Esercitazione I - Ripasso di matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione I - Ripasso di matematica"

Transcript

1 Esercitazione I - Ripasso di matematica Potenze Le proprietà fondamentali delle potenze sono Da queste proprietà segue che a 0 = 1, a n a m = a n+m, a n a m = an m. Esercizio 1 (a n ) m = a n m, a n = 1 a n. Si verifichi che = 10 5, ( 10 3 ) = 10 6, = 10, ( ) (8 10 ) ( ) ( ) = 10 18, 30 0,0048 0,3 400 = Esercizio L età dell universo è circa 13, 7 miliardi di anni. Si dimostri che essa equivale a 4, secondi. 1 anno = 365 giorni, 1 giorno = 4 ore, 1 ora = 60 minuti, 1 minuto = 60 secondi. Perciò 1 anno = secondi = 3, secondi, da cui 13,7 miliardi di anni = 13, , secondi = 4, secondi. 1

2 Logaritmo Si definisce logaritmo in base a di x (scriviamo log a x) la quantità da dare come esponente ad a per ottenere x. Ad esempio log 4 = infatti = 4, log 8 = 3 infatti 3 = 8, log = infatti 10 = 100. Sulle calcolatrici il tasto log è una abbreviazione di log 10 mentre il tasto ln indica log e, dove e =, Le proprietà fondamentali del logaritmo sono log a 1 = 0, log a (x y) = log a x + log a y, ( ) x log a = log y a x log a y. Da queste proprietà segue che log a x n = nlog a x. delle equazioni di secondo grado Per risolvere l equazione ax + bx + c = 0, come prima cosa si calcola, = b 4ac. Dopodiché Se < 0 non esiste alcun numero reale che sia soluzione dell equazione. Se > 0 l equazione ha due soluzioni distinte x + = b + a x = b a,. Se = 0 l equazione ha una sola soluzione x = b a.

3 Esercizio 3 Si studino le soluzioni delle seguenti equazioni 1) x 4x + 3 = 0, ) x 4x + = 0, 3) x 4x + 1 = 0. Per la prima equazione si calcola che = 8. Perciò la prima equazione non ha soluzioni. Per la seconda equazione si calcola che = 0. Perciò la seconda equazione ha una sola soluzione, x = 1. Per la terza equazione si calcola che = 8. Perciò la terza equazione ha due soluzioni, Esercizio 4 x + = 1 + 1, x = 1 1. Se al tempo t 0 = 0 si lancia verticalmente un sasso in aria da una quota iniziale x 0 e con una velocità iniziale v 0 allora al tempo t la quota x raggiunta dal sasso è x = x 0 + v 0 t g t, dove g = 9,8m/s. Ammesso che x 0 = 1m e v 0 = 5m/s, si calcoli a quale istante x = 0m e x = m. Nel caso in cui x = 0m dobbiamo risolvere l equazione 4,9 m s t + 5 m s t 19m = 0, dove ora la nostra incognita è t. Si calcola che = 347,4 m s < 0. Perciò l equazione non ha soluzioni. Fisicamente ciò significa che il sasso non arriverà mai alla quota di 0m. Ma se abbassiamo la quota che il sasso deve raggiungere al livello x = m l equazione da risolvere diviene 4,9 m s t + 5 m s t 1m = 0. Si calcola che = 5,4 m s > 0. Perciò si hanno le due soluzioni seguenti 3

4 t + = 0,7s, t = 0,75s. Esse rappresentano i due istanti in cui il sasso si trova alla quota di m: il tempo minore è relativo alla fase di ascesa del sasso mentre quello maggiore è relativo alla fase di discesa del sasso. Trigonometria Si consideri il triangolo rettangolo in figura I lati a e b sono detti cateti mentre il lato c è detto ipotenusa. Definiamo sinϑ = a c cos ϑ = b c a = csin ϑ, b = ccos ϑ. In particolare definaimo tangente dell angolo ϑ il rapporto fra il suo seno e il suo coseno, tan ϑ = sin ϑ cos ϑ = a b. Un angolo può essere espresso in gradi oppure in radianti: definiamo angolo di 1 grado (scriveremo 1 ) quell angolo che sottende un arco la cui lunghezza è 1/360 della lunghezza della circonferenza. definiamo angolo di 1 radiante (scriveremo 1rad) quell angolo che sottende un arco la cui lunghezza è pari al raggio della circonferenza. L angolo che sottende l intera circonferenza è pari a 360 o equivalentemente a πrad, dove π = 3, L angolo di 1rad equivale a circa 57,3. Ammettiamo che l angolo ϑ sottenda un arco di lunghezza l della circonferenza di raggio r, allora ϑ = l 180 l rad o equivalentemente ϑ = r π r. 4

5 Esercizio 5 Un osservatore si trova alla distanza d = km da un palazzo alto h = 380m. Determinare l angolo ϑ sotteso dal palazzo. L osservatore, la cima del palazzo e la sua base formano un triangolo rettangolo. L angolo sotteso dal palazzo è quello dove c è l osservatore. Quindi tan ϑ = h d = 380m km = 380m 10 3 m = = 0,19 ϑ = 10,76. Esercizio 6 Il Sole ha un diametro di circa d S = 1, m e dista dalla Terra l TS = 1, m. La Luna ha un diametro di d L = 3, m e dista dalla Terra l TL = 3, m. Calcolare in gradi e in radianti la larghezza angolare del Sole e della Luna visti dalla Terra. In generale, l angolo ϑ sotteso da un corpo di diametro d distante l dall osservatore è dato da ( ) ϑ tan = d l. Nel caso del Sole si ha ( ) ϑts tan = 0, ϑ TS = 0,53 = 0,93 10 rad Nel caso della Luna si ha ( ) ϑtl tan = 0,45 10 ϑ TL = 0,5 = 0,90 10 rad Si osservi che ϑ TS ϑ TL, infatti il Sole ci appare nel cielo di dimensioni del tutto simili a quelle della Luna. 5

Funzioni elementari: funzioni trigonometriche 1 / 17

Funzioni elementari: funzioni trigonometriche 1 / 17 Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza

Dettagli

--- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze

--- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze Corso Zero di Matematica per FARMACIA A.A. 009/0 Prof. Massimo Panzica Università degli Studi di Palermo FARMACIA CORSO ZERO DI MATEMATICA 009/0 --- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze

Dettagli

Programma ministeriale (Matematica)

Programma ministeriale (Matematica) SIMULAZIONE DELLA PROVA DI AMMISSIONE AI CORSI DI LAUREA E DI LAUREA MAGISTRALE A CICLO UNICO DIRETTAMENTE FINALIZZATI ALLA FORMAZIONE DI ARCHITETTO Anno Accademico 2015/2016 Test di Fisica e Matematica

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica

Dettagli

LE FUNZIONI GONIOMETRICHE Di Pietro Aceti

LE FUNZIONI GONIOMETRICHE Di Pietro Aceti LE FUNZIONI GONIOMETRICHE Di Pietro Aceti INDICE 1GRADI E RADIANTI CIRCONFERENZA GONIOMETRICA FUNZIONI GOGNOMERICHE 4PRIMO TEOREMA FONDAMENTALE DELLA GOGNOMETRIA 5SECONDO TEOREMA FONDAMENTALE DELLA GOGNOMETRIA

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

Anno scolastico ISTITUTO TECNICO SETTORE TECNOLOGICO. INDIRIZZO INFORMATICA E TELECOMUNICAZIONI Articolazione: Informatica

Anno scolastico ISTITUTO TECNICO SETTORE TECNOLOGICO. INDIRIZZO INFORMATICA E TELECOMUNICAZIONI Articolazione: Informatica Anno scolastico 2012-13 ISTITUTO TECNICO SETTORE TECNOLOGICO INDIRIZZO INFORMATICA E TELECOMUNICAZIONI Articolazione: Informatica PROGRAMMA CONSUNTIVO MATERIA MATEMATICA (area generale) DOCENTE Monica

Dettagli

Repetitorium trigonometriae - per immagini

Repetitorium trigonometriae - per immagini Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente

Dettagli

Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo

Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo Trigonometria Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo I triangoli rettangoli Premessa: ricordiamo le definizioni di seno e coseno di un angolo

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

Terza BM Meccanica. Matematica. Docente

Terza BM Meccanica. Matematica. Docente Anno scolastico 2014/ 2015 Classe Sezione Indirizzo Materia Terza BM Meccanica Nome e cognome Rita Demartini Docente Firma Pagina 1 di 7 PERCORSO FORMATIVO E DIDATTICO Modulo n.1: Ripasso equazioni, disequazioni

Dettagli

LE FUNZIONI GONIOMETRICHE

LE FUNZIONI GONIOMETRICHE LE FUNZIONI GONIOMETRICHE La misura degli angoli Si chiama angolo la porzione di piano racchiusa tra due semirette. Angolo convesso Angolo concavo Le unità di misura degli angoli sono: il grado sessagesimale

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

N.I413R UNI EN ISO 9001:2008

N.I413R UNI EN ISO 9001:2008 Anno scolastico 2014/ 2015 Classe Sezione Indirizzo Materia Terza AM Meccatronica Matematica Docente Nome e cognome Maria Cavalieri Firma PERCORSO FORMATIVO E DIDATTICO Modulo n.1: equazioni, disequazioni

Dettagli

Angoli e loro misure

Angoli e loro misure Angoli e loro misure R s Unità di misura: gradi, minuti, secondi 1 o =60' 1'=60'' Es: 35 o 41'1'' radianti α(rad) s R Angolo giro = 360 o = R/R = rad R=1 arco rad Es.: angolo retto R Arco 4 : se R=1 π

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a TRIGONOMETRIA a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1 1) Un angolo misura 315 o. La sua misura

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

Alcune nozioni di trigonometria 1

Alcune nozioni di trigonometria 1 Alcune nozioni di trigonometria. Angoli In un sistema di assi cartesiani ortogonali la misura degli angoli si effettua a partire dal semiasse positivo delle x, assumendo come positivo il verso antiorario.

Dettagli

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x) GONIOMETRIA sin (x = PH OP cos (x = OH OP tg (x = sin(x = TA cos(x ctg (x = cos (x = CB sin (x sec (x = 1 = OM cos(x cosec (x = 1 = ON sin (x La tangente si calcola sempre sulla retta verticale passante

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

k 2k x y 5k 1 0 e 2k 1 2k 1 x ky 3 k 0 ky 2k 1 x 3 k 2k 1 3 k

k 2k x y 5k 1 0 e 2k 1 2k 1 x ky 3 k 0 ky 2k 1 x 3 k 2k 1 3 k 6/5/04 test ) 6 0 Il denominatore è sempre positivo in quanto somma di un valore assoluto e di una radice, entrambi positivi Resta da trovare il dominio che dipende dal radicando - che è maggiore o uguale

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008

Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008 Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano

Dettagli

Appunti di Trigonometria per il corso di Matematica di base

Appunti di Trigonometria per il corso di Matematica di base Appunti di Trigonometria per il corso di Matematica di base di Giovanna Neve Diploma accademico di primo livello per il corso di Tecnico di Sala di Registrazione Conservatorio C. Pollini Padova Indice

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE

PROGRAMMAZIONE DIDATTICA ANNUALE PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2013 / 2014 Dipartimento (1) : MATEMATICA Coordinatore (1) : Classe: ROVETTA ROBERTA 3 Indirizzo: Servizi commerciali Ore di insegnamento settimanale:

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.

Dettagli

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie LICEO ARTISTICO STATALE BRUNO MUNARI, CREMONA Anno scolastico 2011-2012 PROGRAMMA SVOLTO DI MATEMATICA CLASSE IV A Ripasso: le disequazioni e le loro proprietà: (pag. 2, Volume SL 1) - gli intervalli limitati

Dettagli

D. 1 Il prodotto di a = 12,37 e b = 25,45

D. 1 Il prodotto di a = 12,37 e b = 25,45 Settembre 005 Aritmetica D. Il prodotto di a =,7 e b = 5,45 A 4, 867 B 4, 65 C 45, 650 D 4, 865 E 4, 8655 D. L inverso del numero numero: A 5 B 5 + 5 C + 5 D E D. I numeri 5 è il,4,5,0,00, si ordinano

Dettagli

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b 8 Esercizi di Analisi Matematica ersione 2006 razioni Argomenti: Operazioni sulle frazioni Difficoltà: Tempo richiesto: Completare la seguente tabella: a b a + b a b 1/3 1/2 1/3 1/2 1/3 1/2 a b a a + b

Dettagli

Nel Sistema Internazionale l unità di misura dell angolo è il radiante

Nel Sistema Internazionale l unità di misura dell angolo è il radiante Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE SOCIALE MATEMATICA. CAPACITA MODULO 0: RIPASSO Equazioni intere e fratte di primo e secondo grado

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE SOCIALE MATEMATICA. CAPACITA MODULO 0: RIPASSO Equazioni intere e fratte di primo e secondo grado PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE SOCIALE MATEMATICA CLASSE TERZA IPS COMPETENZE 42) Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE TERZA IPC COMPETENZE 42) Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico

Dettagli

Prerequisiti di Matematica Trigonometria

Prerequisiti di Matematica Trigonometria Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Angoli Un angolo è una porzione di piano

Dettagli

SENO, COSENO E TANGENTE DI UN ANGOLO

SENO, COSENO E TANGENTE DI UN ANGOLO Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE 1. LE FUNZIONI SENO E COSENO LE FUNZIONI SENO, COSENO E TANGENTE DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato

Dettagli

Angolo polare, versori radiale e trasverso

Angolo polare, versori radiale e trasverso Angolo polare, versori radiale e trasverso Desideriamo descrivere il moto di un corpo puntiforme che ruota su una circonferenza attorno ad un asse fisso. Nella figura l asse di rotazione coincide con l

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

Esempi di compiti scritti Istituzioni di Matematiche 2 (Proff. Luigi Serena e Paolo Gronchi)

Esempi di compiti scritti Istituzioni di Matematiche 2 (Proff. Luigi Serena e Paolo Gronchi) Esempi di compiti scritti Istituzioni di Matematiche 2 (Proff. Luigi Serena e Paolo Gronchi) Compito 1 1. Data la funzione f(x, y) = 3x 2 + 4xy + 8y nel cerchio di raggio 2 con centro nel punto ( 2, 3)

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2 Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili

Dettagli

ESERCIZI SUGLI INSIEMI NUMERICI. 1) Mettere in ordine crescente i seguenti numeri reali:

ESERCIZI SUGLI INSIEMI NUMERICI. 1) Mettere in ordine crescente i seguenti numeri reali: ESERCIZI SUGLI INSIEMI NUMERICI 1) Mettere in ordine crescente i seguenti numeri reali: 3,14; 1/7; 5/8; 0,1 3; 5/8; π; 1/7; 0,13; 10 1 ; 0,0031 10 3. Inserire poi nel precedente ordinamento i seguenti

Dettagli

Facoltà di Ingegneria Università di Pisa

Facoltà di Ingegneria Università di Pisa Facoltà di Ingegneria Università di Pisa Esame Debiti Formativi del 19/12/2005 1. 100 6 =... (A) 10 64 (B) 10 6 (C) 10 12 (D) 10 7 2. cos(120 ) + cos(60 ) =... (A) cos(60 ) (B) cos(180 ) (C) 0 (D) 1. log

Dettagli

ISTITUTO TECNICO TECNOLOGICO STATALE G.

ISTITUTO TECNICO TECNOLOGICO STATALE G. ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2015/ 16 PROGRAMMA SVOLTO DI MATEMATICA 3 ore settimanali COMPLEMENTI DI MATEMATICA 1 ora settimanale Classe: 3^ INFORMATICA sez.

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

SCHEDA SULLA TRIGONOMETRIA

SCHEDA SULLA TRIGONOMETRIA SCHEDA SULLA TRIGONOMETRIA I N D I C E Circonferenza trigonometrica Relazioni fondamentali che legano tra loro le funzioni trigonometriche Riduzione al primo quadrante Segni algebrici delle funzioni trigonometriche

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura.

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura. UNITÀ 3 LE GRANDEZZE FISICHE VETTORIALI E I VETTORI 1. Grandezze fisiche scalari e vettoriali. 2. I vettori. 3. Le operazioni con i vettori. 4. Addizione e sottrazione di vettori. 5. Prodotto di un numero

Dettagli

Stampa Preventivo. A.S Pagina 1 di 6

Stampa Preventivo. A.S Pagina 1 di 6 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 6 Insegnante VISINTIN ANTONELLA Classe 4AL Materia matematica preventivo consuntivo 95 0 titolo modulo 4.1 Disequazioni 4.2 Funzioni 4.3 Goniometria e trigonometria

Dettagli

ANGOLI MAGGIORI DELL ANGOLO RETTO

ANGOLI MAGGIORI DELL ANGOLO RETTO ANGOLI MAGGIORI DELL ANGOLO RETTO Le equazioni trigonometriche sin θ = a, cos θ = b e tan θ = c possono avere tante soluzioni. I tasti delle funzioni inverse nelle calcolatrici (sin 1, cos 1 e tan 1 ),

Dettagli

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA Nome.Cognome. Febbraio 009 Classe D VERIFIC di MTEMTIC Problemi ) Nel triangolo C si sa che ˆ 7 cos C =, tan C ˆ = e CM = a, essendo CM l altezza relativa ad. Determinare le misure dei lati del triangolo.

Dettagli

Università degli Studi di Milano - Bicocca. Corso di laurea triennale in Statistica e Gestione delle Informazioni.

Università degli Studi di Milano - Bicocca. Corso di laurea triennale in Statistica e Gestione delle Informazioni. Università degli Studi di Milano - Bicocca Corso di laurea triennale in Statistica e Gestione delle Informazioni Test di Ingresso È un test a risposta multipla. In ciascuno dei 25 quesiti almeno una delle

Dettagli

trasformazione grafico Cosa si deve fare Esempio goniometrico

trasformazione grafico Cosa si deve fare Esempio goniometrico trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il

Dettagli

Programma di Fisica Trigonometria essenziale

Programma di Fisica Trigonometria essenziale Programma di Fisica Trigonometria essenziale (Per la scuola superiore) Autore: Enrico Campanelli Prima stesura: Giugno 013 Ultima revisione: Giugno 013 Per segnalare errori o per osservazioni e suggerimenti

Dettagli

Tutorato di Matematica per Scienze Biologiche

Tutorato di Matematica per Scienze Biologiche Tutorato di Matematica per Scienze Biologiche Giacomo Tommei tommei@dm.unipi.it Programma 30 Ottobre: numeri, percentuali, polinomi, frazioni algebriche 6 Novembre: equazioni e disequazioni 13 Novembre:

Dettagli

MATEMATICA COMPLEMENTI DI MATEMATICA

MATEMATICA COMPLEMENTI DI MATEMATICA ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2014/ 15 PROGRAMMA SVOLTO DI Disciplina: MATEMATICA Classe di Concorso A047 3 ore settimanali Disciplina: COMPLEMENTI DI MATEMATICA

Dettagli

!"#$%&%'()"#*+,+ -+.(+#/+)"#*&$%/%+&%&+0+"(1*&$%/%2+

!#$%&%'()#*+,+ -+.(+#/+)#*&$%/%+&%&+0+(1*&$%/%2+ !"#$%&%'()"#*+,+ -+.(+#/+)"#*&$%/%+&%&+0+"(1*&$%/%2+ 1 3&+4"%5/('*+ Il triangolo a destra schematizza il problema Il triangolo ABC non è rettangolo. Come si possono calcolare i lati a e b? 2 678#)9+:++

Dettagli

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180 L approssimazione di π secondo al-kashi Al-Kashi calcola il π in modo tale che soddisfi una condizione, detta Condizione di Al-Kashi : La circonferenza di un cerchio deve essere espressa in funzione del

Dettagli

Principi di trigonometria sferica

Principi di trigonometria sferica Appendice B Principi di trigonometria sferica B.1 La Sfera Celeste Per determinare la posizione di un astro in cielo in un certo istante si ricorre alla proiezione di questo su un ideale Sfera Celeste

Dettagli

UNIVERSITÀ DEGLI STUDI DI TRENTO

UNIVERSITÀ DEGLI STUDI DI TRENTO UNIVERSITÀ DEGLI STUDI DI TRENTO PROVA DI AMMISSIONE AI CORSI DI LAUREA IN Fisica Matematica Informatica Ingegneria dell Informazione e Organizzazione d Impresa, Ingegneria dell Informazione e delle Comunicazioni

Dettagli

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Revisione del 16/03/16 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon MOTI ACCELERATI Richiami di teoria Moto uniformemente vario (accelerato) a = equazioni del moto:

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

ESERCIZI PRECORSO DI MATEMATICA

ESERCIZI PRECORSO DI MATEMATICA ESERCIZI PRECORSO DI MATEMATICA EQUAZIONI 1. cot( 10 ) 3. tan 3 3. cos( 45 ) +1 0 4. sin sin 5. tan( 180 ) tan( 3) 6. 5 cos 4sin cos 7. 3sin 3 cos 0 8. 3 cos + sin 3 0 9. sin3 sin( 45 + ) 10. 6sin 13sin

Dettagli

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS ISTITUTO TECNICO INDUSTRIALE G. FERRARIS EMPOLI PIANO DI LAVORO PROF. BICCI ANDREA CONSIGLIO DI CLASSE 3 SEZ. B Informatica INDIRIZZO INFORMATICO ANNO SCOLASTICO 2015-2016 MATERIE MATEMATICA (tre ore settimanali)

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI

TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI I 3 lati ed i 3 lati di un triangolo si dicono ELEMENTI del triangolo (e ricordiamo che un lato ed un angolo si dicono opposti quando il vertice di un angolo non

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

RISPOSTE MOTIVATE QUIZ D AMMISSIONE MATEMATICA

RISPOSTE MOTIVATE QUIZ D AMMISSIONE MATEMATICA RISPOSTE MOTIVATE QUIZ D AMMISSIONE 1999-2000 MATEMATICA 76. A cosa è uguale: a-b? A) a-b = (- b-a) B) a-b = (- a-b) C) a-b = (a/b) D) a-b = -( b- a) E) a-b = 1/(ab) L espressione a-b costituisce un polinomio,

Dettagli

Prova del 6 Marzo, Traccia della soluzione. Problema n. 1. BDA = α 2. sin α α = 1 e che analogamente si dimostra l altro limite notevole tan α

Prova del 6 Marzo, Traccia della soluzione. Problema n. 1. BDA = α 2. sin α α = 1 e che analogamente si dimostra l altro limite notevole tan α IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

FUNZIONI GONIOMETRICHE Prof. E. Modica

FUNZIONI GONIOMETRICHE Prof. E. Modica FUNZIONI GONIOMETRICHE Prof. E. Modica erasmo@galois.it DEFINIZIONE DELLE FUNZIONI GONIOMETRICHE Consideriamo un triangolo A rettangolo in B e sia α l angolo acuto di vertice A. Successivamente, consideriamo

Dettagli

che ci permette di passare da un sistema di misura all'altro con le:

che ci permette di passare da un sistema di misura all'altro con le: Goniometria Misura degli angoli Gli angoli vengono spesso misurati in gradi sessagesimali (1 = 1/360 dell'angolo giro), anche se una Legge dello Stato italiano del 1960 impone di esprimerli in radianti.

Dettagli

CAPITOLO 1. Archi e Angoli. 1. Gradi sessaggesimali. 2. Angoli radianti. 3. Formule di trasformazione

CAPITOLO 1. Archi e Angoli. 1. Gradi sessaggesimali. 2. Angoli radianti. 3. Formule di trasformazione TRIGONOMETRIA CAPITOLO 1 Archi e Angoli 1. Gradi sessaggesimali La misura dell'ampiezza di un angolo è ottenuta solitamente ponendo l'ampiezza di un angolo giro uguale a 360, e quindi l'unità, 1 grado,

Dettagli

Maths Challenge 2017

Maths Challenge 2017 UNIVERSITA DEGLI STUDI DI FOGGIA Dipartimento di Economia Largo Papa Giovanni Paolo II, 1-7111 Foggia - ITALY tel. 0881-781716 fa. 0881-781757 Maths Challenge 017 FINALE del 0 marzo 017 1. La prova consiste

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Esercizi di Matematica Ripasso programma di 3 a

Esercizi di Matematica Ripasso programma di 3 a Esercizi di Matematica Ripasso programma di a Questi esercizi sono divisi per sezioni, per facilitare il ripasso. Per sezione non intendiamo tanto un leitmotif che leghi ogni esercizio contenuto in essa,

Dettagli

Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi).

Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi). La geometria analitica nello spazio: punti, vettori, rette e piani esercizi 1 prof D Benetti Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi) Esercizio 1 Determina due

Dettagli

Funzioni trigonometriche

Funzioni trigonometriche trigonometriche Il cerchio trigonometrico Consideriamo in un piano cartesiano la circonferenza con il centro nell origine e avente per raggio il segmento che è stato fissato come unità di misura per i

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it ORDINAMENTO 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli

Dettagli

INSIEMI: descrizione e rappresentazione, elementi e appartenenza. Sottoinsiemi, insieme vuoto. Unione, intersezione, complemento. Prodotto cartesiano.

INSIEMI: descrizione e rappresentazione, elementi e appartenenza. Sottoinsiemi, insieme vuoto. Unione, intersezione, complemento. Prodotto cartesiano. INSIEMI: descrizione e rappresentazione, elementi e appartenenza. Sottoinsiemi, insieme vuoto. Unione, intersezione, complemento. Prodotto cartesiano. 1. Si assegna un insieme quando: a) si elencano i

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c )

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c ) Sezione 9 Esercizi 9 9 Esercizi 9 Esercizi dei singoli paragrafi - Sistemi di secondo grado Risolvere i seguenti sistemi di secondo grado { x + y = x + y = { x y x = 0 x y = { x + y = 0 x = y { x xy =

Dettagli

Lezione 5 MOTO CIRCOLARE UNIFORME

Lezione 5 MOTO CIRCOLARE UNIFORME Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.

Dettagli

Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/ Settembre 2011

Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/ Settembre 2011 Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/2012-16 Settembre 2011 1. Quale tra i seguenti numeri è razionale? A. 2 3. B. 2 + 3. C. π. D. 2 8. E. 8. 2. Quali

Dettagli

APPUNTI DI GONIOMETRIA

APPUNTI DI GONIOMETRIA APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

Angoli e misura di un angolo (gradi e radianti)

Angoli e misura di un angolo (gradi e radianti) Trigonometria La trigonometria (dal greco trígonon (τρίγωνον, triangolo) e métron (μέτρον, misura): misurazione del triangolo) è la parte della matematica che studia i triangoli a partire dai loro angoli.

Dettagli

Note di trigonometria

Note di trigonometria Note di trigonometria Daniel Gessuti indice Elementi di Trigonometria Seno, coseno e tangente Relazione fondamentale Secante, cosecante e cotangente 3 Le funzioni seno, coseno e tangente e le loro inverse

Dettagli