MODULO: Medie. Francesco Bologna Enrico Rogora. CASIO Università di Roma Luglio Avellino

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MODULO: Medie. Francesco Bologna Enrico Rogora. CASIO Università di Roma Luglio Avellino"

Transcript

1 MODULO: Francesco Bologna Enrico CASIO Università di Roma Luglio Avellino (CASIO UniRoma) Luglio / 25

2 A(x 1,..., x n ) = 1 n (x x n ) Senza Calcolatrice Lanciare 12 volte un dado, raccogliere i risultati, calcolare la media. Con Calcolatrice Salvare in List 1 60 numeri interi casuali prodotti con Int(1,6,60). Implementare direttamente la definizione di media con il comando Sum List 1/Dim List 1. Verificare che coincide con Mean List 1 (CASIO UniRoma) Luglio / 25

3 Senza Calcolatrice G(x 1,..., x n ) = n x 1 x n Usare i dati dell esercizio precedente per calcolare la media. Con Calcolatrice Implementare direttamente la definizione di media con il comando (Prod List 1)ˆ (1/Dim List 1). (CASIO UniRoma) Luglio / 25

4 Senza Calcolatrice n H(x 1,..., x n ) = 1 x x n Usare i dati dell esercizio precedente per calcolare la media. Con Calcolatrice Implementare direttamente la definizione di media con il comando (1/(Sum (1/List 1)/Dim(List 1)). (CASIO UniRoma) Luglio / 25

5 Le medie (CASIO UniRoma) Luglio / 25

6 Relazioni H G A Una macchina percorre con velocità media v 1 un tratto di strada di lunghezza pari a s 1 in un tempo t. Nello stesso tempo t percorre un successivo tratto di strada di lunghezza pari a s 2 con velocità media v 2. Qual è la velocità media v sull intero tragitto di lunghezza s 1 + s 2, percorso nel tempo 2t? Soluzione: la media delle due velocità. Una macchina percorre con velocità media v 1 un tratto di strada di lunghezza pari a s in un tempo t 1. Percorre un successivo tratto di strada della stessa lunghezza s in un tempo t 2 con velocità media v 2. Qual è la velocità media v nell intervallo di tempo t 1 + t 2, sul tragitto di lunghezza 2s? Soluzione: la media delle due velocità. (CASIO UniRoma) Luglio / 25

7 Quando usare la media A geometric mean is often used when comparing different items finding a single figure of merit for these items when each item has multiple properties that have different numeric ranges. For example, the geometric mean can give a meaningful average to compare two companies which are each rated at 0 to 5 for their environmental sustainability, and are rated at 0 to 100 for their financial viability. If an arithmetic mean were used instead of a geometric mean, the financial viability is given more weight because its numeric range is larger so a small percentage change in the financial rating (e.g. going from 80 to 90) makes a much larger difference in the arithmetic mean than a large percentage change in environmental sustainability (e.g. going from 2 to 5). The use of a geometric mean normalizes the ranges being averaged, so that no range dominates the weighting, and a given percentage change in any of the properties has the same effect on the geometric mean. So, a 20% change in environmental sustainability from 4 to 4.8 has the same effect on the geometric mean as a 20% change in financial viability from 60 to 72. [Tratto da wikipedia, ma ci sono esempi migliori] (CASIO UniRoma) Luglio / 25

8 e media La media e la media sono legate attraverso il logaritmo e la funzione esponenziale. G(x 1,..., x n ) = e A(log e(x 1 ),...,log e (x n ) ) (CASIO UniRoma) Luglio / 25

9 b tra due grandezze a < c definite tramite proporzioni (1) b a c b = a a (6) b a c b = c b (2) b a c b = a b (7) c a b a = c a (3) b a c b = a c (8) c a c b = c a (4) b a c b = c a (9) c a b a = b a (5) b a c b = b a (10) c a c b = b a (1) media ; (2) media ; (3) media ; (4) media contro; (CASIO UniRoma) Luglio / 25

10 aritmetico Dati due numeri a 0, b 0 possiamo considerare la loro media a 1 = A(a 0, b 0 ) e la loro media b 1 = H(a 0, b 0 ). Iteriamo la costruzione, considerando le due successioni a i = A(a i 1, b i 1 ), b i = H(a i 1, b i 1 ). Si può dimostrare che: 1 le due successioni convergono allo stesso limite, che si dice la media aritmetico dei due numeri; 2 la media aritmetico coincide con la media. Su queste proprietà si basa l algoritmo babilonese per il calcolo della radice quadrata di un numero. (CASIO UniRoma) Luglio / 25

11 aritmetico Dati due numeri a 0, b 0 possiamo considerare la loro media a 1 = A(a 0, b 0 ) e la loro media b 1 = G(a 0, b 0 ). Iteriamo la costruzione, considerando le due successioni. a i = A(a i 1, b i 1 ), b i = G(a i 1, b i 1 ). Si può dimostrare che: 1 le due successioni convergono allo stesso limite, che si dice la media aritmetico (agm) dei due numeri; 2 agm(x, y) = π 4 K ( x+y x y x+y ), dove K(k) = π/2 0 l integrale ellittico completo del primo tipo. dθ 1 k 2 sin 2 θ è Su queste proprietà si basano diversi algoritmi efficienti per il calcolo di π, delle funzioni trascendenti elementari e per la valutazione numerica degli integrali ellittici. (CASIO UniRoma) Luglio / 25

12 aritmetico e calcolo di π I [1][STO][ALPHA][tan][EXE] [0][STO][ALPHA][)][EXE] [1][STO][ALPHA][X,Theta,T][EXE] [1][/][SHIFT][x^2][2][Right][STO][ALPHA][log][EXE] ***** [ALPHA][)][+][1][STO][ALPHA][)][EXE] [(][ALPHA][X,Theta,T][+][ALPHA][log][)][/][2] [STO][ALPHA][sin][EXE] [SHIFT][x^2][ALPHA][X,Theta,T][*][ALPHA][log][Right][STO] [ALPHA][cos][EXE] [(][ALPHA][X,Theta,T][-][ALPHA][log][)][/][2][STO] [ALPHA][ln][EXE] [ALPHA][sin][STO][ALPHA][X,Theta,T][EXE] [ALPHA][cos][STO][ALPHA][log][EXE] (CASIO UniRoma) Luglio / 25

13 aritmetico e calcolo di π II [ALPHA][tan][-][2][^][ALPHA][)][+][1][Right][*][ALPHA] [ln][^][2][right][sto][alpha][tan][exe] [4][ALPHA][log][^][2][Right][/][ALPHA][tan][EXE] [4][ALPHA][X,Theta,T][^][2][Right][/][ALPHA][tan][EXE] ++++ Ripeti da ***** (CASIO UniRoma) Luglio / 25

14 armonico Dati due numeri a 0, b 0 possiamo considerare la loro media a 1 = H(a 0, b 0 ) e la loro media b 1 = G(a 0, b 0 ). Iteriamo la costruzione, considerando le due successioni. a i = H(a i 1, b i 1 ), b i = G(a i 1, b i 1 ). Si può dimostrare che le due successioni convergono allo stesso limite, che si dice la media armonico (hgm) dei due numeri. min(x, y) H(x, y) hgm(x, y) G(x, y) = ham(x, ya) agm(x, y) A(x, y) max(x, y) (CASIO UniRoma) Luglio / 25

15 di potenza (di Hölder o di Minkovski) M p (x 1,..., x n ) = ( 1 n n i=1 x p i ) 1 p p, min; p = 1: media, p 0: media, p = 1: media, p +, max. di potenza di Lehmer (CASIO UniRoma) Luglio / 25

16 di potenza di a, b, c di potenza di Lehmer (CASIO UniRoma) Luglio / 25

17 di Lehmer L p (x 1,..., x n ) = n i=1 x p i n i=1 x p 1 i La media contro è media di Lhemer per p = 2. di potenza di Lehmer (CASIO UniRoma) Luglio / 25

18 Confronto Lehmer-Potenza di due numeri a e c di potenza di Lehmer (CASIO UniRoma) Luglio / 25

19 potenza e di Lehmer C(x 1,..., x n ) [min(x 1,..., x n ), max(x 1,..., x n )] C(t x 1,..., t x n ) = t C(x 1,..., x n ) (t > 0). Corollario della prima: C(x,..., x) = x. di Kolmogorov (CASIO UniRoma) Luglio / 25

20 di Kolmogorov Sia f una funzione continua e iniettiva da un intervallo I della retta reale in R. Definiamo, con Kolmogorv, f -media di x 1,..., x n I M f (x 1,..., x n ) = f 1 ( f (x1 ) + + f (x n ) n f media f media x 1/x log x x p di potenza ). di Kolmogorov (CASIO UniRoma) Luglio / 25

21 di Kolmogorv Se x = M f (x 1,..., x b ), M(x,..., x) = M f (x 1,..., x b ) Una f -media è omogenea se e solo se è una media di potenza o la media. di Kolmogorov (CASIO UniRoma) Luglio / 25

22 Scopo di una media è spesso quello di semplificare un problema sostituendo a tante osservazioni numeriche un singolo numero. Quando è possibile descrivere un problema con una funzione f (detta richiesta di invarianza), la corrispondente media x è definita ponendo f (x 1,..., x n ) = f (x,..., x). La media di può essere esterna all intervallo [min, max]. (CASIO UniRoma) Luglio / 25

23 Applicazione di Semplici casi geometrici: determinare il quadrato equivalente a un rettangolo, dove per equivalente si intende: stesso perimetro (media dei lati); stessa area (media dei lati); stessa diagonale (media quadratica dei lati). Altre applicazioni: velocità per mantenere il tempo di viaggio costante e il consumo di carburante. (CASIO UniRoma) Luglio / 25

24 Distanza minima da un insieme di numeri d 1 (x; x 1,..., x n ) = (x x 1 ) (x x n ) 2. Il minimo è la media. d 2 (x; x 1,..., x n ) = x x x x n. Il minimo è la mediana. (CASIO UniRoma) Luglio / 25

25 A = n i=1 w i x i n i=1 w i G = ( n i=1 x w i i ) 1/ n i=1 w i ( n i=1 M p,w (x) = w i x p i n i=1 w i ) 1 p H = n i=1 w i n w i i=1 x i M f = f 1 ( w1 f (x 1 )+ +w nf (x n) L p,w (x) = w 1 + +w n ) n k=1 w i x p k n k=1 w i x p 1 k (CASIO UniRoma) Luglio / 25

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

Matematica ed Elementi di Statistica. L insieme dei numeri reali

Matematica ed Elementi di Statistica. L insieme dei numeri reali a.a. 2010/11 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prima Prova Parziale (9//009) Università di Verona - Laurea in Biotecnologie - A.A. 009/0 Tema A Matematica e Statistica Prima Prova Parziale di MATEMATICA (9//009) Università di

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte Limiti e continuità Richiami sulle unzioni - parte II Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 };

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 }; ESERCIZI. INSIEMISTICA. Sia l insieme dei punti dello spazio, Γ una sfera e N il suo polo nord. Quali delle seguenti relazioni sono corrette? N Γ; N ; Γ ; Γ ; N ; Γ N.. Dire quali dei seguenti insiemi

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro

Dettagli

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana Fisica per Medicina Lezione - Matematica e Cinematica Dr. Cristiano Fontana Dipartimento di Fisica ed Astronomia Galileo Galilei Università degli Studi di Padova 17 ottobre 17 Indice Richiami di matematica

Dettagli

Distribuzione di Frequenza: Esempio

Distribuzione di Frequenza: Esempio Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati

Dettagli

Medie, baricentri e matrici

Medie, baricentri e matrici Medie, baricentri e matrici Un problema tra il classico e il moderno Federico Poloni PhD student, Scuola Normale Superiore, Pisa Bergamo, 30 Gennaio 2008 Altri concetti di media k reali positivi a 1,...,

Dettagli

Funzioni elementari: potenze e esponenziali 1 / 1

Funzioni elementari: potenze e esponenziali 1 / 1 Funzioni elementari: potenze e esponenziali 1 / 1 Potenze e proprietá: esponente naturale 2 / 1 La funzione potenza con esponente naturale é definita come g: R R x x n dove per ogni x R si ha n N e n 1.

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

Analisi Matematica. Alcune funzioni elementari

Analisi Matematica. Alcune funzioni elementari a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Alcune funzioni elementari Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Nel Sistema Internazionale l unità di misura dell angolo è il radiante

Nel Sistema Internazionale l unità di misura dell angolo è il radiante Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale

Dettagli

Appendice A. Conduttori elettrici, sezioni e diametri Appendix A. Wires, Sizes and AWG diameters

Appendice A. Conduttori elettrici, sezioni e diametri Appendix A. Wires, Sizes and AWG diameters Appendice A. Conduttori elettrici, sezioni e diametri Appendix A. Wires, Sizes and AWG diameters A.1 Misura dei conduttori elettrici, sezioni e diametri AWG and kcmil wires sizes measurement L America

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Statistica. Matematica con Elementi di Statistica a.a. 2015/16

Statistica. Matematica con Elementi di Statistica a.a. 2015/16 Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

CLASSE SECONDA. MODULI CONTENUTI MESI OBIETTIVI - Numeri naturali, razionali e settembre relativi

CLASSE SECONDA. MODULI CONTENUTI MESI OBIETTIVI - Numeri naturali, razionali e settembre relativi Prof. Spezzano piano di lavoro relativo alla classe 2A a.s. 2018/19 FINALITA EDUCATIVE Gli obiettivi prioritari sono quelli di creare gruppo-classe, favorendo delle dinamiche di gruppo coese, collaborare

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

Disequazioni in una variabile. Disequazioni in due variabili

Disequazioni in una variabile. Disequazioni in due variabili Disequazioni in una variabile Disequazioni in due variabili 2 () 2 3 > (2) 2 + + > (3) 2 3 + 2 < (4) 2 > + (5) 2 < 3 (6) 3 8 > 5 + 3 + + 5 (7) + < 2 < 2 (8) 2 α (α parametro reale) (9) 3 log /2 ( ) < 2

Dettagli

Constant Propagation. A More Complex Semilattice A Nondistributive Framework

Constant Propagation. A More Complex Semilattice A Nondistributive Framework Constant Propagation A More Complex Semilattice A Nondistributive Framework 1 The Point Instead of doing constant folding by RD s, we can maintain information about what constant, if any, a variable has

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato

Dettagli

Analisi Numerica: Introduzione

Analisi Numerica: Introduzione Analisi Numerica: Introduzione S. Maset Dipartimento di Matematica e Geoscienze, Università di Trieste Analisi numerica e calcolo numerico Analisi numerica e calcolo numerico La matematica del continuo

Dettagli

College Algebra. Logarithms: Denitions and Domains. Dr. Nguyen November 9, Department of Mathematics UK

College Algebra. Logarithms: Denitions and Domains. Dr. Nguyen November 9, Department of Mathematics UK College Algebra Logarithms: Denitions and Domains Dr. Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK November 9, 2018 Agenda Logarithms and exponents Domains of logarithm functions Operations

Dettagli

QUESITO 1 = 49 [ (25 3) = QUESITO 2

QUESITO 1 = 49 [ (25 3) = QUESITO 2 www.matefilia.it Scuole italiane all estero (Europa) 008 Quesiti QUESITO 1 La regione R delimitata dal grafico di y = 7 x, dall asse x e dalla retta x= è la base di un solido S le cui sezioni, ottenute

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

Prof. Emanuele ANDRISANI

Prof. Emanuele ANDRISANI Potenze con esponente razionale Sia a > 0 e a 1. Abbiamo definito a x quando x N. Poniamo a 0 = 1 a x = a m n = n a m se x = m n Q, x > 0, m, n N a x = 1 a x se x Q, x > 0. È così definita la potenza a

Dettagli

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)).

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)). FUNZIONI Siano X e due insiemi. Def. Una funzione f definita in X a valori in è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in. Def. L insieme è detto codominio di

Dettagli

La funzione esponenziale e logaritmica

La funzione esponenziale e logaritmica La funzione esponenziale e logaritmica Roberto Boggiani Versione 4. 8 aprile 24 Le potenze dei numeri reali. Potenza con esponente intero di un numero reale Diamo la seguente Definizione. Sia a R ed n

Dettagli

1. Si considerino: l insieme A degli iscritti all Università di Pavia e l insieme B dei residenti a Pavia. Descrivere

1. Si considerino: l insieme A degli iscritti all Università di Pavia e l insieme B dei residenti a Pavia. Descrivere . Si considerino: l insieme A degli iscritti all Università di Pavia e l insieme B dei residenti a Pavia. Descrivere A B, A B, A \ B, B \ A.. Si considerino: l insieme A dei multipli di e l insieme B dei

Dettagli

NUMERI SCUOLA SECONDARIA I GRADO

NUMERI SCUOLA SECONDARIA I GRADO NUMERI Eseguire addizioni, sottrazioni, moltiplicazioni, divisioni e confronti tra i numeri conosciuti (numeri naturali, numeri interi, frazioni e numeri decimali), quando possibile a mente oppure utilizzando

Dettagli

Analisi Matematica I

Analisi Matematica I Versione: 8 ottobre 5 Università di Pisa Corso di laurea in Ingegneria Gestionale Testi e soluzioni degli scritti d esame di Analisi Matematica I a.a. 4-5 Giovanni Alberti Giovanni Alberti Dipartimento

Dettagli

Matematica per le scienze sociali Successioni e funzioni. Francesco Lagona

Matematica per le scienze sociali Successioni e funzioni. Francesco Lagona Matematica per le scienze sociali Successioni e funzioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) / 8 Outline Successioni 2 Funzioni 3 Funzioni elementari 4 Limiti

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0.

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0. FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. PSfrag replacements X Y Def. L

Dettagli

Analisi Matematica III 16 Gennaio (x 1) 2 + y2

Analisi Matematica III 16 Gennaio (x 1) 2 + y2 Analisi Matematica III 6 Gennaio 7. ( punti) Calcolare il seguente integrale triplo ( e z + y(x ) + dove = {(x, y, z) R 3 : (x ) + y 4 + z }. y + (x ) + y 4 + z ) dxdz, Il dominio di integrazione è un

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09 UNIVERSITA DEL SALENTO Prova scritta di ANALISI MATEMATICA I 19/01/09 1 Determinare sup/inf max/min) e insieme dei punti di accumulazione del seguente insieme: E = {x R e x 5e x + 6) arctan x 1 x) < 1}

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

SOLUZIONE DELLA PRIMA SIMULAZIONE DELLA PROVA DI MATEMATICA E FISICA CON LA CALCOLATRICE GRAFICA

SOLUZIONE DELLA PRIMA SIMULAZIONE DELLA PROVA DI MATEMATICA E FISICA CON LA CALCOLATRICE GRAFICA SOLUZIONE DELLA PRIMA SIMULAZIONE DELLA PROVA DI MATEMATICA E FISICA CON LA CALCOLATRICE GRAFICA Francesco Bologna Domenico Giordano Enrico Rogora Luca Sbano Sergio Schiavone Ilaria Veronesi CASIO ITALIA

Dettagli

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b 8 Esercizi di Analisi Matematica ersione 2006 razioni Argomenti: Operazioni sulle frazioni Difficoltà: Tempo richiesto: Completare la seguente tabella: a b a + b a b 1/3 1/2 1/3 1/2 1/3 1/2 a b a a + b

Dettagli

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA per i Licei RESPONSABILE: CONFORTI U. CLASSE: prima Liceo Artistico e Musicale Utilizzare le tecniche e le procedure

Dettagli

Certamen Nazionale di Matematica R. Caccioppoli

Certamen Nazionale di Matematica R. Caccioppoli Certamen Nazionale di Matematica R. Caccioppoli Dipartimento di Matematica e Applicazioni R. Caccioppoli Sezione napoletana della Mathesis A. Morelli Liceo Scientifico Statale G. Mercalli NAPOLI, 07 Aprile

Dettagli

Finite Model Theory / Descriptive Complexity: bin

Finite Model Theory / Descriptive Complexity: bin , CMPSCI 601: Recall From Last Time Lecture 19 Finite Model Theory / Descriptive Compleity: Th: FO L DSPACE Fagin s Th: NP SO. bin is quantifier-free.!#"$&% ('*), 1 Space 0 1 ) % Time $ "$ $ $ "$ $.....

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2017/18)

Diario del corso di Analisi Matematica 1 (a.a. 2017/18) Diario del corso di Analisi Matematica 1 (a.a. 2017/18) 22 settembre 2017 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 25 settembre

Dettagli

Esercitazione I - Ripasso di matematica

Esercitazione I - Ripasso di matematica Esercitazione I - Ripasso di matematica Potenze Le proprietà fondamentali delle potenze sono Da queste proprietà segue che a 0 = 1, a n a m = a n+m, a n a m = an m. Esercizio 1 (a n ) m = a n m, a n =

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 31 agosto 2011 Testo e soluzioni

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 31 agosto 2011 Testo e soluzioni Esame di Calcolo Numerico per Informatica A.A. 21/11 Proff. S. De Marchi e M. R. Russo 31 agosto 211 Testo e soluzioni L esame consiste di 4 domande aperte e 1 esercizi a risposta multipla. Per gli esercizi

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

2.9 Moltiplicazione di serie

2.9 Moltiplicazione di serie 2.9 Moltiplicazione di serie A prima vista il problema di moltiplicare fra loro due serie sembra irrilevante. Fare il prodotto di due serie significa moltiplicare tra loro le successioni delle rispettive

Dettagli

Foglio di Esercizi 9 con Risoluzione 29 dicembre 2015

Foglio di Esercizi 9 con Risoluzione 29 dicembre 2015 Matematica per Farmacia, a.a. 5/6 Foglio di Esercizi 9 con Risoluzione 9 dicembre 5 Esercizio. Integrare per parti: L integrale che poi si ottiene puó essere risolto con una sostituzione). ln d e arctan

Dettagli

Gli insiemi, la logica

Gli insiemi, la logica Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) A (d) A risp (e) {1, } A Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (26/06/203) Università di Verona - Laurea in Biotecnologie - A.A. 202/3 Matematica e Statistica Prova di MATEMATICA (26/06/203) Università di Verona - Laurea in Biotecnologie

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Analisi Matematica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Appello n. 3 prova scritta ( Marzo 6) Importante: Per l

Dettagli

PNI 2004 QUESITO 1. Il grado sessagesimale è definito come la novantesima parte dell angolo retto.

PNI 2004 QUESITO 1. Il grado sessagesimale è definito come la novantesima parte dell angolo retto. www.matefilia.it PNI 2004 QUEITO 1 Il grado sessagesimale è definito come la novantesima parte dell angolo retto. Il grado centesimale è definito come la centesima parte dell angolo retto. La misura in

Dettagli

f(xy) = f(x + y) ( f(x) + f(y) ) Problema 6 (WC15-5). Siano a, b, c reali positivi tali che ab + bc + ca = 1. Dimostrare che c + 6 3a 1

f(xy) = f(x + y) ( f(x) + f(y) ) Problema 6 (WC15-5). Siano a, b, c reali positivi tali che ab + bc + ca = 1. Dimostrare che c + 6 3a 1 Problema (WC5-). Siano a, b e c reali positivi tali che a 3 + b 3 + c 3 = a 4 + b 4 + c 4. vale: a a 2 + b 4 + c 4 + b a 4 + b 2 + c 4 + c a 4 + b 4 + c 2 Problema 2 (WC5-2old). Determinare tutte le funzioni

Dettagli

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A.2015-2016 22 SETTEMBRE 2015 3 ore 14-17 Insiemi e operazioni tra insiemi. Numeri reali. Assiomi dei numeri

Dettagli

CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO

CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO MATEMATICA CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO Numeri 1. Eseguire addizioni sottrazioni, moltiplicazioni, divisioni e confronti tra numeri naturali, frazioni, numeri decimali, quando possibile a mente

Dettagli

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati:

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: ANALISI Soluzione esercizi 2 gennaio 212 12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: (x, y) R 2 : x < y} (x, y) R 2 : 2 x 3} (x, y) R 2 : x 2 +

Dettagli

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S Programma svolto di aritmetica e geometria classe 1 ^ D A.S. 2014-2015 Scuola Secondaria di primo grado S. Quasimodo di Fornacette Istituto Comprensivo di Calcinaia DOCENTE: Monica Macchi UNITA ARITMETICA

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

PRIME L espressione 1 6 ( ) è uguale a A B. 3 7 C. 3 8 D E Quante soluzioni reali ha l equazione. x 4 2x 2 1 = 0?

PRIME L espressione 1 6 ( ) è uguale a A B. 3 7 C. 3 8 D E Quante soluzioni reali ha l equazione. x 4 2x 2 1 = 0? PRIME 20. L espressione è uguale a A. 2 6 B. 7 C. 8 D. 2 8 E. 9 6 ( 6 7) 2. Quante soluzioni reali ha l equazione A. Nessuna B. Una C. Due D. Tre E. Quattro x 4 2x 2 = 0? . In figura è rappresentato il

Dettagli

Proprietà delle notazioni asintotiche

Proprietà delle notazioni asintotiche Proprietà delle notazioni asintotiche Punto della situazione Cos è un algoritmo Tempo di esecuzione T(n) Analisi di algoritmi: analisi asintotica di T(n) Notazioni asintotiche Argomento di oggi Proprietà

Dettagli

Esercizi. Esercizio 1. Date le funzioni f(x) = x 2 3x + 2 e g(x) = 2x 1,

Esercizi. Esercizio 1. Date le funzioni f(x) = x 2 3x + 2 e g(x) = 2x 1, Esercizi Esercizio 1. Date le funzioni f(x) = x 2 3x + 2 e g(x) = 2x 1, (a) dire quanto vale f g e qual è il suo insieme di definizione; (b) dire quanto vale g f e qual è il suo insieme di definizione;

Dettagli

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici) Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:

Dettagli

LINGUAGGIO MATEMATICO DI BASE, MODELLIZZAZIONE E RAGIONAMENTO

LINGUAGGIO MATEMATICO DI BASE, MODELLIZZAZIONE E RAGIONAMENTO LINGUGGIO MTEMTIO I SE, MOELLIZZZIONE E RGIONMENTO. Per tutti i valori di p e q diversi da zero, l espressione è equivalente a p q (q + 2p) p + 2 q [*] p + 2 q p + 2p q q p + 2 q rgomenti:. lgebra Parole

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

Esponenziale complesso

Esponenziale complesso Esponenziale complesso Paola Rubbioni Analisi Matematica II - CdL in Ingegneria Informatica ed Elettronica a.a. 2016/2017 1 Serie nel campo complesso Per fornire il concetto di serie nel campo complesso

Dettagli

; c) log 3 5 (x 2 1) log 5 (x + 1). 1 log(x + 4) ; c) f(x) =

; c) log 3 5 (x 2 1) log 5 (x + 1). 1 log(x + 4) ; c) f(x) = Corso di Analisi Matematica I per Ingegneria Gestionale, a.a. 25-6 Esercizi per il ricevimento del 3 ottobre 25. Semplificare il più possibile le seguenti espressioni: a) 32x+4 9 ; b) x3 x 2 x+ ( x) 4

Dettagli

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:... es. es. es. es.4 es.5 somma 5 4 8 8 5 Analisi Matematica : Primo Parziale,.4.7, Versione A Cognome e nome:....................................matricola:.......... Calcolare la lunghezza della curva di

Dettagli

Proprietà delle notazioni asintotiche. Mercoledì 1 ottobre 2014

Proprietà delle notazioni asintotiche. Mercoledì 1 ottobre 2014 Proprietà delle notazioni asintotiche Mercoledì 1 ottobre 2014 Punto della situazione Cos è un algoritmo Tempo di esecuzione T(n) Analisi di algoritmi: analisi asintotica di T(n) Notazioni asintotiche

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

I.C. don Milani- Vimercate

I.C. don Milani- Vimercate MATERIA MATEMATICA COMPETENZA/E TRATTA/E DAL PROFILO DEL MODELLO PER LA CERTIFICAZIONE DELLE COMPETENZE Utilizza le sue conoscenze matematiche per analizzare dati e fatti della realtà e per verificare

Dettagli

Con la formula che usa le aree delle sezioni trasversali abbiamo. h l(y) 2 d y V = cos y log(x 1) = x 1

Con la formula che usa le aree delle sezioni trasversali abbiamo. h l(y) 2 d y V = cos y log(x 1) = x 1 PROVA SCRITTA di MATEMATICA Laurea triennale in Sc. Geologiche e Sc. Naturali Facoltà di S.M.F.N. Seconda sessione, primo appello - A.A. 1/11-13 giu 11 Gli esercizi sono da risolvere in modo esplicito.

Dettagli

Relazioni e funzioni

Relazioni e funzioni RF1 Relazioni e funzioni Risposta corretta: V F F Formato: Scelta multipla complessa Traguardo: Utilizza semplici modelli matematici dati per descrivere situazioni e fenomeni reali. Linee Guida e Indicazioni

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di DERIVATE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Secanti e tangenti Sia f : D R, sia I = [a, b] oppure I = (a, b),

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 19 Ottobre

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 19 Ottobre Esercizi Di Geometria (BAER Canale Da consegnare Lunedi 9 Ottobre SETTIMANA 3 (2 8 Ottobre Moltiplicazione di matrici Gli esercizi sono presi dal libro Intorduction to Linear Algebra di Serge Lang Esercizio

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2018/19)

Diario del corso di Analisi Matematica 1 (a.a. 2018/19) Diario del corso di Analisi Matematica 1 (a.a. 2018/19) 17 settembre 2018 (2 ore) [Presentazione del corso di studi, da parte del Direttore di Dipartimento.] 19 settembre 2018 (2 ore) Presentazione del

Dettagli

e 2x2 1 (x 2 + 2x 2) ln x

e 2x2 1 (x 2 + 2x 2) ln x Corso di laurea in Ingegneria delle Costruzioni A.A. 2016-17 Analisi Matematica - Esercitazione del 04-01-2017 Ripasso di alcuni argomenti in programma Gli esercizi sono divisi in più pagine, per separare

Dettagli

Liceo delle Scienze Umane Fabrizio De André Dipartimento di Matematica e Fisica Programma di Matematica per il Biennio: a.s.

Liceo delle Scienze Umane Fabrizio De André Dipartimento di Matematica e Fisica Programma di Matematica per il Biennio: a.s. Liceo delle Scienze Umane Fabrizio De André Dipartimento di Matematica e Fisica Programma di Matematica per il Biennio: a.s. 2016-2017 Utilizzare le tecniche e le procedure del calcolo aritmetico e algebrico

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2.

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2. Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-7-6 - È obbligatorio consegnare tutti i fogli, anche la brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli