Lezione 22: Sistemi a più gradi di libertà: sistemi continui (2)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 22: Sistemi a più gradi di libertà: sistemi continui (2)"

Transcript

1 Lezione : Sistemi a più gradi di libertà: sistemi continui () Federico Cluni 19 maggio 015 Esempi Si determinano le costanti di integrazione A, B, C e D per alcune condizioni di vincolo tipiche. Trave appoggiata Si consideri lo schema seguente: Figura 1: Schema trave appoggiata. Nel caso di trave appoggiata le condizioni di vincolo sono le seguenti: u(0) = 0 B + D = 0 u II (0) = 0 a B + a D = 0 u(l) = 0 A sin al + B cos al + C sinh al + D cosh al = 0 u II (L) = 0 a A sin al a B cos al + a C sinh al + a D cosh al = 0 (1a) (1b) (1c) (1d) Poiché a è diverso da zero le precedenti si riducono a: u(0) = 0 B + D = 0 u II (0) = 0 B + D = 0 u(l) = 0 A sin al + B cos al + C sinh al + D cosh al = 0 u II (L) = 0 A sin al B cos al + C sinh al + D cosh al = 0 (a) (b) (c) (d) Le precedenti costituiscono un sistema lineare omogeneo di quattro equazioni nelle quattro incognite A, B, C e D che ammette soluzione diversa dalla banale solo se la matrice dei coefficienti ha determinante nullo, che fornisce: sin al sinh al = 0 (3) 1

2 La precedente fornisce i valori di a che permettono il rispetto delle condizioni ai vincoli: a k = k π L (4) ricordando che: si ottiene: per cui: a 4 k = ω k µ E I ω k = k4 E I µ ω k = k π E I L µ T k = L µ π k E I (5) π 4 L 4 (6) (7) (8) Dalle () è possibile, per assegnati valori di a k, determinare i valori di A, B, C e D: Le autofunzioni risultanti sono: A k 0 (9) B k = 0 (10) C k = 0 (11) D k = 0 (1) u k (x) = A k sin a k x (13) La costante A k si può fissare sfruttando la normalizzazione: L (A k sin a k x) dx = 1 A k = L e quindi si ha: 0 u k (x) = il cui andamento è riportato nella figura seguente: (14) L sin k π L x (15)

3 1.00 u 1 u u u 4 u [m] x [m] Trave a mensola Si consideri lo schema seguente: Figura : Forme modali per k = 1,, 3, 4. Figura 3: Schema trave a mensola. Nel caso di trave incastrata ad una estremità e libera all altra le condizioni di vincolo sono le seguenti: u(0) = 0 B + D = 0 u I (0) = 0 a A + a C = 0 u II (L) = 0 a A sin al a B cos al + a C sinh al + a D cosh al = 0 u III (L) = 0 a 3 A cos al + a 3 B sin al + a 3 C cosh al + a 3 D sinh al = 0 (16a) (16b) (16c) (16d) 3

4 Poiché a è diverso da zero le precedenti si riducono a: u(0) = 0 B + D = 0 u I (0) = 0 A + C = 0 u II (L) = 0 A sin al B cos al + C sinh al + D cosh al = 0 u III (L) = 0 A cos al + B sin al + C cosh al + D sinh al = 0 (17a) (17b) (17c) (17d) Le precedenti costituiscono un sistema lineare omogeneo di quattro equazioni nelle quattro incognite A, B, C e D la cui matrice dei coefficienti è la seguente: M = sin al cos al sinh al cosh al cos al sin al cosh al sinh al (18) Il sistema ammette soluzione diversa dalla banale solo se la matrice dei coefficienti ha determinante nullo, det(m) = 0: det(m) = che fornisce: sin al sinh al cosh al cos al cosh al sinh al sin al cos al sinh al cos al sin al cosh al = 0 (19) cos al cosh al + 1 = 0 (0) L andamento in funzione di al è riportato nella figura seguente: cos akl cosh akl e e e e e e e e e al Figura 4: Andamento di cos al cosh al + 1 in funzione di al. 4

5 Gli attraversamenti dell asse delle ascisse, ovvero i valori di a che permettono il rispetto delle condizioni ai vincoli, avvengono nei seguenti punti: k j j+1 a k L a j L a j L + π Ricordando che: si ottiene: a 4 k = ω k µ E I ω k = E I a4 k µ = (a kl) 4 L 4 ω k = (a k L) 1 E I L µ T k = π µ (a k L) L E I E I µ (1) () (3) Dalle (17) è possibile, per assegnati valori di a k, determinare i valori di A, B, C e D: A k = Ψ cos al sinh al cosh al = Ψ (cos a kl + cosh a k L) (4) B k = Ψ sin al sinh al cosh al = Ψ ( sin a kl sinh a k L) (5) C k = Ψ sin al cos al cosh al = Ψ ( cos a kl cosh a k L) (6) D k = Ψ sin al cos al sinh al = Ψ (sin a kl + sinh a k L) (7) Le autofunzioni risultanti sono: u k (x) = Ψ [(cos a k L + cosh a k L) sin a k x (sin a k L + sinh a k L) cos a k x+ (cos a k L + cosh a k L) sinh a k x (sin a k L + sinh a k L) cosh a k x] (8) La costante Ψ si può fissare sfruttando la normalizzazione: L L andamento dei primi tre modi è riportato nella figura seguente: 0 (u k (x)) dx (9) 5

6 1.00 u 1 u u u 4 u [m] x [m] Figura 5: Forme modali per k = 1,, 3, 4. Ad esempio, assumendo una sezione rettangolare di dimensioni 30x40 cm e una densità per unità di volume ρ = 5.0 t/m 3 : per i primi tre modi si ha: E = kn/m, I = m 4, µ = 0.30 t/m, H = 9.0 m ω 1 = rad/s, ω = rad/s, ω 3 = rad/s, Oscillazioni della corda tesa Si consideri l equazione di moto della trave in cui si trascura la rigidezza flessionale E I: µ v t N v q(x, t) = 0 (30) x Si ha in tal caso l equazione di moto della corda tesa. In oscillazioni libere: µ v t N v x = 0 (31) che dà le oscillazioni libere di una corda tesa da una trazione pari ad N. Adottando la consueta separazione delle variabili: v(x, t) = u(x) sin ωt (3) si ottiene: µ ω u + N u II = 0 (33) 6

7 Cercando soluzioni del tipo u(x) = exp(αx) nel caso in cui N e µ siano costanti si perviene alla seguente equazione algebrica: N α + µ ω = 0 (34) le cui radici sono: Si pone: L integrale generale è quindi: α = ± µ ω µ ω N = ±i N γ = µ ω che attraverso le (??) si può anche scrivere come: N (35) α = ±iγ (36) u(x) = A exp(i γx) + B exp( i γx) (37) u(x) = A sin(γx) + B cos(γx) (38) Con le condizioni al contorno u(0) = 0 e u(l) = 0 si ha: { B = 0 A sin(γl) = 0 (39) e perché la soluzione sia diversa dalla banale: Quindi deve essere: γl = k π γ = k π L ω k = k π N L µ (40) (41) Le forme modali sono (normalizzando secondo L 0 u kdx = 1): u k (x) = L sin k π L x (4) La (41) fornisce le pulsazioni della corda tesa di massa per unità di lunghezza µ tesa su una luce L da una trazione pari ad N. Le frequenze e periodi valgono: f k = k π N (43a) π L µ T k = π L µ (43b) k π N La soluzione è ovviamente: v(x, t) = k=1 L sin k π L x (E k sin ω k t + F k cos ω k t) (44) dove E k e F k vengono fissate con le condizioni al contorno v 0 (x) e v 0 (x). E k = L µ L k π N 0 L sin k π L x v 0(x)dx L F k = L sin k π L x v 0(x)dx 0 7 (45)

8 Si noti che la (31) rappresenta la classica equazione delle onde, che si può riscrivere come: v t = c v x con c = N µ (46) La soluzione può essere ottenuta, oltre che con la (44), anche con la formula di D Alembert: v(x, t) = 1 [v 0(x + ct) + v 0 (x ct)] + 1 x+ct v 0 (ξ)dξ (47) c x ct che può essere riarrangiata in: v(x, t) = 1 [ v 0 (x + ct) + 1 x+ct ] v 0 (ξ)dξ + 1 [ v 0 (x ct) + 1 x ct ] v 0 (ξ)dξ c 0 c 0 ovvero la soluzione può essere vista come sovrapposizione di un onda progressiva: F (x ct) = 1 [ v 0 (x ct) + 1 x ct ] v 0 (ξ)dξ c 0 (48) (49) e di un onda regressiva: G(x + ct) = 1 [ v 0 (x + ct) + 1 x+ct ] v 0 (ξ)dξ c 0 (50) che trasportano nel tempo il profilo iniziale verso ascisse crescenti (la F ) e decrescenti (la G) con velocità c. 8

Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3)

Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3) Lezione 3: Sistemi a più gradi di libertà: sistemi continui 3) Federico Cluni maggio 5 Oscillazioni forzate Si è visto che, nel caso di oscillazioni libere, il moto della trave è dato dalla funzione vx,

Dettagli

Lezione 17: Sistemi a più gradi di libertà: sistemi discreti (8)

Lezione 17: Sistemi a più gradi di libertà: sistemi discreti (8) Lezione 17: Sistemi a più gradi di libertà: sistemi discreti (8) Federico Cluni 28 aprile 215 Esempi SEZIONE DA COMPLETARE Applicazione dell analisi modale per azioni sismiche Sia data la struttura in

Dettagli

sin =0 (1.1) Risolvendo l equazione (1.1) rispetto alla forza adimesionalizzata =, si ottiene: =

sin =0 (1.1) Risolvendo l equazione (1.1) rispetto alla forza adimesionalizzata =, si ottiene: = Capitolo 1 INTRODUZIONE ALLA STABILITA DELL EQUILIBRIO 1.1 Sistemi articolati rigidi Si consideri una mensola rigida vincolata tramite un supporto elastico di rigidezza, soggetta a carico assiale, come

Dettagli

Lezione 15 - Onde. Fisica 1 - R. De Renzi - Onde 1

Lezione 15 - Onde. Fisica 1 - R. De Renzi - Onde 1 Lezione 15 - Onde onde su una corda, sulla superficie dell acqua lunghezza d onda, periodo, vettor d onda, frequenza funzione d onda equazione delle onde e velocità dell onda esempio di equazione delle

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 8 Sistemi a più gradi di liberà: Oscillazioni libere in assenza di smorzamento N equazioni differenziali omogenee accoppiate tramite la matrice delle masse, la matrice

Dettagli

Lezione 19: Sistemi a più gradi di libertà: sistemi discreti (10)

Lezione 19: Sistemi a più gradi di libertà: sistemi discreti (10) Lezione 9: Sistemi a più gradi di libertà: sistemi discreti () Federico Cluni 3 aprile 25 Coefficenti di massa partecipante Si abbia un sistema discreto a più gradi di libertà descritto dalle seguenti:

Dettagli

Principio di sovrapposizione.

Principio di sovrapposizione. Principio di sovrapposizione. Il principio di sovrapposizione si applica ogni volta che due (o più) onde viaggiano nello stesso mezzo nello stesso tempo. Le onde si attraversano senza disturbarsi. In ogni

Dettagli

Vibrazioni Meccaniche

Vibrazioni Meccaniche Vibrazioni Meccaniche A.A. 2-22 Esempi di scrittura dell equazione di moto per sistemi a 2 gdl Turbina Una turbina pone in rotazione un generatore elettrico per mezzo della trasmissione schematizzata in

Dettagli

Risolvendo l equazione (6.1) rispetto alla forza adimesionalizzata f = F L/k, si ottiene: f = FL k = ϕ

Risolvendo l equazione (6.1) rispetto alla forza adimesionalizzata f = F L/k, si ottiene: f = FL k = ϕ Capitolo 6 STABILITA DELL EQUILIBRIO ELASTICO (prof. Elio Sacco) 6.1 Sistemi articolati rigidi Si consideri una mensola rigida vincolata tramite un supporto elastico di rigidezza k, soggetta a carico assiale,

Dettagli

Nome: Cognome: Data: 01/04/2017

Nome: Cognome: Data: 01/04/2017 Esercizio N. 1 Valutazione 5 Un ala, lunga L = 25m, è modellata come una trave in alluminio (E = 72GPa, Iy=2e-4m 4 ) incastrata alla fusoliera in x=0m, come in figura. La sollecitazione che si vuole studiare

Dettagli

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8)

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Federico Cluni 3 marzo 205 Fattore di amplificazione in termini di velocità e accelerazione Nel caso l oscillatore elementare sia

Dettagli

vibrazioni libere di una trave a sezione costante

vibrazioni libere di una trave a sezione costante vibrazioni libere di una trave a sezione costante > restart: with(plots):with(linearalgebra): interface(displayprecision=3): equazione indefinita e soluzione generale > -mu*diff(y(x,t),t,t) = EJ*diff(y(x,t),x$4);

Dettagli

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata Fononi e calori reticolari - Testi degli esercizi Fisica della Materia Condensata A.A. 015/016 Fononi e calori reticolari Esercizio 1 Si consideri una catena lineare biatomica. Calcolare le relazioni di

Dettagli

Esercitazione del 6 Dicembre 2011

Esercitazione del 6 Dicembre 2011 Facoltà di Ingegneria dell Università degli Studi di Firenze CdS in Ingegneria per l Ambiente, le Risorse ed il Territorio Complementi di Analisi Matematica A.A. 11/1 Esercitazione del 6 Dicembre 11 Attenzione:

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

1 - Matrice delle masse e delle rigidezze

1 - Matrice delle masse e delle rigidezze Cilc per tutti gli appunti (AUOMAZIONE RAAMENI ERMICI ACCIAIO SCIENZA delle COSRUZIONI ) e-mail per suggerimenti SEMPLICE ESEMPIO NUMERICO DEL MEODO DI ANALISI DINAMICA Si vuole qui chiarire con un semplice

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

p V Velocita di propagazione del suono ρ = densita del mezzo k = modulo di compressione

p V Velocita di propagazione del suono ρ = densita del mezzo k = modulo di compressione 1 Onde longitudinali o acustiche del tutto in generale si definisce onda acustica qualsiasi onda longitudinale dovuta alla perturbazione longitudinale di un qualsiasi mezzo meccanico nello specifico e

Dettagli

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA)

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) Equazioni di Maxwell I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E = ϱ ɛ 0 (1) E = B (2) B = 0 (3) E B = µ 0 j + µ 0 ɛ 0 (4) La forza che agisce

Dettagli

Soluzioni del Foglio 9

Soluzioni del Foglio 9 ANALISI Soluzioni del Foglio 9 4 dicembre 9 9.. Esercizio. Si scriva il polinomio di Taylor T 5 (x, ), di punto iniziale x = e ordine n = 5 della funzione f(x) = ex e x La funzione f(x) assegnata é, generalmente,

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2 1 Teoria Una particella di massa m = 1 g e carica elettrica q = 1 c viene accelerata per un tratto pari a l = m da una differenza di potenziale pari av = 0 volt Determinare la lunghezza d onda di De Broglie

Dettagli

Nome: Cognome: Data: 18/01/2018

Nome: Cognome: Data: 18/01/2018 Esercizio N. 1 Valutazione 4 Sia dato un velivolo, modellato come una trave libera di lunghezza L = 30m in equilibrio sotto l azione di una distribuzione di portanza e del peso P, concentrato sulla fusoliera

Dettagli

Esercizio: pendoli accoppiati. Soluzione

Esercizio: pendoli accoppiati. Soluzione Esercizio: pendoli accoppiati Si consideri un sistema di due pendoli identici, con punti di sospensione posti alla stessa quota in un piano verticale. I due pendoli sono collegati da una molla di costante

Dettagli

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Docente:Alessandra Cutrì Equazione delle onde unidimensionale non omogenea u tt (x, t = a 2 u xx (x,

Dettagli

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà)

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà) Foglio di Esercizi 5 Meccanica Razionale a.a. 017/18 Canale A-L (P. Buttà) Esercizio 1. Su un piano orizzontale sono poste due guide immateriali circolari di centri fissi O 1 e O e uguale raggio r; sia

Dettagli

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte)

Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte) Esempi di domande tipo per l esame di Metodi Matematici per l Ingegneria A.A. 2014/2015 (seconda parte) June 1, 2015 1 Domande aperte 1.1 Equazione della corda vibrante e delle onde in dimensione superiore

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA VIA A.SCARPA

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Versione da non divulgare. Scritta per comodità degli studenti. Può contenere errori. 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Dicembre 2013 Generalità

Dettagli

Nome: Cognome: Data: 18/06/2015

Nome: Cognome: Data: 18/06/2015 Esercizio N. Valutazione 4 Sia dato un velivolo in configurazione di equilibrio come riportato in figura. I carichi agenti sull ala, modellata come una trave di lunghezza L = 0m e larghezza c=m, sono il

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

BUCA DI POTENZIALE RETTANGOLARE

BUCA DI POTENZIALE RETTANGOLARE 4/3 POTENZIALI RETTANGOLARI 09/10 1 BUCA DI POTENZIALE RETTANGOLARE La buca di potenziale unidimensionale rettangolare è definita da (1) V (x) = { V0, per x < b (V 0 > 0), 4/3 POTENZIALI RETTANGOLARI bozza

Dettagli

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata:

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata: Università del Salento Facoltà di Ingegneria Corsi di Laurea in Ingegneria Industriale e Civile Prova scritta di Meccanica Razionale 20 giugno 2016 Soluzioni Parte 1: Domande a risposta multipla. 1. Siano

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = =

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = = ESERCIZI PROPOSTI Risolvere i seguenti sistemi lineari )-0), utilizzando, dove possibile, sia il metodo di Cramer sia quello della matrice inversa, dopo aver analizzato gli esempi a)-d): 2x + + 4z 5 a)

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 11-07 - 2014 g A l h M, J O d B M B, J B moto definita ai punti precedenti. C m Esercizio 1. Il sistema in figura, posto nel piano verticale, è costituito

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE Nel paragrafo 4 del capitolo «e onde elastiche» sono presentate le equazioni e y = acos T t +0l (1) y = acos x+0l. () a prima descrive l oscillazione di

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

69.8/3 = 23.2 = 23 automobili

69.8/3 = 23.2 = 23 automobili Meccanica 19 Aprile 2017 Problema 1 (1 punto) Una moto salta una fila di automobili di altezza h= 1.5 m e lunghezza l=3m ciascuna. La moto percorre una rampa che forma con l orizzontale un angolo = 30

Dettagli

Modellazione dinamica di un ingranaggio

Modellazione dinamica di un ingranaggio Modellazione dinamica di un ingranaggio Si scrivano le equazioni della dinamica per l ingranaggio in figura, costituito da una coppia di ruote dentate rette da cuscinetti a sfere. Si trascuri il gioco

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 8 Problema Si consideri una chitarra classica in cui il diapason (lunghezza totale della corda vibrante) vale l = 65 mm e

Dettagli

Nome: Cognome: Data: 14/02/2017

Nome: Cognome: Data: 14/02/2017 Esercizio N. 1 Valutazione 4 Un elicottero dal peso P= 6800Kg si trova in condizioni di punto fisso, ovvero in condizione di equilibrio (orizzontale e verticale). La distribuzione delle forze sulle due

Dettagli

Corso di Dinamica delle Strutture Dispense - parte #4

Corso di Dinamica delle Strutture Dispense - parte #4 Corso di Dinamica delle Strutture Dispense - parte #4 A.A. 215 216 Versione 1..1 Indice 1 Il Modello di Trave 1D ad Asse Rettilineo. 2 1.1 Cinematica....................................... 2 1.2 Velocità

Dettagli

Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/01/2015

Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/01/2015 Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/0/205 (9 crediti) Esercizio. Si verifichi se nel punto (0, 0) la funzione 3 ye y 2 /x 4 se x 0 f (x, y) = 0 se x = 0, è

Dettagli

L scritto nel testo). Forza di reazione vincolare: deve bilanciare le forze esterne applicate, dunque è verso il basso (quindi positiva ql

L scritto nel testo). Forza di reazione vincolare: deve bilanciare le forze esterne applicate, dunque è verso il basso (quindi positiva ql Costruzioni Aerospaziali - Esame Aprile 5. Una semiala, lunga = 5m, è modellata come una trave in alluminio (E = 7GPa, Iy=3e-3m 4 ) incastrata alla fusoliera in x=m, come in figura. a sollecitazione che

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye 1 / 5 Corso:Fisica moderna/calore specifico dei solidi/modello di Debye Debye riprende l intero modello di Planck per il corpo nero: non solo la quantizzazione dell energia ma anche l idea che vi siano

Dettagli

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Corso di Fisica Matematica 2, a.a. 2013-2014 Dipartimento di Matematica, Università di Milano 13 Novembre 2013 1

Dettagli

Lez.22 Circuiti dinamici di ordine due. 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 22 Pagina 1

Lez.22 Circuiti dinamici di ordine due. 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 22 Pagina 1 Lez.22 Circuiti dinamici di ordine due. 2 Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 22 Pagina 1 Equazioni di stato L analisi dei circuiti dinamici tramite

Dettagli

Nome: Cognome: Data: 4/11/2017

Nome: Cognome: Data: 4/11/2017 Esercizio N. 1 Valutazione 5 1. Si consideri un lanciatore, lungo L = 40m, fermo sulla rampa di lancio modellato come una trave appoggiata, alla base (x=0m) e a x = 3/4L, come in figura. La sollecitazione

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

PDE lineari primo ordine

PDE lineari primo ordine PDE lineari primo ordine. Introduzione Un equazione lineare alle derivate parziali di primo ordine in R n é, indicato con x = x,..., x n }, un equazione della forma seguente: () n i= a i (x) u x i + b(x)

Dettagli

FM210 / MA - Prima prova pre-esonero ( )

FM210 / MA - Prima prova pre-esonero ( ) FM10 / MA - Prima prova pre-esonero (4-4-018) 1. Una particella di massa m si muove in una dimensione sotto l effetto di una forza posizionale, come descritto dalla seguente equazione: mẍ = A x xx 0 3x

Dettagli

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = 1 x + x x > 0 determinare le frequenze delle piccole

Dettagli

26. Corda elastica SPETTRO DELLA CORDA DISCRETA

26. Corda elastica SPETTRO DELLA CORDA DISCRETA 6. Corda elastica I modelli microscopici di un mezzo continuo consistono in sistemi di N particelle, atomi o molecole, che interagiscono tra loro con forze elettromagnetiche. Nei solidi cristallini le

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Equazione di Laplace

Equazione di Laplace Equazione di Laplace. La funzione di Green Sia, indicati con x e y due punti di R 3 E(x, y) = x y Consideriamo la rappresentazione integrale di u(x) C 2 (), anche rinunciando all ipotesi che sia armonica

Dettagli

Figura Per la sezione in figura (lato esterno di 21 cm ed interno di 19 cm), il momento d inerzia è lo stesso in ogni direzione e risulta:

Figura Per la sezione in figura (lato esterno di 21 cm ed interno di 19 cm), il momento d inerzia è lo stesso in ogni direzione e risulta: 7. TEORIA DELLE PIASTRE 7.4.2.4 Esercizio sull instabilità piastre sottili L asta in Figura 7-69 è vincolata con appoggi ad entrambi gli estremi. Tracciare il diagramma P cr l, tenendo presente che l asta

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 17/07/2012.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 17/07/2012. Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 011/1 Appello del 17/07/01. Tempo a disposizione: h30. Scrivere solamente su fogli forniti Modalità di risposta: scrivere la formula

Dettagli

Vibrazioni forzate di una trave a sezione costante

Vibrazioni forzate di una trave a sezione costante > Vibrazioni forzate di una trave a sezione costante > restart: with(plots):with(linearalgebra): > interface(displayprecision=2): equazione indefinita generale > PDE := q(x,-mu*diff(y(x,,t, = EJ*diff(y(x,,x$4);

Dettagli

1 Introduzione all operatore di Laplace.

1 Introduzione all operatore di Laplace. CORSO DI ANALISI IN PIÙ VARIABILI II CORSO DI LAUREA IN MATEMATICA L OPERATORE DI LAPLACE 1 Introduzione all operatore di Laplace. Diamo un esempio di un problema di fisica matematica la cui equazione

Dettagli

Statistica Matematica e Trattamento Informatico dei Dati. Analisi Matematica 3. Esercizi svolti nelle lezioni. V. Del Prete

Statistica Matematica e Trattamento Informatico dei Dati. Analisi Matematica 3. Esercizi svolti nelle lezioni. V. Del Prete Statistica Matematica e Trattamento Informatico dei Dati A.A.00-0 Analisi Matematica 3 Esercizi svolti nelle lezioni V. Del Prete Numeri complessi Argomenti ed esercizi svolti nelle lezioni 30.09.00 e

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Proprietà di trasporto nei semiconduttori

Dispositivi e Tecnologie Elettroniche. Esercitazione Proprietà di trasporto nei semiconduttori Dispositivi e Tecnologie Elettroniche Esercitazione Proprietà di trasporto nei semiconduttori Esercizio 1: testo Si consideri un campione di Si uniformemente drogato tipo n con una concentrazione N D =

Dettagli

Trasformata di Fourier e applicazioni

Trasformata di Fourier e applicazioni Trasformata di Fourier e applicazioni Docente:Alessandra Cutrì Trasformata di Fourier della funzione gaussiana Esempio: Calcoliamo la trasformata di Fourier di f (x) = e x 2 x n f (x) L 1 (R) per ogni

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

EQUAZIONI LINEARI DEL SECONDO ORDINE

EQUAZIONI LINEARI DEL SECONDO ORDINE EQUAZIONI LINEARI DEL SECONDO ORDINE Umberto Marconi Dipartimento di Matematica Università di Padova 1 Considerazioni generali Nel seguito le funzioni sono continue (e derivabili quanto basta) su un intervallo

Dettagli

8π c 3 ν2. dx x 2 /(e x 1) fotoni/m 2 /sec,

8π c 3 ν2. dx x 2 /(e x 1) fotoni/m 2 /sec, Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 8 Giugno 7 - (tre ore a disposizione) Soluzione 1.) Una stazione radio trasmette emettendo una potenza di un kilowatt alla frequenza di 9

Dettagli

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A)

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A) Politecnico di Milano, Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 216 Terza parte (Compito A) Sia data, per ogni valore del parametro reale

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI.

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI. ESERCIZI SULL DINMIC DI CRPI RIIDI. Risoluzione mediante equazioni di Lagrange, equilibrio relativo (forze aarenti), stazionarietà del otenziale U; stabilità dell equilibrio e analisi delle iccole oscillazioni.

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2011/2012 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

2) Si consideri il seguente sistema d equazioni differenziali di due equazioni nelle due incognite u (x,y) e v (x,y): "x + x "u.

2) Si consideri il seguente sistema d equazioni differenziali di due equazioni nelle due incognite u (x,y) e v (x,y): x + x u. Anno Accademico 008/009 Appello del 17/0/009 1) In un piano Oxy un punto materiale P di massa m scorre lungo l asse verticale Oy, mentre un altro punto materiale Q di massa m scorre lungo una retta s disposta

Dettagli

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica Chapter 3 L equazione di Schrödinger unidimensionale: soluzione analitica e numerica In questo capitolo verrà descritta una metodologia per risolvere sia analiticamente che numericamente l equazione di

Dettagli

&$0320$*1(7,&2527$17(

&$0320$*1(7,&2527$17( La teoria del campo magnetico rotante verrà utilizzata nel seguito per lo studio delle macchine asincrone e sincrone. Essa richiede la preliminare conoscenza di qualche nozione costruttiva che ora esporremo

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

FAM. Determina la velocità e l accelerazione e confronta con quanto fatto nel primo biennio.

FAM. Determina la velocità e l accelerazione e confronta con quanto fatto nel primo biennio. Serie 8: Meccanica I FAM C. Ferrari Esercizio 1 Moto accelerato 1. Per un MRUA (problema 1D) generale l evoluzione temporale è data da x(t) = x(t 0 )+v(t 0 )(t t 0 )+ 1 2 a 0(t t 0 ) 2. Determina la velocità

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

Esame di Costruzioni Aerospaziali Prof. P. Gasbarri. Nome: Cognome: Data: 17/01/ Si

Esame di Costruzioni Aerospaziali Prof. P. Gasbarri. Nome: Cognome: Data: 17/01/ Si Esercizio N. 1 Valutazione 6 Sia data una semiala la cui forma in pianta trapezoidale è ripotata in figura. L allungamento della semiala è pari a, mentre le corde all incastro con la fusoliera e all estremo

Dettagli

Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta

Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta Analisi sismica di un sistema lineare viscoso a più gradi di libertà con il metodo dello Spettro di Risposta Prof. Adolfo Santini - Dinamica delle Strutture 1 Analisi sismica con lo spettro di risposta

Dettagli

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea A di massa m e lunghezza l è libera di ruotare attorno al proprio estremo mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro di

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Equazioni Differenziali

Equazioni Differenziali Università degli Studi di Udine Anno Accademico 2012/2013 Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica Equazioni Differenziali Appello del 5 febbraio 2013 N.B.: scrivere

Dettagli

Soluzione della prova scritta di Fisica 1 del 2/03/2010

Soluzione della prova scritta di Fisica 1 del 2/03/2010 Soluzione della prova scritta di Fisica 1 del 2/03/2010 1 Quesito y T2 N 0000000000 1111111111 m T1 x T 2 m B B T1 m Figura 1: Quesito 2 L accelerazione della massa m (che coincide in modulo con l accelerazione

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

Prova Scritta di di Meccanica Analitica. 10 Febbraio 2017

Prova Scritta di di Meccanica Analitica. 10 Febbraio 2017 Prova Scritta di di Meccanica Analitica 10 Febbraio 017 Problema 1 Si consideri un punto materiale di massa m soggetto alla forza peso e vincolato ad una curva in un piano verticale y x x Schematizzare

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 9/01/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 9/01/2013. Fisica Generale per Ing. Gestionale e Chimica (Prof. F. Forti).. 2/2 ppello del 9//23. Tempo a disposizione: 2h3. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE)

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Le onde ci sono familiari - onde marine,

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 2008

COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 2008 COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 28 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo descritto dalla seguente equazione differenziale: a d2 y(t) 2 con a parametro reale.

Dettagli