Esercizio 1 Meccanica del Punto

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizio 1 Meccanica del Punto"

Transcript

1 Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa M. La pallina è vincolata da delle guide a muoversi solo in verticale. 1. Si calcoli a quale distanza dal soffitto si trova la posizione di equilibrio del sistema. 2. Se la molla viene allungata di qualche centimetro e poi rilasciata, con quale periodo oscillerà la pallina M? 3. Se la molla viene allungata fino a che la pallina tocca il pavimento e poi rilasciata, con quale velocità la pallina colpirà il soffitto? 4. Si osserva che dopo aver rimbalzato sul soffitto la pallina non arriva di nuovo a toccare il pavimento ma si arresta ad un altezza h=1m da terra. Si calcoli quanta energia si è persa nell urto con il soffitto. Dati numerici: k = 39,5 N/m, L 0=0,95m, H=3,15m, M=1,25kg, h=1,15m. Esercizio 2 Meccanica dei Sistemi Una puleggia, rappresentabile come un cilindro di massa M (uniformemente distribuita) e di diametro R, è vincolata a ruotare intorno al proprio centro. Una massa m è legata con un filo inestensibile di massa trascurabile, arrotolato sul bordo esterno. Un secondo filo è invece arrotolato su una guida priva di massa, più piccola, di raggio r: questo è legato ad una molla di costante elastica K, con l altro estremo della molla fissato ad una parate. Definiamo la posizione θ=0 della carrucola come l angolo per cui la molla è a riposo. 1. Calcolare l'angolo θ 0 che, se scelto come posizione iniziale del sistema, farebbe rimanere il sistema statico; 2. Calcolare il periodo T delle oscillazioni; Poniamo ora che il sistema in t=0 sia fermo, con la puleggia ad un angolo θ 1=2 θ 0 e che in t=t 1=T/4, il filo che lega la molla alla puleggia venga reciso, 3. Calcolare la tensione del filo che lega la massa alla puleggia per t>t 1; 4. Scrivere la legge oraria della massa m per t>0 e disegnare il grafico della posizione della massa m in funzione del tempo. Dati numerici: M= 2Kg, m=1kg, r=10cm, R=25cm, K= 1300 N/m.

2 Esercizio 3 Meccanica dei Sistemi Un sistema di pulegge, di momento d inerzia I rispetto all asse di rotazione, è costituito da due cilindri di raggi R 1 e R 2 coassiali e rigidamente connessi. Il filo che scorre sul cilindro interno è collegato ad un corpo di massa m posto su un piano orizzontale scabro con coefficiente d attrito dinamico µ d; quello che scorre sul cilindro esterno è invece collegato ad un corpo di massa M appeso. I fili sono inestensibili, di massa trascurabile e non slittano sulle pulegge. Il sistema di pulegge ruota senza attrito. m M Si determini: 1. L accelerazione angolare del sistema di pulegge. 2. La velocità della massa M dopo che è scesa di h=1 m. 3. Le tensioni dei due fili durante il moto. 4. Per quali valori del coefficiente di attrito statico µ s tra la massa m e il piano orizzontale il sistema resta in equilibrio. Dati numerici: R 1 = 20 cm, R 2=50 cm, m=10kg, M=4kg, I=6 kg m 2, µ d=0.2

3 Soluzioni Esercizio 1 1. L'equilibrio fra la forza peso e la forza elastica si ottiene per una lunghezza L eq della molla data da: k(x L0)=Mg da cui L eq=l0+mg/k=1.26m 2. Se la massa M viene spostata di poco dalla posizione di equilibrio il moto che ne consegue è oscillatorio con pulsazione ω= k π e quindi il periodo sarà T =2 M ω =2π M = 1,12 s k 3. Si conserva l energia meccanica perchè le forze in gioco (gravitazionale ed elastica) sono conservative. Scegliamo come 0 dell energia potenziale gravitazionale il pavimento: nello stato g iniziale l'energia cinetica e l'energia potenziale gravitazionale ( K ini =U ini =0) hanno valore nullo, l'energia associata alla deformazione della molla è U el ini =E ini = 1 2 k ( H L 0 ) 2 =95,6J. Quando la massa M urta con il soffitto ha energia cinetica K fin = 1 2 M v 2 fin, energia potenziale elastica U el fin = 1 2 k L 2 0 ed energia potenziale gravitazionale U g ini =MgH, per cui possiamo scrivere 1 2 k (H L 0 ) 2 = 1 2 M v 2 fin+ 1 = 2 k L 2 0+MgH ed ottenere: v fin kh M (H L 0 ) 2gH = 7.91 ms Se dopo il rimbalzo la pallina si arresta all'altezza h (K stop =0) da terra vuol dire che la molla è deformata per una lunghezza pari a H-h e l'energia meccanica totale è pari a el E stop =U stop g +U stop = 1 2 k (( H h) L 0 ) 2 +MGh = 35,9 J. Quindi nell'urto con il soffitto è stata dissipata l'energia E dissipata =E ini E stop = 59,7 J. Esercizio 2 1. Le forze che hanno un momento rispetto al centro di rotazione sono le tensioni delle due corde, pari rispettivamente alla forza elastica della molla F el =K x=k r θ e alla forza peso della massa m F p =m g, da cui l equilibrio dei momenti ci dice che K r 2 θ=m g R, da cui θ 0 =m g R/ K r 2 = 0,19rad = Il momento d inerzia della puleggia, approssimata con un cilindro, è I p = 1 2 M R2, a cui va aggiunto il momento d inerzia della massa, per un totale I= ( 1 2 M +m ) R2 =. L equazione del moto è semplicemente I θ=k r 2 θ, da cui la pulsazione risulta ω= K r2 I il periodo risulta T = 2 π ω =2 π I = 0,62 s. K r 2 = 10,2 rad s -1 e 3. Le forze che agiscono sulla massa m sono la forza peso e la tensione della corda, per cui

4 abbiamo m g T =m ÿ. Sulla puleggia, l unico momento è la tensione della corda, per cui R T =I p θ. Notando che ÿ=r θ, siamo di fronte a due equazioni in due incognite, da cui ÿ= 2 m g M+2m = 4,9 m s-2, e quindi T = 1 2 M ÿ= M m g = 4,9 N. M +2m 4. Fissiamo come y=0 l altezza della massa m quando il sistema è in equilibrio. E necessario scomporre l equazione del moto in due parti. Per 0<t <t 1 il moto è armonico. Visto che θ 1=2 θ 0, la posizione iniziale (e quindi l ampiezza delle oscillazioni) è y 1= -A = -2 θ 0R+ θ 0 R =- θ 0 R=0.047m. La fase, per avere in t=0 il corpo nel minimo, deve essere = π /2, da cui y (t )= A sin ( ωt π /2 )= A sin (ω(t t 1 )). Per t = t 1 =T/4=0,15 s quindi abbiamo y(t 1)=0 e ẏ ( t 1 )=A ω =. Sapendo l accelerazione, calcolata nel precedente problema, l equazione del moto in t>t 1 è semplicemente y (t )= A ω (t t 1 ) m g M+2m ( t t 1 ) 2 { y (t )=0,047 m sin (10,2 s 1 (t 0,15 s ) ) 0<t<0,15 s y (t )=0,48 m s 1 (t 0,15 s) 2,45 m s 2 (t 0,15 s) 2 t>0,15 s o { y (t )=0,047 m sin (10,2 s 1 t π/2) 0<t <0,15s y (t )= 0,13 m+1,24 ms 1 t 2,45 ms 2 t 2 t>0,15 s. Abbiamo quindi y t

5 Esercizio 3 Chiamiamo α l accelerazione angolare del sistema di pulegge, a l accelerazione del corpo di massa m e A l accelerazione del corpo di massa M. Deve essere: α= a R 1 = A R 2 Scriviamo le equazioni del moto dei due corpi e della puleggia, in cui con e T 2 indichiamo le tensioni dei due fili connessi rispettivamente con il corpo di massa m e con quello di massa M. Scegliamo positivo il verso del moto in cui M scende e otteniamo: Iα=T 2 R 2 R 1 ma= μ d mg MA=Mg T 2 Esprimendo le accelerazioni a ed A in termini di α e risolviamo rispetto ad α: 1. ( I+mR 2 1 +MR 2 2 )α=mgr 2 μ d mgr 1 da cui otteniamo per l accelerazione angolare α del sistema. α= MgR 2 μ d mgr 1 I +mr 2 =2,12 rad s MR 2 2. La massa M scende pertanto di moto uniformemente accelerato con un accelerazione A data da. A=αR 2 =1.06 m/s 2 Dopo essere scesa di h, la velocità raggiunta v(h) sarà (assumendo che il sistema parte da fermo). v(h)= 2 Ah =1,45 m/s 3. I valori delle due tensioni e T 2 durante il moto possono essere ottenuti dal sistema di equazioni impostato precedentemente. Si ottiene: =μ d mg+mαr 1 =23.9 N T 2 =Mg MαR 2 =35 N 4. La condizione di equilibrio prevede le seguenti relazioni: <μ s mg R 1 =T 2 R 2 Mg=T 2 in cui con µ s abbiamo indicato il coefficiente di attrito statico tra massa m e piano. Ricaviamo: μ s mgr 1 >MgR 2 ovvero μ s > MR 2 mr 1 =1

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Risoluzione problema 1

Risoluzione problema 1 UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

Argomenti di questa lezione (esercitazione)

Argomenti di questa lezione (esercitazione) Lezione mecc n.22 pag 1 Argomenti di questa lezione (esercitazione) Ancora esercizi di meccanica, in preparazione della prima prova in itinere Lezione mecc n.22 pag 2 Lezione mecc n.22 pag 3 Lezione mecc

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

Esercizi sul corpo rigido.

Esercizi sul corpo rigido. Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Anno Accademico 2015-2016 Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

IV ESERCITAZIONE. Esercizio 1. Soluzione

IV ESERCITAZIONE. Esercizio 1. Soluzione Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,

Dettagli

Conservazione dell energia

Conservazione dell energia mercoledì 15 gennaio 2014 Conservazione dell energia Problema 1. Un corpo inizialmente fermo, scivola su un piano lungo 300 m ed inclinato di 30 rispetto all orizzontale, e, dopo aver raggiunto la base,

Dettagli

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z)

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) 05-11-2015 Una pallina da tennis viene lanciata con velocità V0 = 40 m/s ed angolo rispetto all orizzontale = /3. Il campo da tennis è lungo 30 m e

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi Anno Accademico 2016-2017 Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Esercizio (tratto dal Problema 4.28 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Un punto materiale di massa m = 20 gr scende lungo un piano inclinato liscio. Alla fine del piano inclinato scorre su un tratto orizzontale scabro (µ

Dettagli

Lezione mecc n.21 pag 1. Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento

Lezione mecc n.21 pag 1. Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento Lezione mecc n.21 pag 1 Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento Lezione mecc n.21 pag 2 28 aprile 2006 Esercizio 2 Nella

Dettagli

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE LICEO SCIENTIFICO GIUDICI SAETTA E LIVATINO RAVANUSA ANNO SCOLASTICO 2013-2014 CLASSE 3 D CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE 20 esercizi per restare in forma 1) Un corpo di

Dettagli

Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto

Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Principi della dinamica. Aspetti generali 1. Un aereo di massa 25. 10 3 kg viaggia orizzontalmente ad una velocità

Dettagli

l 1 l 2 Uncorpo viene lanciato su per un piano scabro inclinato di 45 rispetto all orizzontale

l 1 l 2 Uncorpo viene lanciato su per un piano scabro inclinato di 45 rispetto all orizzontale 1. Uncorpo viene lanciato su per un piano scabro inclinato di 45 rispetto all orizzontale (µ d = 1/2). Detto T S il tempo necessario al punto per raggiungere la quota massima e T D il tempo che, a partire

Dettagli

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problema n. 1: Un carro armato, posto in quiete su un piano orizzontale, spara una granata

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

l'attrito dinamico di ciascuno dei tre blocchi sia pari a.

l'attrito dinamico di ciascuno dei tre blocchi sia pari a. Esercizio 1 Tre blocchi di massa rispettivamente Kg, Kg e Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura). Sul blocco agisce una forza orizzontale pari a N. Si determini l'accelerazione

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Fondamenti di Meccanica Esame del

Fondamenti di Meccanica Esame del Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.

Dettagli

Esercitazioni di fisica

Esercitazioni di fisica Esercitazioni di fisica Alessandro Berra 25 marzo 2014 1 Leggi di conservazione 1 Una palla da ping-pong di massa 35 g viene lanciata verso l alto con velocità iniziale v=17 m/s e raggiunge un altezza

Dettagli

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU............ Tempo a disposizione (tre esercizi) 2 ore e 30 1 esercizio (esonero) 1 ora

Dettagli

Capitolo 7 (10) N.: 7.7, 7.8, 7.10, 7.11, 7.16, 7.17, 7.19, 7.27, 7.31, 7.48

Capitolo 7 (10) N.: 7.7, 7.8, 7.10, 7.11, 7.16, 7.17, 7.19, 7.27, 7.31, 7.48 Elenco degli esercizi che saranno presi in considerazione per la II prova di esonero di Fisica Generale per Edile AL Anno Accademico 2010/11. Dal libro di testo Mazzoli- Nigro Voci Fondamenti di Fisica

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv Problemi sul lavoro Problema Un corpo di massa 50 kg viene trascinato a velocità costante per 0 m lungo un piano orizzontale da una forza inclinata di 45 rispetto all orizzontale, come in figura. Sapendo

Dettagli

DINAMICA - FORZE E ATTRITO

DINAMICA - FORZE E ATTRITO DINAMICA - FORZE E ATTRITO 1 Un treno viaggia con accelerazione costante in modulo pari ad a. a. In uno dei vagoni, una massa m pende dal soffitto attaccata ad una corda. Trovare l angolo tra la corda

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a [1] Un asta rigida omogenea di lunghezza l = 1.20 m e massa m = 2.5 kg reca ai due estremi due corpi puntiformi di massa pari a 0.2 kg ciascuno. Tale sistema è in rotazione in un piano orizzontale attorno

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

1) Fare il diagramma delle forze, cioè rappresentare graficamente tutte le forze agenti sul corpo o sui corpi considerati.

1) Fare il diagramma delle forze, cioè rappresentare graficamente tutte le forze agenti sul corpo o sui corpi considerati. Suggerimenti per la risoluzione di un problema di dinamica: 1) Fare il diagramma delle forze, cioè rappresentare graficamente tutte le forze agenti sul corpo o sui corpi considerati. Forza peso nero) Forza

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

una parete di altezza h = 2 m dopo un intervallo di

una parete di altezza h = 2 m dopo un intervallo di 17 settembre 2013 Prova scritta di Fisica Generale per Edile (esercizi 1, 2,3) Prova scritta di Fisica Generale per Edile-Architettura (esercizi 1,2,4) Come fare lo scritto: Giustificare partendo da leggi

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica. Esame di Fisica I Prova scritta del 20 luglio 2016.

Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica. Esame di Fisica I Prova scritta del 20 luglio 2016. Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica Esame di Fisica I Prova scritta del 20 luglio 2016 Compito A 1. Una bicicletta, con ruote di diametro D, procedesuuna

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è

Dettagli

Soluzioni della prima prova di accertamento Fisica Generale 1

Soluzioni della prima prova di accertamento Fisica Generale 1 Corso di Laurea in Ineneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 20 aprile 2013 Soluzioni della prima prova di accertamento Fisica Generale

Dettagli

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

direzione x. [x = 970,89 m ; θ = ]

direzione x. [x = 970,89 m ; θ = ] Prof. Roberto Capone Corso di Fisica e Geologia Mod. FISICA Esempi Prove scritte La velocità angolare di una ruota diminuisce uniformemente da 24000 giri al minuto a 18000 giri al minuto in 10 secondi.

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

III ESERCITAZIONE. Soluzione. (F x û x + F y û y ) (dx û x + dy û y ) (1)

III ESERCITAZIONE. Soluzione. (F x û x + F y û y ) (dx û x + dy û y ) (1) III ESERCITAZIONE 1. Lavoro Una particella è sottoposta ad una forza F =axy û x ax û y, dove a=6 N/m e û x e û y sono i versori degli assi x e y. Si calcoli il lavoro compiuto dalla forza F quando la particella

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata)

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata) Esame scritto del corso di Fisica 2 del 2.09.20 Corso di laurea in Informatica A.A. 200-20 (Prof. Anna Sgarlata) COMPITO A Problema n. Un asta pesante di massa m = 6 kg e lunga L= m e incernierata nel

Dettagli

FISICA (modulo 1) PROVA SCRITTA 21/02/2014

FISICA (modulo 1) PROVA SCRITTA 21/02/2014 ESERCIZI FISICA (modulo 1) PROVA SCRITTA 21/02/2014 E1. Due corpi di massa m 1 = 1000 Kg e m 2 = 1200 Kg collidono proveniendo da direzioni perpendicolari. L urto è perfettamente anelastico e i due corpi

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

Esame 28 Giugno 2017

Esame 28 Giugno 2017 Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28

Dettagli

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009 COMPITO DI FISICA SPERIMENTALE I DEL 05/12/2008 1. Un proiettile di massa M=10 kg, nel vertice della sua traiettoria parabolica esplode in due frammenti di massa m 1 e m 2 che vengono proiettati nella

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2 1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 9/01/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 9/01/2013. Fisica Generale per Ing. Gestionale e Chimica (Prof. F. Forti).. 2/2 ppello del 9//23. Tempo a disposizione: 2h3. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Esercizi di Statica - Moti Relativi

Esercizi di Statica - Moti Relativi Esercizio 1 Esercizi di Statica - Moti Relativi Esercitazioni di Fisica LA per ingegneri - A.A. 2004-2005 Un punto materiale di massa m = 0.1 kg (vedi sotto a sinistra)é situato all estremitá di una sbarretta

Dettagli

Compito di Fisica Generale (Meccanica) 13/01/2014

Compito di Fisica Generale (Meccanica) 13/01/2014 Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella

Dettagli

Esercizi di Statica. Esercitazioni di Fisica per ingegneri - A.A

Esercizi di Statica. Esercitazioni di Fisica per ingegneri - A.A Esercizio 1 Esercizi di Statica Esercitazioni di Fisica per ingegneri - A.A. 2011-2012 Un punto materiale di massa m = 0.1 kg (vedi FIG.1) è situato all estremità di una sbarretta indeformabile di peso

Dettagli

Esercizio 1. Risoluzione

Esercizio 1. Risoluzione Esercizio 1 Un blocco di 10 Kg è appoggiato su un piano ruvido, inclinato di un angolo α=30 rispetto ad un piano orizzontale, ed alto al massimo 6 m. Determinare la forza F (aggiuntiva alla forza d attrito)

Dettagli

m h M θ Esercizio (tratto dal problema 7.42 del Mazzoldi 2)

m h M θ Esercizio (tratto dal problema 7.42 del Mazzoldi 2) 1 Esercizio (tratto dal problema 7.42 del Mazzoldi 2) Un disco di massa M = 8Kg e raggio R è posto sopra un piano, inclinato di un angolo θ = 30 o rispetto all orizzontale; all asse del disco è collegato

Dettagli

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta Fisica Generale 1 Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE www.aliceappunti.altervista.org IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE Nel moto circolare uniforme, il moto è generato da una accelerazione centripeta, diretta verso

Dettagli

Secondo Appello Estivo del corso di Fisica del

Secondo Appello Estivo del corso di Fisica del Secondo Appello Estivo del corso di Fisica del 25.7.2012 Corso di laurea in Informatica A.A. 2011-2012 (Prof. Paolo Camarri) Cognome: Nome: Matricola: Anno di immatricolazione: Problema n.1 Una semisfera

Dettagli

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere Facoltà di Farmacia - Anno Accademico 2014-2015 A 08 Aprile 2015 Esercitazione in itinere Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio

Dettagli

Compito di Fisica Generale (Meccanica) 17/01/2013

Compito di Fisica Generale (Meccanica) 17/01/2013 Compito di Fisica Generale (Meccanica) 17/01/2013 1) Un proiettile massa m è connesso ad una molla di costante elastica k e di lunghezza a riposo nulla. Supponendo che il proiettile venga lanciato a t=0

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

FISICA GENERALE T-A 25 Luglio 2013 prof. Spighi (CdL ingegneria Energetica)

FISICA GENERALE T-A 25 Luglio 2013 prof. Spighi (CdL ingegneria Energetica) FISICA GENERALE T-A 5 Luglio 013 prof. Spighi (CdL ingegneria Energetica) 1) L energia potenziale di un campo di forze è pari a V (x, y, z) = α y βz. Determinare: a) l espressione della forza; b) le equazioni

Dettagli

Dottorato in Fisica XIV ciclo n.s. 21 gennaio 2013 Prova scritta n.1

Dottorato in Fisica XIV ciclo n.s. 21 gennaio 2013 Prova scritta n.1 Dottorato in Fisica XIV ciclo n.s. 1 gennaio 013 Prova scritta n.1 Compito 1. I processi oscillatori in fisica. Conseguenze della corrente di spostamento nelle equazioni di Maxwell. Un cilindro di raggio

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N

Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N Lavoro ed energia 1 Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N 2 vettorizzare una traiettoria Si divide la traiettoria s in

Dettagli

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL 27-03-2014 ESERCIZIO 1 Un ragazzo, in un parco divertimenti, entra in un rotor. Il rotor è una stanza cilindrica che può essere messa in rotazione attorno al

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1 7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale

Dettagli

Esercitazione 6 - Dinamica del punto materiale e. del corpo rigido

Esercitazione 6 - Dinamica del punto materiale e. del corpo rigido Università degli Studi di Bergamo Corso di Laurea in Ingegneria essile Corso di Elementi di Meccanica Esercitazione 6 - Dinamica del punto materiale e Esercizio n. del corpo rigido Studiare la dinamica

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

F (t)dt = I. Urti tra corpi estesi. Statica

F (t)dt = I. Urti tra corpi estesi. Statica Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Lez. 9 Moto armonico

Lez. 9 Moto armonico Lez. 9 Moto armonico Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it +39-081-676137 2 1 Un

Dettagli