ESERCIZI SUI NUMERI COMPLESSI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI SUI NUMERI COMPLESSI"

Transcript

1 ESERCIZI SUI NUMERI COMPLESSI Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = ) 5 + i i) 7 Per risolvere l esercizio proposto applichiamo le formule per il calcolo della potenza e del rapporto tra numeri complessi A tale scopo, dobbiamo esprimere i numeri complessi che compaiono nella formulazione dell esercizio in forma trigonometrica Per cui poniamo : w = + i = ρcos ϕ + isin ϕ) Quindi sostituendo nell espressione data: v = i = rcos θ + isin θ) per la formula di de Moivre) z = w5 [ρcos ϕ + isin ϕ)]5 = v7 [rcos θ + isin θ)] 7 = = ρ5 cos 5ϕ + isin 5ϕ) r 7 cos 7θ + isin 7θ) = = ρ5 [cos 5ϕ 7θ) + isin 5ϕ 7θ)] ) r7 A questo punto per completare l esercizio si devono calcolare i moduli e gli argomenti di w e v ) ) w = + = v = + ) = Per calcolare gli argomenti di w e v si devono risolvere i sistemi: { cos ϕ = sinϕ = ) { cos θ = sinθ = ) il rapporto tra due numeri complessi è un numero complesso che ha per modulo il rapporto dei moduli e per argomento la differenza tra gli argomenti

2 Risolviamo il primo sistema: Gli angoli ϕ [0,] che risolvono la prima equazione sono: ϕ = 5 φ oppure ϕ = 7, mentre la seconda equazione è risolta dai valori ϕ = e ϕ = 5 Il sistema ) ha quindi per soluzione :ϕ = 5 Risolviamo il secondo sistema: Gli angoli θ [0,] che risolvono la prima equazione sono: θ = oppure θ = 7, mentre la seconda equazione è risolta dai valori θ = 5 e θ = 7 Il sistema ) ha quindi per soluzione :θ = 7 Continuiamo lo svolgimento dell esercizio sostituendo nell espressione ) i valori di w, v, θ, ϕ, sopra calcolati: z = ) 7 [cos 5 5 ) 77 + sin 5 5 )] 77 = = [ 5 8 cos 9 ) 5 + isin 9 )] = = [ 8 cos 97 ) + isin 97 )] Si tratta di determinare l argomento principale di z cioè l angolo ξ [0,) tale che :z = σcos ξ + isin ξ) dove σ = z = 8 Per questo osserviamo che 97 = 8 = 8 + = 8 + per cui 97 = 5 + L argomento principale di z è ξ = mentre il modulo di z è σ = z = 8 Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = Procediamo come nell esercizio precedente ponendo: Quindi sostituendo nell espressione data: + i ) i ) w = + i = ρcos ϕ + isin ϕ) v = i = rcos θ + isin θ) per la formula di de Moivre) z = w [ρcos ϕ + isin ϕ)] = v [rcos θ + isin θ)] = = ρ cos ϕ + isin ϕ) r cos θ + isin θ) = = ρ [cos ϕ θ) + isin ϕ θ)] ) r Procedendo come nell esercizio svolto sopra, calcoliamo il moduli e gli argomenti di w e v, in modo da poterli sostituire nella ), ed otteniamo: w = cos + isin ) 5) v = cos 5 + isin 5 ) ) il rapporto tra due numeri complessi è un numero complesso che ha per modulo il rapporto dei moduli e per argomento la differenza tra gli argomenti

3 Sostituiamo in ) : z = [ cos ) 8 + isin )] Osserviamo che = == + = +, quindi L argomento principale di z è : ξ =, mentre il suo modulo è 8 Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = i) i ) Il procedimento è identico a quello degli esercizi già visti sopra w = i = ρcos ϕ + isin ϕ) v = i = rcos θ + isin θ) w = cos 5 + isin 5 ) v = cos 7 + isin 7 ) 7) 8) Applicando le formule viste sopra, in definitiva: Per cui z = e l argomento principale è ξ = 0 z = [cos ) + isin )] = [cos 0 + isin 0] Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = ) 5 + i ) i Anche questo esercizio viene risolto in maniera del tutto identica a quella degli esercizi precedenti w = i = ρcos ϕ + isin ϕ) v = i = rcos θ + isin θ) w = cos + isin ) v = cos 7 + isin 7 ) 9) 0) Applicando le formule viste sopra otteniamo: z = 8 [cos ] ) + isin ) Per cui z = 8 e l argomento principale è ξ = Esercizio 5 = 8 [cos + isin ]

4 Risolvere la seguente equazione nel campo complesso: z z = 0 Svolgimento Per risolvere l equazione poniamo:z = x + iy Sostituendo si ha x + iy) x iy = 0 x y + xyi x ) + y = 0 ) Tenendo presente che un numero complesso è zero se e solo se sono zero la sua parte reale e la sua parte immaginaria, da ) otteniamo il sistema x y x ) + y = 0 x Da questo otteniamo x = 0 y 9 + y = 0 x x ) = 0 Ovvero x = 0 y + = 9 + y x x = 0 Il primo sistema non ha soluzioni, mentre il secondo sistema equivale ai seguenti x 0 x < 0 x x = 0 x + x = 0 Il primo sistema non ha soluzioni mentre il secondo ha x =, x = La soluzione dell equazione data è: z =, z = Esercizio Risolvere la seguente equazione nel campo complesso: Svolgimento z z = z Osserviamo che una soluzione è z = 0 Cerchiamo le soluzioni z 0 Possiamo dividere per z ed otteniamo z z = Eguagliamo il modulo del primo membro a quello del secondo: z 5 = onde z = 5 Tenuto conto di questo e scomponendo l espressione dell equazione data: z z = = z z = z = 5 ) = 5

5 Le soluzioni dell equazione data sono dunque z = 0 e z = 5 Esercizio 7 Risolvere la seguente equazione nel campo complesso: z + = z Svolgimento Per risolvere l equazione poniamo:z = x + iy Sostituendo si ha x + iy + = x iy) x + ) + y = x y xyi x + ) + y + x + y + xyi = 0 ) Tenendo presente che un numero complesso è zero se e solo se sono zero la sua parte reale e la sua parte immaginaria, da ) otteniamo il sistema x + ) + y = x y x Da questo otteniamo x = 0 + y = y x + = x Il primo sistema non ha soluzioni, mentre il secondo sistema equivale ai seguenti x + 0 x + < 0 x + = x x = x Il secondo sistema non ha soluzioni mentre il primo ha x, = ± La soluzione dell equazione data è: z, = ± Esercizio 8 Risolvere la seguente equazione nel campo complesso: Svolgimento z z = z Osserviamo che z = 0 è una soluzione Cerchiamo le soluzioni z 0 Dividendo per z entrambi i membri dell equazione z = z Scriviamo in forma trigonometrica ed applichiamo la formula per il calcolo delle radici ennesime di un numero complesso ottenendo le altre soluzioni dell equazione data = {cos + isin } 5

6 { [ ) )] z cos + k + isin + k } k = 0,,, Onde Esercizio 9 z = + i, z = + i, z = i, z = i Determinare le coppie z,w) C che risolvono il seguente sistema: w z + i = 0 z z z w = 0 Svolgimento Il sistema dato equivale ai seguenti: w z = + i z z z w = 0 w z = + i = i z z z z z w = 0 w z = i z z z i ) = 0 Poiché z = 0 non può essere soluzione della prima equazione, possiamo dividere la seconda per z ottenendo z = i Questa viene risolta calcolando le radici quarte nel campo complesso del secondo membro A tale scopo scriviamo questo numero in forma trigonometrica nel modo seguente: i = cos + i sin ) Le radici quarte sono quindi i = { ) ) } cos + k + i sin + k, k = 0,,, Le soluzioni z sono: z 0 = + i ), z = + i), z = i ), z = i) Da cui

7 z 0 = i ), z = i), z = + i ), z = + i) Dalla prima equazione del terzo sistema otteniamo w : w 0 = i [ i = cos + i sin ] cos ) ) + i sin = = cos 5 + i sin 5 ) w = i i = = [ cos + i sin ] = w = i + i = = cos 8 + i sin 8 ) = i ) ; [ cos + i sin ] cos 7 + i sin 7 = ) + i cos + i sin ) cos ) ) + i sin = = ) + i ; w = i = cos + i + i sin ) cos + i sin = = cos 7 + i sin 7 ) = ) i ; In definitiva le soluzioni sono date dalle coppie: )) + i ), i ; i ), )) + i ; + i), i), ; ) ) + i ; i )) Esercizio 0 Determinare le coppie z,w) C che risolvono il sistema: z w = w z = 0 Svolgimento Il sistema dato equivale al seguente z w = z = w ovvero w w + = 0 z = w 7

8 La prima equazione del sistema è un equazione biquadratica che si risolve ponendo u = w, e quindi u u+ = 0, che ha soluzioni u, = ± i Determiniamo le soluzioni dell equazione u = w calcolando le radici quadrate di u, A tale scopo passiamo alla forma trigonometrica: u = + i = cos + i sin u = i = cos 5 + i sin 5 Applicando a questi numeri la formula per il calcolo delle radici di un numero complesso, otteniamo rispettivamente w = cos + i sin w = cos 7 + i sin 7 Da cui, mediante la formula di De Moivre: z = w = cos i sin z = w = cos 7 i sin 7 In definitiva le soluzioni del sistema sono: e e w = cos 5 + i sin 5 w = cos + i sin z = w = cos 5 i sin 5 z = w = cos i sin z ;w ) = z ;w ) = z ;w ) = z ;w ) = + + i; ) + i, ) i; i, ) i; + i, i; ) i 8

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

Esercizi sui numeri complessi. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. 1. Trovare parte reale e immaginaria dei numeri complessi:

Esercizi sui numeri complessi. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. 1. Trovare parte reale e immaginaria dei numeri complessi: Esercizi sui numeri complessi Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1 Esercitazione 1. Trovare parte reale e immaginaria dei numeri complessi: 3 + i 5 4i e Soluzione: 3 + i

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

ESERCIZI SULLE DISEQUAZIONI I

ESERCIZI SULLE DISEQUAZIONI I ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x

Dettagli

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1 ANALISI MATEMATICA CORSO C - CdL INFORMATICA Prova scritta del 0//004 - FILA ESERCIZIO Studiare la funzione f(x) log x log x determinando in particolare a) campo di esistenza ed eventuali asintoti; b)

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili.

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. 1 I Numeri Complessi L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. x 2 + 1 = 0? log( 10)? log 2 3? 1? Allo scopo di

Dettagli

OPERAZIONI FONDAMENTALI CON I NUMERI COMPLESSI

OPERAZIONI FONDAMENTALI CON I NUMERI COMPLESSI I Numeri Complessi L'esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali IR non sempre sono possibili. x 2 + 1 = 0? log (-10)? log -2 3? (-1) ½? Allo scopo

Dettagli

Introduciamo un simbolo i, detto unità immaginaria definito dalla condizione i 2 = i i = 1. Il simbolo i soddisfa l equazione

Introduciamo un simbolo i, detto unità immaginaria definito dalla condizione i 2 = i i = 1. Il simbolo i soddisfa l equazione Capitolo 1 I numeri complessi 1.1 I numeri complessi Introduciamo un simbolo i, detto unità immaginaria definito dalla condizione i 2 = i i = 1. Il simbolo i soddisfa l equazione x 2 +1=0. Un numero complesso

Dettagli

unità immaginaria, rappresentata dal simbolo i e che si definisce comeunnumeroilcuiquadratoèugualealnumeroreale 1, ossia:

unità immaginaria, rappresentata dal simbolo i e che si definisce comeunnumeroilcuiquadratoèugualealnumeroreale 1, ossia: I NUMERI COMPLESSI Perché i numeri complessi? Perché i numeri complessi? Risolviamo l equaione di Risolviamo l equaione di grado:. grado:. 0 3 + x x? 8 1 4 ± ± x? x unità immaginaria, rappresentata dal

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi.

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi. LeLing14: Ancora numeri complessi e polinomi Ārgomenti svolti: Risoluzione di ax + bx + c = 0 quando a, b, c sono numeri complessi La equazione di Eulero: e i θ = cos(θ) + i sin(θ) La equazione x n = a,

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Numeri complessi. Scrivere in forma algebrica i seguenti numeri complessi. a) z + i) i) + i) i) b) z + i) i) + i) + + i) i) + i) + i) c) z

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

1. Scrivere in forma algebrica il seguente numero complesso:

1. Scrivere in forma algebrica il seguente numero complesso: TERZA LEZIONE (8/10/009) Argomenti trattati: NUMERI COMPLESSI - rappresentazione algebrica e trigonometrica, soluzioni di disequazioni, Formule di De Moivre, radici n esime, equazioni. 1 Esercizi svolti

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

Anno 2. Risoluzione di sistemi di primo grado in due incognite

Anno 2. Risoluzione di sistemi di primo grado in due incognite Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione

Dettagli

Il concetto delle equazioni reciproche risale ad A. De Moivre ( ) ed il nome è dovuto a L. Euler ( ).

Il concetto delle equazioni reciproche risale ad A. De Moivre ( ) ed il nome è dovuto a L. Euler ( ). Il concetto delle equazioni reciproche risale ad A. De Moivre (1667-1754) ed il nome è dovuto a L. Euler (1707-1783). Girard nel 1629 enunciò, e Gauss poi dimostrò rigorosamente nel 1799, che un equazione

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

Soluzioni degli esercizi sulle equazioni alle differenze lineari

Soluzioni degli esercizi sulle equazioni alle differenze lineari Soluzioni degli esercizi sulle equazioni alle differenze lineari Bernardi Mauro Sapienza, University of Rome MEMOTEF Department April, 7th 2013 Mauro Bernardi (MEMOTEF) Soluzioni degli esercizi sulle equazioni

Dettagli

Equazioni goniometriche risolvibili per confronto di argomenti

Equazioni goniometriche risolvibili per confronto di argomenti Equazioni goniometriche risolvibili per confronto di argomenti In questa dispensa si esaminano le equazioni goniometriche costituite dall uguaglianza di due funzioni goniometriche, nei cui argomenti compare

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Equazioni di grado superiore al secondo

Equazioni di grado superiore al secondo Equazioni di grado superiore al secondo 5 51 L equazione di terzo grado, un po di storia Trovare un numero il cui cubo, insieme con due suoi quadrati e dieci volte il numero stesso, dia come somma 0 Il

Dettagli

Svolgimento degli esercizi N. 3

Svolgimento degli esercizi N. 3 Svolgimento degli esercizi N. 3 Prova scritta parziale n. del // Fila. Calcolare il valore del seguente integrale definito: ( x + e x ) dx. ( x + e x ) dx ( x + e 4x + x e x) dx x dx + e 4x dx + x e x

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

Equazioni algebriche di terzo grado: ricerca delle soluzioni

Equazioni algebriche di terzo grado: ricerca delle soluzioni Equazioni algebriche di terzo grado: ricerca delle soluzioni 1 Caso particolare: x 3 + px + q = 0....................... Caso generale: x 3 + bx + cx + d = 0..................... 4 3 Esercizi.....................................

Dettagli

Prerequisiti. A(x) B(x).

Prerequisiti. A(x) B(x). Prerequisiti 4 Equazioni e disequazioni irrazionali Proprietà: la casistica delle equazioni e disequazioni irrazionali è ilitata, potendosi presentare un qualsivoglia numero di radici in ogni membro Noi

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Unità Didattica realizzata dalla prof.ssa De Simone Marilena A.S. 2015/16

Unità Didattica realizzata dalla prof.ssa De Simone Marilena A.S. 2015/16 Unità Didattica realizzata dalla prof.ssa De Simone Marilena A.S. 2015/16 La matematica finanziaria si occupa di tutti i problemi relativi al denaro e al suo impiego. Il denaro è lo strumento con cui possiamo

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il

Dettagli

Esercitazione sui numeri complessi

Esercitazione sui numeri complessi Esercitazione sui numeri complessi Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno Ottobre 0. Come tali sono ben lungi dall essere esenti da errori, invito quindi chi ne

Dettagli

TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 01-014 ESERCIZI DI TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE Esercizio 1: Risolvere la seguente equazione Svolgimento: Poiché cos

Dettagli

Esercizi svolti sui limiti

Esercizi svolti sui limiti Esercizi svolti sui iti Esercizio. Calcolare sin(). Soluzione. Moltiplichiamo e dividiamo per : sin() sin() sin() a questo punto, ponendo y, dato che otteniamo y sin y y sin() y sin y y. Esercizi svolti

Dettagli

CALCOLO DEGLI INTEGRALI

CALCOLO DEGLI INTEGRALI CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

Capitolo 8. - Soluzioni

Capitolo 8. - Soluzioni Capitolo 8. - Soluzioni 8. Basta applicare la formula di passaggio da un sistema di misura all altro. a) π 6 ; b) π; c) π; d) π 8 ; e) π ; f) π; g) 5 π; h) π 5 5 ; i) 8π; j) 8 π; k) 55 8 π; l) ; m) 6 ;

Dettagli

CALCOLO DEL RAGGIO DI CURVATURA DI UNA CURVA REGOLARE DI E Q UAZI O NE y = f (x ), ivi derivabile almeno due volte, e che la derivata seconda

CALCOLO DEL RAGGIO DI CURVATURA DI UNA CURVA REGOLARE DI E Q UAZI O NE y = f (x ), ivi derivabile almeno due volte, e che la derivata seconda ALOLO DEL RAGGIO DI URVATURA DI UNA URVA REGOLARE DI E Q UAZI O NE Supponiamo che b sia una unzione deinita in, ivi derivabile almeno due volte, e che in la derivata seconda sia diversa da zero, e indichiamo

Dettagli

I numeri complessi. Capitolo 7

I numeri complessi. Capitolo 7 Capitolo 7 I numeri complessi Come abbiamo fatto per i numeri reali possiamo definire assiomaticamente anche i numeri complessi. Diciamo che l insieme C dei numeri complessi è un insieme su cui sono definite

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler)

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler) Geometria analitica I supplementi sulle rette (M.S. Bernabei & H. Thaler) Siano dati un vettore v = li + mj = (l, m) non nullo e un punto P 0 = x 0, y 0. Cerchiamo la retta r che passa per il punto P 0

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

Determina il terzo vertice A di un triangolo di cui. l ortocentro

Determina il terzo vertice A di un triangolo di cui. l ortocentro La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un

Dettagli

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i,

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i, Numeri complessi Esercizi svolti 1 Numeri complessi 1.1 Forma cartesiana Esercizio 1.1 Dato il numero complesso z = 4 3 4i, a) determinare la parte reale x di z: x = Re z, b) determinare la parte immaginaria

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Equazioni frazionarie e letterali

Equazioni frazionarie e letterali Equazioni frazionarie e letterali 17 17.1 Equazioni di grado superiore al primo riducibili al primo grado Nel capitolo 15 abbiamo affrontato le equazioni di primo grado. Adesso consideriamo le equazioni

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 2014

SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 2014 SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 214 1. Per determinare f() e f(k), applichiamo il teorema fondamentale del calcolo integrale, che si può applicare essendo f continua per ipotesi: g() = f(t)dt

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Numeri complessi. x 2 = 1.

Numeri complessi. x 2 = 1. 1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi

Dettagli

Sistemi di equazioni

Sistemi di equazioni Sistemi di equazioni 19 191 Equazione lineare in due incognite Definizione 191 Una equazione di primo grado (in n incognite) si chiama equazione lineare Problema 191 Determinare due numeri naturali la

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

a b a : b Il concetto di rapporto

a b a : b Il concetto di rapporto 1 Il concetto di rapporto DEFINIZIONE. Il rapporto fra due valori numerici a e b è costituito dal loro quoziente; a e b sono i termini del rapporto, il primo termine si chiama antecedente, il secondo si

Dettagli

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2.

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. TEN 2008. Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. Lemma 1. Sia n Z. Sia p > 2 un numero primo. (a) n è un quadrato modulo p se e solo se n p 1 2 1 mod p; (b) Sia n 0

Dettagli

Anno 1. Divisione fra polinomi

Anno 1. Divisione fra polinomi Anno 1 Divisione fra polinomi 1 Introduzione In questa lezione impareremo a eseguire la divisione fra polinomi. In questo modo completiamo il quadro delle 4 operazioni con i polinomi. Al termine di questa

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria.

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. 1 Disequazioni fratte Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. Prima di affrontare le disequazioni fratte, ricordiamo il procedimento che utilizziamo per

Dettagli

(File scaricato da lim. x 1. x + ***

(File scaricato da  lim. x 1. x + *** Esercizio 35 File scaricato da http://www.etrabyte.info) Calcolare: 3 ) 3 + Risulta: 3 ) 3 = + La forma indeterminata può essere rimossa determinando un fattore razionalizzante. In generale, se il fattore

Dettagli

Politecnico di Torino. Seminari MAT+ Numeri complessi: trigonometria con e senza la H

Politecnico di Torino. Seminari MAT+ Numeri complessi: trigonometria con e senza la H Politecnico di Torino Corso di Laurea in Matematica per le Scienze dell Ingegneria Dipartimento di Matematica Seminari MAT+ Mercoledì 9 marzo 008 Numeri complessi: trigonometria con e senza la H Marco

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità

Dettagli

Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi.

Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi. MASSIMO COMUNE DIVISORE E ALGORITMO DI EUCLIDE L algoritmo di Euclide permette di calcolare il massimo comun divisore tra due numeri, anche se questi sono molto grandi, senza aver bisogno di fattorizzarli

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

1.2 MONOMI E OPERAZIONI CON I MONOMI

1.2 MONOMI E OPERAZIONI CON I MONOMI Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

Funzioni Complesse di variabile complessa

Funzioni Complesse di variabile complessa Funzioni Complesse di variabile complessa Docente:Alessandra Cutrì Richiami sui numeri complessi Indichiamo con C il campo dei Numeri complessi z = x + iy C, ses x, y R i := 1 (Rappresentazione cartesiana

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle

Dettagli

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione

Dettagli

1 Trasformazione di vettori e 1-forme per cambiamenti

1 Trasformazione di vettori e 1-forme per cambiamenti PRIMA ESERCITAZIONE Trasformazione di vettori e -forme per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x } (x,x,x 2,x 3 ). La sua metrica è ds 2 (dx ) 2 +(dx

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Sistemi di equazioni di primo grado (sistemi lineari)

Sistemi di equazioni di primo grado (sistemi lineari) Sistemi di equazioni di primo grado (sistemi lineari) DEFINIZIONE Un sistema di equazioni è un insieme di due o più equazioni, tutte nelle stesse incognite, di cui cerchiamo soluzioni comuni. Esempi 1.

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene:

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene: 1 EQUAZIONI 1. (Da Veterinaria 2006) L equazione di secondo grado che ammette per soluzioni x1 = 3 e x2 = -1/ 2 è: a) 2x 2 + (2 3-2)x - 6 = 0 b) 2x 2 - (2 3-2)x - 6 = 0 c) 2x 2 - (2 3-2)x + 6 = 0 d) 2x

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

1 Esercizi sulla teoria del portafoglio

1 Esercizi sulla teoria del portafoglio 1 Esercizi sulla teoria del portafoglio 1. Sia dato un mercato uniperiodale in cui siano disponibili soltanto due titoli rischiosi A e B caratterizzati da scarto quadratico medio e coefficiente di correlazione

Dettagli

Analisi Matematica II Integrali curvilinei (svolgimenti) 1 t 9t dt (a) = dt t 1 t 2 = 1 2. x dx (b) log y 1. dy.

Analisi Matematica II Integrali curvilinei (svolgimenti) 1 t 9t dt (a) = dt t 1 t 2 = 1 2. x dx (b) log y 1. dy. Analisi Matematica II Integrali curvilinei svolgimenti Svolgimento esercizio Si ha, successivamente, t t, t, t 9t 4 + 4t t 9t + 4, l t dt t 9t + 4 dt a 8 dove in a si è usata la sostituzione 9t + 4 8t

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

SVILUPPI DI TAYLOR Esercizi risolti

SVILUPPI DI TAYLOR Esercizi risolti Esercizio 1 SVILUPPI DI TAYLOR Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx log1

Dettagli