CALCOLO DEGLI INTEGRALI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CALCOLO DEGLI INTEGRALI"

Transcript

1 CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante arbitraria. () Af () A f () dove A è una costante () [f () ± f ()] f () ± f () () Se f () F () ed u φ (), allora f (u) du F (u) ln, più in generale n n+ n+ con n f () f() ln f () +a a arctan a a a ln a+ a ln +a + + a.. Tavola degli integrali elementari (immediati). a a ln a arcsin a a ar e e sin cos cos sin cos tan sin cot sin ln tan cos ln tan ( + ) π.. Integrali risolvibili con le regole di integrazione e formule di integrazione. Eercise. 5a 6 Soluzione: 5a 6 5a 7 7 Eercise. ( ) Soluzione: Eercise. [ ( + a) ( + b)] Soluzione: [ + (a + b) + ab ] + (a + b) + ab Eercise. ( a + b ) Soluzione: ( a + ab + b 6) a + ab + b 6 a + ab Eercise 5. p + (a + b) + b ab Soluzione: (p) p p p Eercise 6. n Soluzione: n n + n + n n + n Eercise 7. ( + ) ( + )

2 Soluzione: ( ) CALCOLO DEGLI INTEGRALI Eercise 8. ( + ) ( ) Soluzione: ( ) ( ) Eercise Soluzione: 7 arctan 7 Eercise Soluzione: ln 0 Eercise. + Soluzione: ln + + Eercise. 8 Soluzione: arcsin arcsin Eercise. + Soluzione: arcsin ln + + Eercise. tan Soluzione: applicando la formula goniometrica, ( cos ) tan Eercise 5. e Soluzione: (e) (e) ln e (e) + ln

3 CALCOLO DEGLI INTEGRALI.. Integrazione per introduzione sotto il segno di differenziale. La regola ), se f () F () e du φ () allora f (u) du F (u) estende notevolmente la tavola degli integrali elementari, in quanto essa rimane valida anche nel caso in cui la variabile indipendente sia una funzione derivabile. In particolare (5 ) d (5 ) (5 ) ciò equivale anche ad operare la sostituzione 5 u, da cui, differenziando, 5 du. + Eercise 6. + Soluzione: riscriviamo il numeratore come + + +, avremo ( + ) d ( + ) ln ( + ) + Eercise 7. + Soluzione: + ln ln + ( + ) ln + + ( ) + + ln ln + ln + Eercise 8. + Soluzione: + ( ) ( + ) + ( + ) + ln + + ln Eercise Soluzione: ( + ) ( + ) ln + Eercise 0. ( + ) Soluzione: + ( + ) ln + ( + ) ( + ) ln + + Eercise. Soluzione: Eercise. + ln Soluzione: ln + + ln (d ln ) + ln

4 CALCOLO DEGLI INTEGRALI Eercise. Soluzione: ( ) arctan 5 5 Eercise Soluzione: applichiamo f () f() ln f () e avremo arctan 5 + +arctan 5 ln + +C Eercise 5. Soluzione: arcsin Eercise 6. Soluzione: ln Eercise 7. 5 Soluzione: 5 ln 5 ln 5 ln + Eercise Soluzione: arctan 7 5 ln Eercise 9. + Soluzione: + ln + Eercise 0. Soluzione: 5 5 ln 5

5 CALCOLO DEGLI INTEGRALI 5 Eercise. 6 + Soluzione: sapendo che d ( ), si ha d ( ) ( ) + arctan Eercise. arcsin Soluzione: sapendo che d (arcsin ), si può scrivere arcsin (arcsin ) d (arcsin ) (arcsin ) Eercise. arctan + Soluzione: + arctan (arctan ) d (arctan ) 8 ln ( + ) arctan Eercise. Soluzione: d ( ) ln ln Eercise 5. (e e ) Soluzione: e e e + e Eercise 6. e +) ( Soluzione: Siccome d ( + ), avremo e +) ( ( d + ) +) e ( Eercise 7. 7 Soluzione: siccome d ( ), avremo 7 d ( ) 7 ln 7 Eercise 8. e Soluzione: ancora, poiché d ( ), avremo ( ) e d e Eercise 9. e e

6 Soluzione: d (e ) e ln e CALCOLO DEGLI INTEGRALI 6 Eercise 0. e e Soluzione: d (e ) e arcsin e Eercise. cos Soluzione: cos ( ) d sin Eercise. (cos + sin ) Soluzione: applicando la proprietà fondamentale della goniometria, si ha ( + sin ) + sin d () cos Eercise. cos Soluzione: essendo d ( ), si ha cos d ( ) sin Eercise. sin (ln ) Soluzione: ancora, essendo d (ln ), si ha sin (ln ) d (ln ) cos (ln ) Eercise 5. sin Soluzione: ricordando le formule di bisezione, si può riscrivere l integrale cos cos d () sin Eercise 6. cos Soluzione: sempre per le formule di bisezione + cos + cos d () + sin Eercise 7. sin

7 Soluzione: d ( ) sin ln tan CALCOLO DEGLI INTEGRALI 7 Eercise 8. cos Soluzione: ancora, poiché d ( ), si ha ( ) d cos tan Eercise 9. sin ( ) Soluzione: poiché d ( ), si ha sin ( ) d ( ) cos ( ) Eercise 50. tan Soluzione: sin ln cos (ancora, sin d (cos ) cos Eercise 5. sin cos Soluzione: ricordando le formule di duplicazione sin sin cos si ha sin d () ln tan sin Eercise 5. + cos sin Soluzione: essedno d ( cos ) sin, si ha + cos d ( + cos ) ( 9 + cos ) +C Eercise 5. tan cos Soluzione: poiché d [tan ] cos, si ha tan d (tan ) tan +C Eercise 5. + sin cos Soluzione: cos + sin cos d () cos ( cos ) d (cos ) tan + cos Eercise ln +, (il numeratore è, infatti, la derivata del denomi- Soluzione: natore) Eercise 56. +

8 CALCOLO DEGLI INTEGRALI 8 Soluzione: operando in R si può scomporre il numeratore e ottenere ( + ) ( ) ( + ) Eercise 57. e Soluzione: e d ( ) e Eercise Soluzione: + + Eercise 59. e ( + ) ( + ) Soluzione: e ( ) d e ln + Eercise 60. sin + cos Soluzione: poiché d ( + cos ) sin, avremo che il numeratore è la derivata del denominatore, per cui ln + cos Eercise 6. ln Soluzione: essendo d (ln ), avremo d (ln ) ln ln Eercise 6. e + Soluzione: e + e e + Eercise 6. sin cos sin e e + ln e + Soluzione: poiché d ( sin ) sin cos, si può riscrivere d ( sin ) ( sin ) arcsin ( sin ) Eercise 6. Soluzione: + cos cos + sin cos + tan d (tan ) + tan arctan (tan )

9 CALCOLO DEGLI INTEGRALI 9. Integrali risolti con il metodo della sostituzione di variabile Molti degli integrali precedenti si potevano anche risolvere con tale metodo, così come gli integrali che seguiranno potranno essere risolti anche con altri metodi. Eercise 65. ( + 5) 0 Soluzione: introduciamo la sostituzione t + 5 o t 5 t 5 t 0 t 5, da cui ; l integrale diviene t 0 8 t 5 t 8 ( + 5) 5 ( + 5) Eercise Soluzione: introduciamo la sostituzione + t o t, da cui t, cioè t e otteniamo t t t t t t t t ln t + t + ln + + Eercise 67. e Soluzione: sostituisco e t, cioè e t + da cui e t e quindi t t. Avremo + t t + t t + arctan t arctan ( e ) Eercise 68. Soluzione: ln ln ln + t ln + t ln + ln ln + ln, sostituiamo ln t e e avremo ln + t ln + t ln t ln ( ln + t) ln ln ln ln + t Eercise 69. e e + Soluzione: sostituiamo e + t, cioè e t e e t e avremo ( t ) t (t ) ( ) t t t t t [ (e e + ) + ] Eercise 70. sin cos

10 CALCOLO DEGLI INTEGRALI 0 Soluzione: sostituendo cos t, cos t, sin t, da cui sin, avremo cos sin ( cos sin t ) t + 5 t5 cos + 5 (cos ) 5 Eercise 7. Soluzione: sostituzione con funzione goniometrica: sin t, da cui cos t, si ha sin t cos t sin t cos t sin t t sin t arcsin Eercise 7. Soluzione: poniamo sec t, cos t tan t e sec t tan t, pertanto sec t tan t t arccos sec t tan t Eercise 7. Soluzione: poniamo t da cui e avremo t ( t t d t t t t ) 8 t t t t Eercise 7. Soluzione: introduciamo la sostituzione sin t, cos t e cos t e l integrale diviene + cos t cos t t + cos td (t) t + sin t arcsin +. Integrazione per parti Dalla formula della derivata del prodotto di due funzioni D [f () g ()] f () g () + f () g () si ottiene, integrando entrambi i membri f () g () f () g () + f () g () da cui f () g () f () g () f () g (), dove f () è riconosciuta come la derivata di una funzione nota f (). Eercise 75. ln Soluzione: Poniamo f ln e dg con g ; avremo ln ln Eercise 76. sin

11 CALCOLO DEGLI INTEGRALI Soluzione: Ponoamo f e dg sin e avremo cos + cos cos + sin Eercise 77. e Soluzione: Poniamo f e dg e e avremo e + e e e + e Eercise 78. e Soluzione: Poniamo f e dg e e otterremo e e iteriamo il procedimento f e dg e e avremo e [ e ] e e 9 e + 7 e Eercise 79. sin cos Soluzione: applichiamo le formule goniometriche sin e poniamo f e sin dg cos + cos cos + sin 8 Eercise 80. ln Soluzione: ponendo f ln e dg avremo ln ln 9 Eercise 8. ln Soluzione: ponendo f ln e dg avremo ln ln ln ln + Eercise 8. ln Soluzione: ponendo f ln e dg si ha ln + ln +

12 CALCOLO DEGLI INTEGRALI Eercise 8. ln ( + + ) Soluzione: ponendo f ln ( + + ) e dg si ha ln ( + ) + ( ln + ) + ( d + ) ( + + ln + + ) + +C Eercise 8. sin Soluzione: ponendo f e dg sin si ottiene cot + cot cot ln sin Eercise 85. cos sin Soluzione: ponendo f e dg cos sin si ottiene sin + sin sin + ln tan Eercise 86. e sin Soluzione: ponendo f sin e dg e si ottiene e sin e cos iteriamo ora la procedura ponendo nuovamente f cos e dg e si ottiene ( ) e sin e sin e cos + e sin e sin + e cos e sin sommando ora i due integrali e dividendo a metà entrambi i membri, si ottiene e sin (e sin + e cos ) Eercise 87. sin (ln ) Soluzione: ponendo f sin (ln ) e dg si ottiene sin (ln ) cos (ln ), ponendo ora nuovamente f cos (ln ) e dg si ha sin (ln ) cos (ln ) sin (ln ) ; avremo pertanto sin (ln ) sin (ln ) cos (ln ) sin (ln ) risolvendo rispetto a sin (ln ) si ottiene (sin (ln ) cos (ln )) sin (ln )

13 CALCOLO DEGLI INTEGRALI. Integrali di funzioni razionali fratte e irrazionali Eercise Soluzione: il polinomio al denominatore può essere riscritto come ( + ) +, da cui ( + ) + d ( + ) ( + ) + arctan + Eercise Soluzione: riscriviamo il denominatore ( 6 + ( 6) + 6) ( 6 ) + 6 d ( ) 6 ( ) arctan 6 ( ) 6 arctan 6 Eercise 90. t+7 ( t+7 ) 7 ( t Soluzione: poniamo 7 t e e avremo ) t t + t t ln arctan 7 t + ( d t + ) t + 7 arctan 7 + Eercise Soluzione: poniamo t e e otteniamo (t + ) (t+) t+ + 5 t t + t + ( d t + ) t + + t t + + t + t + ln t + t + arctan ln arctan ( ) Eercise 9. + Soluzione: riscriviamo il polinomio al denominatore in modo da ottenere la differenza di due quadrati ( ) ( ) ( ) ( ) arcsin 5 ( arcsin 5 ) Eercise Soluzione: d ( ) ln ( ) ( ) + ( ) +

14 CALCOLO DEGLI INTEGRALI Eercise 9. Soluzione: poniamo t e t e avremo t t ln + t ln + ln + Eercise 95. Soluzione: riscriviamo completando il quadrato cui ( ) cos t e cos t. Avremo cos t + cos t ( ) poniamo ora sin t da 8 t + 6 sin t 8 arcsin ( ) + 8 ( ) ( ) Eercise 96. Soluzione: + ( ) d ( ) ( ) ln Eercise 97. Soluzione: e + e + e e (e ) + d ( ) e + (e ) + ln e e + e Eercise 98. ln ln ln Soluzione: ln + 5 (ln + ) d (ln + ) 5 (ln + ) d (ln + ) Introduciamo la sostituzione ln + t con e t e e t e avremo ( t ) d 5 t 5 t 5 t 5 t 5 t 5 t arcsin t ln ln arcsin + 5 Eercise Soluzione: Applichiamo il metodo dei coefficienti indeterminati. Data una frazione algebrica razionale P () Q(), se Q () ( a) α... ( l) λ dove a,...l sono le radici reali differenti del polinomio e α,..., λ numeri naturali che indicano la molteplicità delle radici, allora è ammissibile la decomposizione della frazione nella forma P () Q () A a + A ( a) A α ( a) α L l + L ( l) L λ ( l) λ

15 CALCOLO DEGLI INTEGRALI 5 I coefficienti indeterminati al numeratore si calcolano riducendo allo stesso denominatore i due membri dell identità sopra eguagliando i coefficienti dei termini di uguale grado ( ) ( ) risolviamo il secondo integrale con il metodo indicato riscrivendo da cui ( ) ( ) A + B A ( ) + B ( ) (A + B) (A + B) avremo, pertanto, eguagliando i coefficienti di pari grado { { A + B 0 A A B B l integrale diverrà + + ln Eercise ( ) ( ) ( ) Soluzione: applichiamo il metodo sopra indicato riscrivendo la frazione + 9 ( ) ( ) ( ) A + B + C da cui + 9 A ( 7 + ) + B ( 5 + ) ( + ) svolgendo e ordinando il polinomio si ha + 9 (A + B ) + ( 7A 5B C) + (A + B ) avremo quindi il sistema A + B 7A 5B C l integrale diviene 8 A + B 9 A 8 B 0 C C 9 5 a + a + a + 5 A + B 6A 8 A + B 9 A 8 B 5 C 5 ln ( + ) Eercise 0. ( + ) Soluzione: riscriviamo la frazione come avremo ( + ) A + B + + C ed eguagliando i numeratori ( + ) A ( + + ) + B ( + ) (A + B) + (A + B ) + A otterremo le costanti risolvendo il sistema A + B 0 A + B 0 A A B C

16 CALCOLO DEGLI INTEGRALI 6 l intgegrale diviene + d ( + ) + + ( + ) ln + + Eercise Soluzione: riscriviamo il numeratore come ( ) e osserviamo che il denominatore è lo sviluppo del cubo di un binomio; otterremo ( ) ( ) + ( ) + ( ) risolviamo il secondo integrale riscrivendo la frazione come i numeratori si ha A + B 8+6 ( ) ( ) ( ) A ( + ) + B ( ) A + ( A + B) + (A B ) otterremo le costanti risolvendo il sistema A 0 A + B 8 A B 6 l integrale diviene pertanto d ( ) ( ) A 0 B 8 C ed eguagliando d ( ) ( ) 8 ( ) ( ) Eercise 0. ( + ) ( + + 5) Soluzione: scomponiamo e riscriviamo i denominatori t + e (t + ) (t ) (t + ) t [ ] poniamo ora ( ) ( ) ( ) + (t + ) (t + ) poniamo ora t tan z da cui t + cos z e cos z dz e otteremo cos z dz cos z + cos z d (z) cos z z cos z dz cos z dz cos z z ln tan z + sec z z cos z ln tan z + sec z z ln t t + t + arctan t ln ( ) arctan ( )+C Eercise 0. Soluzione: in questo caso applichiamo la sostituzione t + da cui t e otteniamo ( t + ) ( ) t t 6 + t + t + t 7 t t5 + t + t 7 ( ) ( ) 5 + ( ) + ( )

17 CALCOLO DEGLI INTEGRALI 7 Eercise 05. cos 5. Integrali di funzioni goniometriche Soluzione: cos d (sin ) ( sin ) d (sin ) d (sin ) sin d (sin ) sin sin Eercise 06. sin cos5 Soluzione: sin ( cos d sin ) sin sin ( d sin ) + sin 6 ( d sin ) ( + sin ) sin d ( sin ) sin ( d sin ) sin + 8 sin8 sin6 Eercise cos Soluzione: applichiamo le formule parametriche della goniometria per le quali cos t t e sin t +t dove t tan. Avremo quindi arctan t e +t. L integrale diviene +t + 5 t 8 t t ( t) ( + t) +t riscriviamo la frazione ( t) ( + t) A t + B e confrontando i numeratori t (A B)+ (A + B). + t A, B si ottengono risolvendo il sistema { { A B 0 A A + B B e l integrale diviene ( t) ( + t) ( t + ) + t ln + t t ln + tan tan Eercise tan tan Soluzione: utilizziamo la definizione di tangente come rapporto tra il seno e il coseno dello stesso angolo cos + sin ln cos sin cos sin Eercise 09. sin + sin Soluzione: d ( sin ) + sin ln + sin Eercise 0. Soluzione: riscriviamo, completando il quadrato, ( + ) + ; operiamo ora la sostituzione sin t e cos t, avremo ( sin t ) cos t cos ( + cos t) + cos t t + sin t arcsin + + +

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti A.M. Bigatti e G. Tamone Esercizi Una funzione g() derivabile su un intervallo (a, b) si dice primitiva della funzione f() se f() =

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c.

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c. Integrali indefiniti fondamentali Integrali indefiniti riconducibili a quelli immediati d f ( c d f ( c a d a c n n d c con n - n a a d log k e d e k k e c a c e d e c d log c send cos c cos d sen c senhd

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

Esercizi svolti sugli integrali indefiniti

Esercizi svolti sugli integrali indefiniti SCIENTIA http://www.scientiajournal.org/ International Review of Scientific Synthesis ISSN 8-9 Quaderni di Matematica 05 Matematica Open Source http://www.etrabyte.info Esercizi svolti sugli integrali

Dettagli

ESERCITAZIONE: FUNZIONI GONIOMETRICHE

ESERCITAZIONE: FUNZIONI GONIOMETRICHE ESERCITAZIONE: FUNZIONI GONIOMETRICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Circonferenza goniometrica La circonferenza goniometrica è una circonferenza di raggio unitario centrata nell

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 01-014 ESERCIZI DI TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE Esercizio 1: Risolvere la seguente equazione Svolgimento: Poiché cos

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

8. Il teorema dei due carabinieri

8. Il teorema dei due carabinieri 8. Il teorema dei due carabinieri Teorema del confronto (o dei due carabinieri) Consideriamo due funzioni f( ), g( ) per le quali risulti, in un punto di accumulazione per i loro domini : f ( ) g( ) Se

Dettagli

ESERCIZI SULLE DISEQUAZIONI I

ESERCIZI SULLE DISEQUAZIONI I ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x

Dettagli

Equazioni e disequazioni goniometriche. Guida alla risoluzione di esercizi

Equazioni e disequazioni goniometriche. Guida alla risoluzione di esercizi Equazioni e disequazioni goniometriche Guida alla risoluzione di esercizi Valori noti per seno e eno per angoli particolari α α Funzioni goniometriche espresse tramite una di esse α α tan α ctg α ± α tanα

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da

Dettagli

ESERCIZI SUL CALCOLO DI INTEGRALI INDEFINITI E DEFINITI

ESERCIZI SUL CALCOLO DI INTEGRALI INDEFINITI E DEFINITI ESERCIZI SUL CALCOLO DI INTEGRALI INDEFINITI E DEFINITI a cura di Michele Scaglia RICHIAMI TEORICI INTEGRALE DEFINITO Nelle lezioni di teoria è stato ampiamente trattato l argomento riguardante l integrazione

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:

Dettagli

Equazioni di grado superiore al secondo

Equazioni di grado superiore al secondo Equazioni di grado superiore al secondo 5 51 L equazione di terzo grado, un po di storia Trovare un numero il cui cubo, insieme con due suoi quadrati e dieci volte il numero stesso, dia come somma 0 Il

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

Risolvere la seguente disequazione significa determinare gli archi aventi estremo di ordinata 1 maggiore di

Risolvere la seguente disequazione significa determinare gli archi aventi estremo di ordinata 1 maggiore di Trigonometria parte 5 easy matematica Eliana pagina 5 DISEQUAZIONI GONIOMETRICHE Disequazioni goniometriche elementari: Si definisce disequazione goniometrica elementare un equazione della forma sen

Dettagli

DISEQUAZIONI TRIGONOMETRICHE Francesco Bonaldi e Camillo Enrico

DISEQUAZIONI TRIGONOMETRICHE Francesco Bonaldi e Camillo Enrico DISEQUAZIONI TRIGONOMETRICHE Francesco Bonaldi e Camillo Enrico Introduzione Si definiscono disequazioni trigonometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche

Dettagli

G6. Integrali indefiniti

G6. Integrali indefiniti G6 Integrali indefiniti G6 Introduzione Nel capitolo G4 si è visto come calcolare la derivata di una funzione data Quando si calcola la derivata di una funzione y=f() il risultato è un altra funzione indicata

Dettagli

DISEQUAZIONI GONIOMETRICHE

DISEQUAZIONI GONIOMETRICHE Pagina 5 Disequazioni goniometriche elementari: DISEQUAZIONI GONIOMETRICHE Si definisce disequazione goniometrica elementare ed ha la forma sen < > m dove m è un qualsiasi numero reale poiché sen e cos,

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Anno 4 Formule goniometriche

Anno 4 Formule goniometriche Anno 4 Formule goniometriche Introduzione In questa lezione descriveremo le formule goniometriche. Le formule goniometriche permettono semplificare alcune espressioni e calcolare i valori delle funzioni

Dettagli

Definizione algebrica di integrale: l'integrale indefinito

Definizione algebrica di integrale: l'integrale indefinito Definizione algebrica di integrale: l'integrale indefinito L'integrale indefinito E' possibile definire semplicemente l'integrale dal punto di vista algebrico come operazione inversa della operazione di

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

(File scaricato da lim. x 1. x + ***

(File scaricato da  lim. x 1. x + *** Esercizio 35 File scaricato da http://www.etrabyte.info) Calcolare: 3 ) 3 + Risulta: 3 ) 3 = + La forma indeterminata può essere rimossa determinando un fattore razionalizzante. In generale, se il fattore

Dettagli

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x Capitolo USO DELLE DERIVATE IN ECONOMIA Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione Si definisce derivata della funzione y f() nel punto 0 del suo insieme

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

ESERCIZI SUI NUMERI COMPLESSI

ESERCIZI SUI NUMERI COMPLESSI ESERCIZI SUI NUMERI COMPLESSI Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = ) 5 + i i) 7 Per risolvere l esercizio proposto applichiamo le formule per il calcolo

Dettagli

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

Equazioni goniometriche risolvibili per confronto di argomenti

Equazioni goniometriche risolvibili per confronto di argomenti Equazioni goniometriche risolvibili per confronto di argomenti In questa dispensa si esaminano le equazioni goniometriche costituite dall uguaglianza di due funzioni goniometriche, nei cui argomenti compare

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Equazioni e disequazioni polinomiali

Equazioni e disequazioni polinomiali Equazioni e disequazioni polinomiali Esercizio. Risolvere la seguente equazione: 3 5 + =. Svolgimento. Poiché il discriminante è positivo esistono due soluzioni distinte. Applicando la formula per le equazioni

Dettagli

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Limiti e continuità. Capitolo Il concetto di limite

Limiti e continuità. Capitolo Il concetto di limite Capitolo 7 Limiti e continuità 7. Il concetto di ite Il concetto di ite è certamente tra i meno immediati e, purtroppo, causa spesso molto sconcerto tra gli studenti perché la sua defizione sembra del

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

ESEMPI ED ESERCIZI SULLE DERIVATE

ESEMPI ED ESERCIZI SULLE DERIVATE ESEMPI ED ESERCIZI SULLE DERIVATE PROF.SSA ROSSELLA PISCOPO Indice DERIVATA DELLA SOMMA ---------------------------------------------------------------------------------------------- 3 2 DERIVATA DEL PRODOTTO

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI

EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 011/01 EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI L asterisco contrassegna gli esercizi più difficili. Determinare l integrale generale dell equazione differenziale y = e x y

Dettagli

Le eguaglianze algebriche: Identità ed Equazioni

Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche possono essere di due tipi 1 - Identità - Equazioni L eguaglianza è verificata da qualsiasi valore attribuito alle lettere L eguaglianza

Dettagli

PROBLEMI DI SECONDO GRADO: ESEMPI

PROBLEMI DI SECONDO GRADO: ESEMPI PROBLEMI DI SECONDO GRADO: ESEMPI Problema 1 Sommando al triplo di un numero intero il quadrato del suo consecutivo si ottiene il numero 9. Qual è il numero? Il campo di accettabilità delle soluzioni è,

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Ripasso delle matematiche elementari: esercizi proposti

Ripasso delle matematiche elementari: esercizi proposti Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............

Dettagli

Argomento 2 IIparte Funzioni elementari e disequazioni

Argomento 2 IIparte Funzioni elementari e disequazioni Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

EQUAZIONI CON PARAMETRO

EQUAZIONI CON PARAMETRO Trigonometria parte 4 easy matematica Eliana pagina 8 EQUAZIONI CON PARAMETRO Le equazioni parametriche goniometriche possono essere risolte mediante il metodo grafico. Tali equazioni richiedono che nell

Dettagli

Integrali inde niti. F 2 (x) = x5 3x 2

Integrali inde niti. F 2 (x) = x5 3x 2 Integrali inde niti Abbiamo sinora studiato come ottenere la funzione derivata di una data funzione. Vogliamo ora chiederci, data una funzione f, come ottenerne una funzione, che derivata dia f. Esempio

Dettagli

Operazioni e proprietà. Potenze e proprietà. Operazioni e proprietà. Potenze ad esponente negativo. I prodotti notevoli

Operazioni e proprietà. Potenze e proprietà. Operazioni e proprietà. Potenze ad esponente negativo. I prodotti notevoli ITT DON BOSCO CURRICOLO VERTICALE DI MATEMATICA A.S. 2016/17 PRIMO BIENNIO COMPETENZE: OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE PRIMA 1) Saper utilizzare tecniche e procedure di calcolo aritmetico;

Dettagli

Espressioni algebriche: espressioni razionali

Espressioni algebriche: espressioni razionali Espressioni algebriche: espressioni razionali definizione: Il rapporto fra due polinomi si dice espressione razionale. Le espressioni razionali in una sola variabile si scrivono nella forma generale esempio:

Dettagli

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

Integrale indefinito

Integrale indefinito Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,

Dettagli

x dove fx ( ) assume tali valori si dice punto di massimo o di

x dove fx ( ) assume tali valori si dice punto di massimo o di 7. Funzioni limitate ed illimitate, funzioni inverse Definizione: Una funzione f: A Bsi dice limitata superiormente od inferiormente se il suo condominio è un insieme limitato superiormente od inferiormente.

Dettagli

Liceo Scientifico Statale. Leonardo Da Vinci

Liceo Scientifico Statale. Leonardo Da Vinci Liceo Scientifico Statale Leonardo Da Vinci Via Possidonea, 8-89100 Reggio Calabria - Tel: 0965-29911 / 312063 www.liceovinci.rc.it Anno Scolastico 2005-2006 Disequazioni Esponenziali e Logaritmiche Prof.

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

Esercizi sulle Disequazioni

Esercizi sulle Disequazioni Esercizi sulle Disequazioni Esercizio Trovare le soluzioni delle seguenti disequazioni:.).).).) ).) ) ).).7) 8.8).) Esercizio Trovare le soluzioni delle seguenti disequazioni tratte dal secondo parziale

Dettagli

Il concetto delle equazioni reciproche risale ad A. De Moivre ( ) ed il nome è dovuto a L. Euler ( ).

Il concetto delle equazioni reciproche risale ad A. De Moivre ( ) ed il nome è dovuto a L. Euler ( ). Il concetto delle equazioni reciproche risale ad A. De Moivre (1667-1754) ed il nome è dovuto a L. Euler (1707-1783). Girard nel 1629 enunciò, e Gauss poi dimostrò rigorosamente nel 1799, che un equazione

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s

PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s. 2013-2014 GINNASIO CLASSI 4 sez. A-B-C SCIENZE UMANE CLASSI 1 sez. A-B-C-D-E-F Aritmetica e algebra Il primo anno sarà dedicato al passaggio dal calcolo

Dettagli

TEOREMA DEL RESTO E REGOLA DI RUFFINI

TEOREMA DEL RESTO E REGOLA DI RUFFINI TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente

Dettagli

1 Primitive 1. 2 Tecniche di integrazione I Linearità dell integrale Integrali quasi immediati... 4

1 Primitive 1. 2 Tecniche di integrazione I Linearità dell integrale Integrali quasi immediati... 4 INTEGRALE INDEFINITO PRIMITIVE Integrale indefinito Indice Primitive Tecniche di integrazione I 3. Linearità dell integrale............................................. 3. Integrali quasi immediati...........................................

Dettagli

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale. Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA Classe 2^ sez. A 1. Ripasso Operazioni tra polinomi, prodotti notevoli, equazioni di primo grado intere e frazionarie. Problemi risolvibili con le equazioni di primo grado. 2. Sistemi Sistemi di equazioni

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

TRIGONOMETRIA Equazioni goniometriche

TRIGONOMETRIA Equazioni goniometriche TRIGONOMETRIA Equazioni goniometriche Le equazioni goniometriche (che presentano l'incognita come variabile di una funzione goniometrica) più importanti sono: ELEMENTARI: sin x = m, cos x = n (con m, n

Dettagli

INTRODUZIONE ALL ANALISI MATEMATICA

INTRODUZIONE ALL ANALISI MATEMATICA INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme

Dettagli

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE EQUAZIONI E DISEQUAZIONI GONIOMETRICHE Prerequisiti Saper risolvere le equazioni algebriche. Conoscere le definizioni delle funzioni goniometriche. Conoscere i valori delle funzioni goniometriche per gli

Dettagli

~ 1 ~ CALCOLO DEI LIMITI

~ 1 ~ CALCOLO DEI LIMITI ~ ~ CALCOLO DEI LIMITI ) Limiti che si presentano nella forma l. Pur non essendo forme indeterminate (il risultato è indicato convenzionalmente con i, nel senso che la funzione tende, in valore assoluto,

Dettagli

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO PROGRAMMA SVOLTO NELLA CLASSE IAA MATERIA : MATEMATICA INSEGNANTE : PROF. Simona TRESCA Programma di Algebra: U.D. 1 : I

Dettagli

ESERCIZI SUGLI INSIEMI NUMERICI. 1) Mettere in ordine crescente i seguenti numeri reali:

ESERCIZI SUGLI INSIEMI NUMERICI. 1) Mettere in ordine crescente i seguenti numeri reali: ESERCIZI SUGLI INSIEMI NUMERICI 1) Mettere in ordine crescente i seguenti numeri reali: 3,14; 1/7; 5/8; 0,1 3; 5/8; π; 1/7; 0,13; 10 1 ; 0,0031 10 3. Inserire poi nel precedente ordinamento i seguenti

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Calcolo Integrale Nello studio del calcolo differenziale si è visto come si può associare ad una funzione la sua derivata. Il calcolo integrale si occupa del problema inverso: data una funzione f è possibile

Dettagli

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006 Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti April 5, 6 ESERCIZI. Studiare la convergenza della serie numerica al variare di γ IR.. Calcolare l integrale π n=

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli