TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI"

Transcript

1 TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI I 3 lati ed i 3 lati di un triangolo si dicono ELEMENTI del triangolo (e ricordiamo che un lato ed un angolo si dicono opposti quando il vertice di un angolo non appartiene al lato) Il prolema principale della Trigonometria è la RISOLUZIONE dei triangoli, ovvero la determinazione dei 6 elementi di un triangolo essendo noti alcuni di essi Strumento ase nella risoluzione dei triangoli sono i cosiddetti TEOREMI SUI TRIANGOLI, che legano tra loro i 6 elementi di un triangolo mediante le funzioni goniometriche Nell'amito della risoluzione di un triangolo, poi, accade spesso di dover risalire al valori (o ai valori) di un triangolo di cui è noto il seno o il coseno o la tangente, ossia di dover risolvere un' EQUAZIONE GONIOMETRICA ELEMENTARE TEOREMI SUI TRIANGOLI c α γ Teorema dei seni (o di Eulero) In un triangolo qualsiasi, il rapporto tra la lunghezza di un qualsiasi lato ed il seno dell'angolo opposto è costante; in formule: β a a c = = sin α sin β sin γ Teorema del coseno (o di Fermat) In un triangolo qualsiasi, il quadrato di un qualsiasi lato è pari alla somma dei quadrati degli altri due lati, diminuita del doppio prodotto di questi moltiplicato per il coseno dell'angolo tra essi compreso In formule: a 2 = 2 +c 2-2cosα, 2 =a cosβ, c 2 =a cosγ Per i triangoli rettangoli il teorema i Fermat implica il teorema di Pitagora e dal teorema dei seni discendono i naturali risultati seguenti γ a β α c Teorema In un triangolo rettangolo, ogni cateto è pari all'ipotenusa moltiplicata per il seno dell'angolo opposto, ovvero moltiplicata per il coseno dell'angolo adiacente; in formule: = a sin β = a cos γ c = a sin γ = a cos β

2 Teorema In un triangolo rettangolo, ogni cateto è pari all'altro cateto moltiplicato per la tangente dell'angolo opposto al primo cateto, ovvero moltiplicato per la cotangente dell'angolo adiacente al primo cateto; in formule: = c tan β = c cotan γ c = tan γ = cotan β EQUAZIONI GONIOMETRICHE ELEMENTARI Tutte le funzioni goniometriche sono periodiche, ciascuna con un proprio periodo: FUNZIONE sin cos tan PERIODO 2Π 2Π Π A parole, ciò si esprime dicendo che tali funzioni assumono lo stesso valore in corrispondenza a numeri reali che differiscono di un multiplo (interno) del loro periodo Analiticamente, si ha che x R sin x=sin x 2 =sin x 4 =sin x 6 ==sin x 28 == sin x=sin x 2 =sin x 4 =sin x 6 ==sin x 146 == Ovvero revemente: k Z sin x=sin x 2k cos x=cos x 2k tg x=tg x 2k Graficamente, ciò si traduce nel fatto che, suddiviso l'asse reale in intervalli di ampiezza pari al periodo e considerato il grafico della funzione su uno qualunque di tali intervalli, esso si ripete ugualmente su tutti gli altri

3 Dovendo risolvere un'equazione goniometrica elementare [ovvero, dovendo trovare tutti e soli i valori che dati dalla variaile x soddisfino ad esempio un'uguaglianza del tipo sin x=4/5,sin x= 1/2 cos x= 0,87, tan x=1, tan x= 184 è allora sufficiente cercare le soluzioni che cadono in un aritrariamente prescelto intervallo di ampiezza pari al periodo: tutte e sole le altre soluzioni si troveranno poi sommando a queste multipli (interi) del periodo ]

4 sin x = m È impossiile se m > 1 oppure m < -1 diversamente (cioè se 1 m 1 ) può essere comodo cercare le soluzioni nell'intervallo [ 2, 3 { sin x =m 2 ], ossia risolvere il sistema x [ 2, 3 2 ] Tale sistema ha due soluzioni: x 1 = arcsin m [ 2, 2 ] x 2 = arcsin m le quali si riducono ad una sola se m=±1 NB arcsin è immediatamente noto se m è il seno di qualche angolo particolare, altrimenti è fornito da una qualsiasi calcolatrice scolastica funzione sin -1

5 cos x = m È impossiile se m > 1 oppure m < -1 diversamente (cioè se 1 m 1 ) ricordiamo cos x =m { x [, ] che ha due soluzioni: x 1 = arccos m [0, ] x 2 = arccos m le quali si riducono ad una sola se m=±1 tan x = m Non è una impossiile e ritroviamo x 0 = arctan m { tan x =m x [ 2, 2 ], che ha un'unica soluzione

6 RISOLUZIONE DI TRIANGOLI QUALUNQUE Utilizzando i teoremi di Eulero e di Carnot, è possiile, in certi casi, determinare tutti i 6 elementi di un triangolo essendo noti solo 3 di essi c α γ I casi sono 3 e corrispondono ai 3 casi di congruenza dei triangoli β a Caso1 Sono noti i TRE LATI a,,c I prolema è determinato (*) se e solo se a,,c sono tali che ciascuno sia unione della somma degli altri due (**), altrimenti è impossiile Applicando 3 volte il teorema del coseno, si ricavano i 3 coseni degli angoli α,β, e γ a 2 = 2 c 2 2ccos cos = 2 c 2 a 2 } 2c 2 =a 2 c 2 2 ac cos cos = a2 c 2 2 ] 1, 1[ 2ac c 2 =a 2 2 2a cos cos = a2 2 c 2 2a Risolvendo le 3 equazioni goniometriche ottenute, si determinano i valori di α,β, e γ in ]0, [, due esistono e sono unici * Qui si intende che il prolema è DETERMINATO: ammette un'unica soluzione IMPOSSIBILE: non ammette soluzioni INDETERMINATO: ammette due soluzioni ** ed sufficiente controllare che valga per il maggiore tra a,,c

7 Caso 2 Sono noti DUE LATI e l'angolo COMPRESO Per fissare le idee, siano noti a, e γ Il prolema è sempre determinato Applicando il teorema del coseno, ricaviamo il terzo lato c c 2 =a a cos c= a a cos Ora che conosciamo a,,c possiamo procedere come nel CASO 1 (semplificando, perché γ è già noto) Caso 3 Sono noti UN LATO e DUE ANGOLI Per fissare le idee, supponiamo noti β, γ ed a Il prolema è determinato se e solo se β+γ<π; altrimenti è impossiile Ricaviamo immediatamente α=π (β+γ) Applicando il teorema dei seni, determinano una altro lato, ad esempio sin = a =a sin sin sin Conoscendo a,,γ possiamo procedere come nel caso2 per determinare c (dopodiché il prolema è risolto perché gli angoli sono tutti noti Gli altri possiili modi di assegnare 3 elementi di un triangolo (3 ANGOLI, 2 LATI E 1 ANGOLO NON COMPRESO tra essi) non corrispondono a nessun criterio di congruenza; quindi il fatto che il prolema sia determinato, impossiile o indeterminato dipende dai casi Caso 4 Sono noti i TRE ANGOLI α,β,γ Se α+β+γ=π, il prolam è sempre indeterminato: esiste tutta una serie di triangoli simili con gli stessi angoli! (criteri di similitudine)

8 Se =, il prolema è, ovviamente, impossiile Caso 5 Sono noti DUE LATI e l'angolo OPPOSTO a uno di essi Per fissare le idee, siano noti a, ed α Dal teorema dei seni, otteniamo Se sin = a sin alpha sin = a sin ; (ricordiamo che α è noto dai dati del prolema) Si tratta di risolvere l'equazione nell'intervallo ]0, [ (perché l'incognita β rappresenta un angolo di un triangolo, deve essere 0<β<π a sin 1, il prolema è ovviamente impossiile; Se invece con due soluzioni a sin 1, il prolema può essere impossiile, determinato, o indeterminato Infatti, l'equazione sin = a sin in ] 0, [ ha in generale due soluzioni (tranne nel caso a sin =1, in cui si ha solo = 2 ) β 1 e β 2 ; a partire da ciascuna di esse; si possono ricavare il terzo angolo (per differenza) ed il terzo lato (come nel CASO 2): si ottengono quindi, in generale, due soluzioni: 1 triangolo: a,,, 1 1, c 1 2 triangolo: a,,, 2 2, c 2 Non essendoci però un criterio di congruenza a garantire la uona risoluilità del prolema che una di tali soluzioni non sia accettaile: dunque, a posteriori, occorre controllare che i risultati soddisfino le condizioni caratteristiche dei triangoli somma angoli = 180 lato maggiore < somma altri due e scartare l'eventuale soluzione che non le soddisfi

9 Esempio CASO 1 Dati: a=13, =12, c=5 Il prolema è determinare, poiché a c [ =17] (da cui, essendo a il lato maggiore, segue che ciascun lato è unione della soma degli altri due) Per il teorema del coseno: 13 2 = cos 169= cos =0 =90 (il triangolo è rettangolo) Per il teorema del coseno: 12 2 = cos 144= cos cos = 50 =0, =arccos 0, , Per il teorema del coseno: 5 2 = cos 25= cos cos = 288 =0, =arccos 0, , Esempio (CASO 1) Dati: a=14, =12, c=1 il prolema è impossiile, perché non è vero che a c[14 < 12 1=13]impossiile (a,,c non possono essere i lati di uno stesso triangolo!)

10 Esempio CASO 2 Dati: =12, c=10, α=30 Per il teorema del coseno: a 2 = cos 30 a 2 = a= a= Aiamo i tre lati: procediamo come nel CASO 1 per determinare,ad esempio, β, per il teorema del coseno: 12 2 = cos 144= cos cos = = , =arccos arccos 0,065 94, Per differenza: = , 56 Esempio CASO 2 Dati: a=11, =75, =105 Il prolema è ovviamente impossiile, perché la somma degli angoli β e γ assegnati è già pari a 180!!! Esempio CASO 3 Dati: a=12, =60, =45 Il prolema è determinato, perché β + γ < 180 Per differenza: =180 = , =75 Per il teorema dei seni: = 75 =12 60 sin sin sin ,8, 10,8 0,966

11 Esempio CASO 5 Dati: a=20, =40, =60 Per il teorema dei seni: 40 sin = 20 sin 60 sin = 40 sin =2 3 1,732 > 1!!! 2 Il prolema è allora impossiile, perché l'operazione sin = 3 non ha soluzioni, essendo 3 1 (è impossiile che il seno di un angolo sia > 1, in qianto sarà sempre sin x [ -1, 1 ] ) Esempio CASO 5 Dati: a=40, =20, =20 Per il teorema dei seni: = sin sin 20 sin = 20sin 20 = 1 sin 20 0, =0,171 : <1, dunque il prolema può non essere impossiile sin 20 L'equazione sin = 2 1 =arcsin sin 20 arcsin 0,171 10, 2 2 = =170 ha due soluzioni in ] 0, [ : β 1 è accettaile (perché =170 ) e condurrà ad una soluzione del prolema; β 2 è accettaile (perché =190!!) e dunque da scartare Risolviamo allora il triangolo a partire da β 1 c 2 = cos cos150 = ,6 c 3385,6=58,2 Il triangolo è risolto con: c 58,2 (Si noti che il lato c così ottenuto soddisfa, con i lati a e dati, alla condizione caratteristica dei triangoli : c < a+, con c lato maggiore)

12 Esempio CASO 5 Dati: a=20, =40, =20 Per il teorema dei seni: 40 sin = 40 sin 20 sin = 40sin 20 =2 sin ,342=0, Il risultato è < 1, dunque il prolema può essere impossiile oppure avere 1 o 2 soluzioni L'equazione sin =2sin 20 ha allora due soluzioni in ] 0, [ : 1 =arcsin 2sin 20 arcsin = =137 Soluzioni che sono entrame accettaili ( e ) Risaliamo al triangolo a partire da β 1 1 = =117 c 2 1 = cos cos ,454 = c ,4 52,2 Il triangolo è risolto da c 1 52,2 (Si noti che a,,c 1 soddisfano la condizione caratteristica dei lati del triangolo) Risolviamo il triangolo a partire da β 1 2 = =23 ; c 2 = cos ,92=528 ; c Il triangolo è pure verificato da c 2 23 (Si noti che a,,c 2 soddisfano la condizione caratteristica dei lati del triangolo)

13 Esempio CASO 5 Dati: a=20, =40, =153 Per il teorema dei seni: 40 sin = 20 sin 153 sin = sin ,454=0,908 ; Il risultato è < 1, dunque potreero esserci 1, 2 o nessuna soluzione L'equazione sin =2sin 153 ha due soluzioni in ] 0, [ : 1 =arcsin 2 sin 153 arcsin 0, = che sono entrame non accettaili Il prolema è dunque impossiile

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x) GONIOMETRIA sin (x = PH OP cos (x = OH OP tg (x = sin(x = TA cos(x ctg (x = cos (x = CB sin (x sec (x = 1 = OM cos(x cosec (x = 1 = ON sin (x La tangente si calcola sempre sulla retta verticale passante

Dettagli

FUNZIONI TRIGONOMETRICHE

FUNZIONI TRIGONOMETRICHE FUNZIONI TRIGONOMETRICHE RICHIAMI DI TEORIA Definizione: si dice angolo positivo individuato dalla coppia di semirette r e r' uscenti dal punto O, l'insieme dei punti del piano descritti dai punti di r

Dettagli

che ci permette di passare da un sistema di misura all'altro con le:

che ci permette di passare da un sistema di misura all'altro con le: Goniometria Misura degli angoli Gli angoli vengono spesso misurati in gradi sessagesimali (1 = 1/360 dell'angolo giro), anche se una Legge dello Stato italiano del 1960 impone di esprimerli in radianti.

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a TRIGONOMETRIA a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1 1) Un angolo misura 315 o. La sua misura

Dettagli

TRIGONOMETRIA PIANA: I TRIANGOLI QUALUNQUE

TRIGONOMETRIA PIANA: I TRIANGOLI QUALUNQUE TRIGONOMETRIA PIANA: I TRIANGOLI QUALUNQUE IL TEOREMA DEI SENI TEOREMA In un triangolo le misure dei lati sono proporzionali ai seni degli angoli opposti. IL TEOREMA DEI SENI DIMOSTRAZIONE Consideriamo

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica

Dettagli

Funzioni goniometriche di angoli notevoli

Funzioni goniometriche di angoli notevoli Funzioni goniometriche di angoli notevoli In questa dispensa calcoleremo il valore delle funzioni goniometriche per gli angoli notevoli di 30, 45 e 60. Dopo aver richiamato il concetto di sezione aurea

Dettagli

SENO, COSENO E TANGENTE DI UN ANGOLO

SENO, COSENO E TANGENTE DI UN ANGOLO Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

FORMULARIO DEI TRIANGOLI

FORMULARIO DEI TRIANGOLI RISOLUZIONE TRIANGOLI GENERICI Pagina 1 di 15 FORMULARIO DEI TRIANGOLI Teorema di Pitagora OP= 1 PP = sen OP = cos QQ = tan = Definizione seno Definizione coseno Definizione tangente TT = cotan = Consideriano

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. .2. Risoluzione di triangoli qualsiasi In questo paragrafo estenderemo le funzioni goniometriche anche ad angoli retti ed ottusi, per potere risolvere triangoli qualsiasi. er fare ciò ovviamente vogliamo

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

ESERCIZI PRECORSO DI MATEMATICA

ESERCIZI PRECORSO DI MATEMATICA ESERCIZI PRECORSO DI MATEMATICA EQUAZIONI 1. cot( 10 ) 3. tan 3 3. cos( 45 ) +1 0 4. sin sin 5. tan( 180 ) tan( 3) 6. 5 cos 4sin cos 7. 3sin 3 cos 0 8. 3 cos + sin 3 0 9. sin3 sin( 45 + ) 10. 6sin 13sin

Dettagli

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

Risoluzione dei triangoli rettangoli

Risoluzione dei triangoli rettangoli Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

FUNZIONI GONIOMETRICHE Prof. E. Modica

FUNZIONI GONIOMETRICHE Prof. E. Modica FUNZIONI GONIOMETRICHE Prof. E. Modica erasmo@galois.it DEFINIZIONE DELLE FUNZIONI GONIOMETRICHE Consideriamo un triangolo A rettangolo in B e sia α l angolo acuto di vertice A. Successivamente, consideriamo

Dettagli

SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA

SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA Pag. 1 di 5 SCHEDA OBIETTIVI MINIMI Materia:MATEMATICA Classi QUARTA A e QUARTA B Spec.: LICEO DELLE SCIENZE APPLICATE a.s: 2016 / 2017 4 3 2 1 Presidente di dipartimento 0 DOC DS Maria Grazia Gillone

Dettagli

Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo

Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo Trigonometria Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo I triangoli rettangoli Premessa: ricordiamo le definizioni di seno e coseno di un angolo

Dettagli

trasformazione grafico Cosa si deve fare Esempio goniometrico

trasformazione grafico Cosa si deve fare Esempio goniometrico trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il

Dettagli

Il teorema dei seni. Dopo aver introdotto la convenzione per le notazioni usata in trigonometria, viene enunciato e dimostrato il teorema dei seni.

Il teorema dei seni. Dopo aver introdotto la convenzione per le notazioni usata in trigonometria, viene enunciato e dimostrato il teorema dei seni. Il teorema dei seni In questa dispensa viene presentato il teorema dei seni, che, insieme a quello del coseno, permette la risoluzione dei triangoli qualunque. Dopo aver introdotto la convenzione per le

Dettagli

Banca Dati Finale Senza Risposte

Banca Dati Finale Senza Risposte Banca Dati Finale Senza Risposte TRG da 5451 a 6100 5451 La tangente di un angolo di 90 : A) è 1 B) è 0 C) non è definita D) è 1 5452 Quanto vale in gradi un angolo di (5/4) π radianti? A) 240 B) 270 C)

Dettagli

Funzioni elementari: funzioni trigonometriche 1 / 17

Funzioni elementari: funzioni trigonometriche 1 / 17 Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza

Dettagli

Alcune nozioni di trigonometria 1

Alcune nozioni di trigonometria 1 Alcune nozioni di trigonometria. Angoli In un sistema di assi cartesiani ortogonali la misura degli angoli si effettua a partire dal semiasse positivo delle x, assumendo come positivo il verso antiorario.

Dettagli

Appunti di Trigonometria per il corso di Matematica di base

Appunti di Trigonometria per il corso di Matematica di base Appunti di Trigonometria per il corso di Matematica di base di Giovanna Neve Diploma accademico di primo livello per il corso di Tecnico di Sala di Registrazione Conservatorio C. Pollini Padova Indice

Dettagli

DISCUSSIONE DI PROBLEMI GEOMETRICI RISOLTI PER VIA TRIGONOMETRICA

DISCUSSIONE DI PROBLEMI GEOMETRICI RISOLTI PER VIA TRIGONOMETRICA DISCUSSIONE DI PROLEMI GEOMETRICI RISOLTI PER VI TRIGONOMETRIC Problema n 1 Detto il punto medio del segmento C = 4r, nello stesso semipiano disegnare la semicirconferenza di diametro ed il triangolo isoscele

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

--- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze

--- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze Corso Zero di Matematica per FARMACIA A.A. 009/0 Prof. Massimo Panzica Università degli Studi di Palermo FARMACIA CORSO ZERO DI MATEMATICA 009/0 --- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze

Dettagli

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000 Quesiti della seconda prova scritta per Matematica Problema 1. (i) Dire quante e quali sono le coppie ordinate (x, y) di numeri naturali che sono soluzioni del sistema { MCD(x, y) = 10 xy = 30000 Qui MCD(x,

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

COMPENDIO TRIGONOMETRIA

COMPENDIO TRIGONOMETRIA TORINO MAGGIO 2011 COMPENDIO DI TRIGONOMETRIA di Bart VEGLIA 1 FUNZIONI GONIOMETRICHE 1 Premessa La trigonometria ha lo scopo, come dice il nome, (dal greco, trigonon = triangolo e metron = misura) di

Dettagli

IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati.

IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati. IL TRIANGOLO Il triangolo è un poligono avente tre lati. FORMULE AREA: Il triangolo è equivalente a metà parallelogramma. A = (b x h) : da cui: b= A : h e h= A : b TRIANGOLO RETTANGOLO (a, b cateti; c

Dettagli

ISTITUTO TECNICO TECNOLOGICO STATALE G.

ISTITUTO TECNICO TECNOLOGICO STATALE G. ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2015/ 16 PROGRAMMA SVOLTO DI MATEMATICA 3 ore settimanali COMPLEMENTI DI MATEMATICA 1 ora settimanale Classe: 3^ INFORMATICA sez.

Dettagli

3. Risoluzone dei triangoli rettangoli 4. Decomposizione di una forza in due componenti ortogonali (perpendicolari tra loro)

3. Risoluzone dei triangoli rettangoli 4. Decomposizione di una forza in due componenti ortogonali (perpendicolari tra loro) Formule di prostaferesi Riduzione alla tangente dell angolo metà Teorema del coseno Identità + t = per t + k Riepilogo 0 Il concetto di funzione Definizione di seno coseno e tangente Relazione fra seno

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

Note di trigonometria

Note di trigonometria Note di trigonometria Daniel Gessuti indice Elementi di Trigonometria Seno, coseno e tangente Relazione fondamentale Secante, cosecante e cotangente 3 Le funzioni seno, coseno e tangente e le loro inverse

Dettagli

MATEMATICA COMPLEMENTI DI MATEMATICA

MATEMATICA COMPLEMENTI DI MATEMATICA ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2014/ 15 PROGRAMMA SVOLTO DI Disciplina: MATEMATICA Classe di Concorso A047 3 ore settimanali Disciplina: COMPLEMENTI DI MATEMATICA

Dettagli

Repetitorium trigonometriae - per immagini

Repetitorium trigonometriae - per immagini Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente

Dettagli

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2 Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili

Dettagli

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni:

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: LS Fila A Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: NB Ciascun procedimento risolutivo si deve concludere con la frase L'insieme delle soluzioni è a) Trasformando

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE UNITÀ DIDATTICA FUNZIONI GONIOMETRICHE 1 La misura degli angoli In ogni circonferenza è possibile definire una corrispondenza biunivoca tra angoli al centro e archi: a ogni angolo al centro corrisponde

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE 1. LE FUNZIONI SENO E COSENO LE FUNZIONI SENO, COSENO E TANGENTE DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato

Dettagli

LA CIRCONFERENZA. Ricaviamola. Tutti i punti P che stanno sulla circonferenza hanno la proprietà comune che

LA CIRCONFERENZA. Ricaviamola. Tutti i punti P che stanno sulla circonferenza hanno la proprietà comune che LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Si ottiene tagliando un cono con un piano perpendicolare al suo asse. La distanza fra ognuno

Dettagli

NOTE DI TRIGONOMETRIA

NOTE DI TRIGONOMETRIA NOTE DI TRIGONOMETRIA 18 settembre 007 1 Introduzione In queste note, essenzialmente basate su [1], vengono richiamate le definizioni e le proprietà delle funzioni trigonometriche. Un buon libro di liceo

Dettagli

La storia di due triangoli: i triangoli di Erone e le curve ellittiche

La storia di due triangoli: i triangoli di Erone e le curve ellittiche La storia di due triangoli: i triangoli di Erone e le curve ellittiche William Mc Callum 1 febbraio 01 Se due triangoli hanno la stessa area e lo stesso perimetro, sono necessariamente congruenti? La risposta

Dettagli

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

SCHEDA SULLA TRIGONOMETRIA

SCHEDA SULLA TRIGONOMETRIA SCHEDA SULLA TRIGONOMETRIA I N D I C E Circonferenza trigonometrica Relazioni fondamentali che legano tra loro le funzioni trigonometriche Riduzione al primo quadrante Segni algebrici delle funzioni trigonometriche

Dettagli

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.

Dettagli

Il Piano Cartesiano Goniometrico

Il Piano Cartesiano Goniometrico Valori di seno e coseno per angoli multipli di / Il Piano Cartesiano Goniometrico Seno e coseno: valori per angoli particolari September 1, 010 Valori di seno e coseno per angoli multipli di / Sommario

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GNIMETRIA rof. Calogero Contrino Sia dato un generico angolo acuto ab di vertice e lati a, b. Si consideri su uno dei suoi lati (p.e. il secondo) una generica sequenza di punti (anche infinita),,.

Dettagli

k 2k x y 5k 1 0 e 2k 1 2k 1 x ky 3 k 0 ky 2k 1 x 3 k 2k 1 3 k

k 2k x y 5k 1 0 e 2k 1 2k 1 x ky 3 k 0 ky 2k 1 x 3 k 2k 1 3 k 6/5/04 test ) 6 0 Il denominatore è sempre positivo in quanto somma di un valore assoluto e di una radice, entrambi positivi Resta da trovare il dominio che dipende dal radicando - che è maggiore o uguale

Dettagli

APPUNTI DI GONIOMETRIA

APPUNTI DI GONIOMETRIA APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi

Dettagli

TRIGONOMETRIA Goniometria, parte 1

TRIGONOMETRIA Goniometria, parte 1 TRIGONOMETRIA Goniometria, parte 1 1 Funzioni goniometriche elementari SAPER FARE: 1. dato il valore di una funzione goniometrica e conoscendo il quadrante di appartenenza di un angolo, determinare il

Dettagli

Funzioni trigonometriche

Funzioni trigonometriche trigonometriche Il cerchio trigonometrico Consideriamo in un piano cartesiano la circonferenza con il centro nell origine e avente per raggio il segmento che è stato fissato come unità di misura per i

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GNIMETRIA rof. Calogero Contrino Sia dato un generico angolo acuto ab di vertice e lati a, b. Si consideri su uno dei suoi lati (p.e. il secondo) una generica sequenza di punti (anche infinita),,.

Dettagli

Trigonometria. Scopo della trigonometria. Teoremi fondamentali sul triangolo rettangolo

Trigonometria. Scopo della trigonometria. Teoremi fondamentali sul triangolo rettangolo Trigonometria Scopo della trigonometria Scopo della trigonometria piana è la risoluzione di un triangolo, cioè la determinazione dei suoi sei elementi, i tre lati e i tre angoli, quando se ne conoscano

Dettagli

Equazioni goniometriche risolvibili per confronto di argomenti

Equazioni goniometriche risolvibili per confronto di argomenti Equazioni goniometriche risolvibili per confronto di argomenti In questa dispensa si esaminano le equazioni goniometriche costituite dall uguaglianza di due funzioni goniometriche, nei cui argomenti compare

Dettagli

Geometria analitica. coppia di numeri equazione di 2 grado. delle equazioni

Geometria analitica. coppia di numeri equazione di 2 grado. delle equazioni 1 Geometria analitica La geometria analitica stabilisce una corrispondenza tra il mondo della geometria e il mondo dell'algebra. Ciò significa che gli enti geometrici hanno degli enti corrispondenti nel

Dettagli

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 PROGRAMMAZIONE III Geometri ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 B Geometria analitica 32 C Goniometria 30 D Trigonometria

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

LE FUNZIONI GONIOMETRICHE Di Pietro Aceti

LE FUNZIONI GONIOMETRICHE Di Pietro Aceti LE FUNZIONI GONIOMETRICHE Di Pietro Aceti INDICE 1GRADI E RADIANTI CIRCONFERENZA GONIOMETRICA FUNZIONI GOGNOMERICHE 4PRIMO TEOREMA FONDAMENTALE DELLA GOGNOMETRIA 5SECONDO TEOREMA FONDAMENTALE DELLA GOGNOMETRIA

Dettagli

Anno 4 Superficie e volume dei solidi

Anno 4 Superficie e volume dei solidi Anno 4 Superficie e volume dei solidi Introduzione In questa lezione parleremo del volume e della superficie dei solidi, imparando a trattare con semplicità il loro calcolo tramite le formule Al termine

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

Angoli e misura di un angolo (gradi e radianti)

Angoli e misura di un angolo (gradi e radianti) Trigonometria La trigonometria (dal greco trígonon (τρίγωνον, triangolo) e métron (μέτρον, misura): misurazione del triangolo) è la parte della matematica che studia i triangoli a partire dai loro angoli.

Dettagli

Verifica di Topografia

Verifica di Topografia ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 3^ Geometri 1) In un appezzamento a forma

Dettagli

Teorema di Pitagora : In un triangolo rettangolo il quadrato costruito è uguale alla somma dei quadrati costruiti sui cateti a b c, da cui, per le proprietà sulle equazioni, si ricavano le seguenti uguaglianze:

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016

Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Le funzioni goniometriche La misura degli angoli Gli angoli e la loro ampiezza La misura in gradi La misura i radianti Dai

Dettagli

Risolvere la seguente disequazione significa determinare gli archi aventi estremo di ordinata 1 maggiore di

Risolvere la seguente disequazione significa determinare gli archi aventi estremo di ordinata 1 maggiore di Trigonometria parte 5 easy matematica Eliana pagina 5 DISEQUAZIONI GONIOMETRICHE Disequazioni goniometriche elementari: Si definisce disequazione goniometrica elementare un equazione della forma sen

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA Nome.Cognome. Febbraio 009 Classe D VERIFIC di MTEMTIC Problemi ) Nel triangolo C si sa che ˆ 7 cos C =, tan C ˆ = e CM = a, essendo CM l altezza relativa ad. Determinare le misure dei lati del triangolo.

Dettagli

Principi di trigonometria sferica

Principi di trigonometria sferica Appendice B Principi di trigonometria sferica B.1 La Sfera Celeste Per determinare la posizione di un astro in cielo in un certo istante si ricorre alla proiezione di questo su un ideale Sfera Celeste

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

EQUAZIONI GONIOMETRICHE ELEMENTARI

EQUAZIONI GONIOMETRICHE ELEMENTARI EQUAZIONI GONIOMETRICHE ELEMENTARI ) Definizione di equazione goniometrica elementare Si chiamano equazioni goniometriche elementari quelle in cui una funzione goniometrica (senx, cosx, tgx o cotgx) viene

Dettagli

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura.

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura. UNITÀ 3 LE GRANDEZZE FISICHE VETTORIALI E I VETTORI 1. Grandezze fisiche scalari e vettoriali. 2. I vettori. 3. Le operazioni con i vettori. 4. Addizione e sottrazione di vettori. 5. Prodotto di un numero

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Le funzioni trigonometriche fondamentali 1 / 28

Le funzioni trigonometriche fondamentali 1 / 28 Le funzioni trigonometriche fondamentali 1 / 28 Introduzione 2 / 28 La trigonometria rappresenta uno degli strumenti più utili all interno del cosiddetto calculus, termine di origine latina impiegato nella

Dettagli

Esercitazione I - Ripasso di matematica

Esercitazione I - Ripasso di matematica Esercitazione I - Ripasso di matematica Potenze Le proprietà fondamentali delle potenze sono Da queste proprietà segue che a 0 = 1, a n a m = a n+m, a n a m = an m. Esercizio 1 (a n ) m = a n m, a n =

Dettagli

CAPITOLO 1. Archi e Angoli. 1. Gradi sessaggesimali. 2. Angoli radianti. 3. Formule di trasformazione

CAPITOLO 1. Archi e Angoli. 1. Gradi sessaggesimali. 2. Angoli radianti. 3. Formule di trasformazione TRIGONOMETRIA CAPITOLO 1 Archi e Angoli 1. Gradi sessaggesimali La misura dell'ampiezza di un angolo è ottenuta solitamente ponendo l'ampiezza di un angolo giro uguale a 360, e quindi l'unità, 1 grado,

Dettagli

Formulario di Matematica

Formulario di Matematica Nicola Morganti 6 dicembre 00 Indice FORMULE DI GEOMETRIA ANALITICA PIANA. LA RETTA................................... LA CIRCONFERENZA............................. L ELLISSE...................................

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

LA CIRCONFERENZA NEL PIANO CARTESIANO

LA CIRCONFERENZA NEL PIANO CARTESIANO 66 6. LA CIRCONFERENZA NEL PIANO CARTESIANO La circonferenza di centro C (, Pertanto la sua equazione si ottiene coi passaggi seguenti: PC = r (1 x x + y y =r ( x x + y y = r x xx+ x + y yy+ y = r x +

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Prerequisiti di Matematica Trigonometria

Prerequisiti di Matematica Trigonometria Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Angoli Un angolo è una porzione di piano

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

Angoli e loro misure

Angoli e loro misure Angoli e loro misure R s Unità di misura: gradi, minuti, secondi 1 o =60' 1'=60'' Es: 35 o 41'1'' radianti α(rad) s R Angolo giro = 360 o = R/R = rad R=1 arco rad Es.: angolo retto R Arco 4 : se R=1 π

Dettagli

Equazioni e disequazioni goniometriche

Equazioni e disequazioni goniometriche 1 Equazioni e disequazioni goniometriche Restrizione di una funzione Nel definire la funzione logaritmica come inversa di quella esponenziale, avevamo ricordato che: Una funzione è invertibile se e soltanto

Dettagli

CALCOLO DEGLI INTEGRALI

CALCOLO DEGLI INTEGRALI CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante

Dettagli

Ist. di Fisica Matematica mod. A Quarta esercitazione

Ist. di Fisica Matematica mod. A Quarta esercitazione Ist. di Fisica Matematica mod. A Quarta esercitazione Francesca Arici (farici@sissa.it Domenico Monaco (dmonaco@sissa.it 3 Novemre La numerazione seguita per gli Esercizi è quella delle note del corso.

Dettagli