Tricase
Luigi Lecci\Compito 2D\Lunedì 10 Novembre 2003 1 Oggetto: compito in Classe 2D/PNI Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 60 minuti Argomenti: Equazioni e disequazioni immediate
RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1
RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,
Appunti di matematica per le Scienze Sociali Parte 1
Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici
LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09. Scomposizioni in fattori dei polinomi. Frazioni algebriche
LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09 Classe II E - corso Tecnologico Scomposizioni in fattori dei polinomi Scomposizione di un polinomio in fattori Concetto di scomposizione Raccoglimento
Programma di Matematica svolto durante l anno scolastico nella classe 2 sez.e
Programma di Matematica svolto durante l anno scolastico 2015-2016 nella classe 2 sez.e ALGEBRA 1) Richiami sul calcolo letterale e sulle equazioni algebriche lineari ad una incognita. 2) Disequazioni
Ore annue: 132 MODULO 1
Liceo B. Russell VIA IV NOVEMBRE 35, 38023 CLES Indirizzo: Liceo Linguistico CLASSI 2 e Programmazione Didattica Disciplina: Ore annue: 132 Matematica Settembre ottobre MODULO 1 novembre Disequazioni numeriche
Programma svolto a.s. 2015/1016 Classe 1G Materia: Matematica Docente: De Rossi Francesco
Classe 1G Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. Bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978-88-08-53467-5 Capitolo 1 Insiemi
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le
Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2
Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, [email protected] Esercizi 8: Studio di funzioni Studio
Equazioni di 2 grado
Equazioni di grado Tipi di equazioni: Un equazione (ad una incognita) è di grado se può essere scritta nella forma generale (o forma tipica o ancora forma canonica): a b c con a, b e c numeri reali (però
Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE
Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro
Le disequazioni di primo grado
Le disequazioni di primo grado Cos è una disequazione? Una disequazione è una disuguaglianza tra due espressioni algebriche (una delle quali deve contenere un incognita) che può essere vera o falsa a seconda
Equazioni di 2 grado
Equazioni di grado Antonino Leonardis Introduzione Solitamente per trovare la formula risolutiva delle equazioni di secondo grado si utilizza il completamento del quadrato Adesso vedremo un modo leggermente
LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO
LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI Materia: Matematica Anno scolastico: 010 011 Classe: 1 A Insegnante: Maria Maddalena Alimonda PROGRAMMA DIDATTICO NUMERI NATURALI E NUMERI INTERI Operazioni
Funzioni. Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi
Funzioni Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi Materia: Matematica Autore: Mario De Leo Definizioni Una quantità il cui valore può essere cambiato
DISEQUAZIONI DI SECONDO GRADO
DISEQUAZIONI DI SECONDO GRADO DESTINATARI: III anno del liceo scientifico PNI come consigliato nella Circolare Ministeriale n. 65 del 7 settembre 996 dove l argomento trattato in questa unità didattica
Espressioni algebriche: espressioni razionali
Espressioni algebriche: espressioni razionali definizione: Il rapporto fra due polinomi si dice espressione razionale. Le espressioni razionali in una sola variabile si scrivono nella forma generale esempio:
MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO
MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO 1 Propedeutica alle Funzioni Premessa Questo documento vuole essere una preparazione per lo studio delle funzioni, comprendendo tutte quelle
MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI
MODULO TITOLO FINALITA EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO Risoluzione delle equazioni e delle disequazioni algebriche di primo grado con una o più incognite e loro applicazioni PREREQUISITI
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.
Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:
3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene:
1 EQUAZIONI 1. (Da Veterinaria 2006) L equazione di secondo grado che ammette per soluzioni x1 = 3 e x2 = -1/ 2 è: a) 2x 2 + (2 3-2)x - 6 = 0 b) 2x 2 - (2 3-2)x - 6 = 0 c) 2x 2 - (2 3-2)x + 6 = 0 d) 2x
PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S
PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S. VIA SILVESTRI ANNO SCOLASTICO 2015-2016 INSEGNANTE: MASCI ORNELLA ALGEBRA - Equazioni letterali fratte
Equazioni di Primo grado
Equazioni di Primo grado Definizioni Si dice equazione di primo grado un uguaglianza tra due espressioni algebriche verificata solo per un determinato valore della variabile x, detta incognita. Si chiama
LE DISEQUAZIONI LINEARI
LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione
Le funzioni reali di una variabile reale
Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B
1.0 Disequazioni (1.1.0)
0 Disequazioni (0) 0 x > 4x 5x, x x 3x x 4 9x +90 > 0, x + x > 0 x 3 x +5x+ > x3 +8 x x+4, x/3 (x + ) /3 < x + 5x + 7, x > x 30 sin x sin x sin x cos x > 0, x + 5x + 4 < x +, cos x x + 40 Risolvere i sistemi
Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA
Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati
Prodotti Notevoli. 1. Prodotto della somma di due monomi per la loro differenza
Prodotti Notevoli I prodotti notevoli sono particolari prodotti o potenze di polinomi, che si sviluppano secondo formule facilmente memorizzabili. Questi consentono di effettuare i calcoli in maniera più
CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN
CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali
LE EQUAZIONI DI PRIMO GRADO. Lezione 3. Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica
Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2007/2008 Docente Ing. Andrea Ghedi Lezione 3 LE EQUAZIONI DI PRIMO GRADO L uguaglianza In matematica
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
Lezione 5 Disequazioni. Sistemi di disequazioni.
Lezione 5 Disequazioni. Sistemi di disequazioni. 1. Disuguaglianze e disequazioni Supponiamo di avere due espressioni che indichiamo con A e B. Chiamiamo (1) disuguaglianza una qualunque delle scritture
PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA
PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE PRIMA IPC LEGENDA COMPETENZE 1) Utilizzare le tecniche e le procedure del calcolo aritmetico
