Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi"

Transcript

1 Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi Parte 1 Trasformata discreta di Fourier - DFT per segnali sinusoidali Si calcoli la trasformata discreta di Fourier (DFT) dei primi campioni di un segnale discreto costante di ampiezza B infatti per k 6 0 (k) B exp( jπ k n)bδ k exp jπn k ½ per k 0 δ k 0 per k 6 0 exp jπn k cos(πn k ) j sin(πn k )0 in quanto entrambe le somme sono eseguite su k 6 0periodi ( campioni) delle rispettive sinusoidi. Si calcoli la trasformata discreta di Fourier (DFT) del segnale cos(πn p )w [n],,..., 1 con p 1,..., 1, w [n] u(n) u(n ). Dalla definizione (k 0,..., 1) (k) 1 cos(πn p )exp( jπ k n) exp(jπn p )+exp( jn p ) exp( jπn k p )+1 exp( jπ k n) exp( jπn k + p ) si ha (k) δ k p + ½ / per k p e k p δ k +p 0 altrimenti Infatti per k 0,..., 1 e. exp jπn exp jπn ½ (k p) per k p δ k p 0 altrimenti (k + p) δ k +p ½ per k p. 0 altrimenti Si noti che per k 6 p il segnale exp ³ jπn (k p) cos(πn (k p) sinusoidi (parte reale e immaginaria) che fanno k p giri in campioni, la somma e nulla, quindi exp jπn (k p) per k 6 p cos(πn (k p) ) j ) j sin(πn(k p) ) ècostituitodadue (k p) sin(πn )0 1

2 Vale la stessa cosa per P exp ³ cos(πn (k+p) ) j sin(πn(k+p) ) inoltre exp jπn (k + p) jπn (k+p) per k 6 p ³,infattiperk 6 p il segnale exp cos(πn (k + p) ) j (k + p) sin(πn )0 jπn (k+p) pochèlasommaèeseguitasuunk 6 p cicli delle sinusoidi. Ovviamente per k p exp jπn p + p Convoluzione circolare di DFT exp ( jπn) Si calcoli la DFT di z n cos(π16 n )cos(πn ), 0 n 15, 16. La sequenza z n x n y n è il prodotto di due sequenze, la DFT di z n è quindi la convoluzione circolare delle DFT delle due sequenze x n e y n ovvero (k) e Y (k), rispettivamente (si deve anche tener conto di un fattore di scala pari a 1/ ) DFT[z n ]Z(k) 1 (k) ~ Y (k) Il calcolo della convoluzione circolare richiede 1) il calcolo della convoluzione lineare (e scalatura di 1/ ) S(k) (1/ ) (k) Y (k) tra i singoli periodi {(k)} k0 e {Y (k)} k0 delle due DFT ) periodicizzazione di S(k) a passo campioni 3) Z(k) S(k) k0,..., Come visto nell esercizio precedente La convoluzione lineare tra (k) Y (k) La periodicizzazione a passo DFT[x n ] DFT[cos(π n 16 )] (k) 8δ k 1 +8δ k 15 DFT[y n ] DFT[cos(π n )] Y (k) 8δ k 4 +8δ k 1 S(k) (1/ ) (k) Y (k) 1 16 [8δ k 1 +8δ k 15 ] 8δ k 4 +8δ k [8δ k 1 +8δ k 15 ] 8δ k [8δ k 1 +8δ k 15 ] 8δ k δ k 5 + δ k 19 + δ k 13 + δ k 7 S(k) p δ k 5+p16 + δ k 13+16p + δ k 3+16p + δ k 11+16p Z(k) 1 4 [δ k 3 + δ k 5 + δ k 11 + δ k 13 ],k0,...,15 Per verificare il risultato possiamo verificare che z n cos(πn16 1 )cos(πn ) 1 cos(6π 16 n )+ 1 la DFT e la somma delle due DFT dei segnali sinusoidali. n10 cos(π 16 ), quindi

3 3 Campionamento in frequenza della TdF di sequenze Si spieghi qual e la procedura per calcolare i campioni della trasformata di Fourier del segnale x n cos(πn 3 16 )w 16[n] per Φ k/18 con k 63,...,+64 usando la DFT. E noto che i campioni della DFT ( campioni) coincidono con il campionamento a passo k/, k 0,..., 1 della TdF (Φ) del segnale discreto x n, ovvero (k) (Φ) Φk/ con 16. Dato che serve una risoluzione in frequenza maggiore calcoliamo la trasformata discreta di Fourier del segnale cos(πn16 3 ) per n 0,...,15 in cui si aggiungono P campioni nulli alla fine della sequenza (x n cos(πn16 3 )[u(n) u(n 16)]), come noto dalla teoria cio equivale a sovracampionare in frequenza la trasformata di Fourier di x n apassok/18. Il numero di campioni della DFT vale ora 18, (k) 15 cos(πn 3 16 )exp( jπ k 18 n) In figura 1 si e confrontato il risultato ottenuto (DFT 18 campioni - la linea tratteggiata unisce i campioni Figura 1: ottenuti) con la DFT del segnale di lunghezza 16 campioni (campioni in blu). Il codice e mostrato in figura. Si calcoli la trasformata di Fourier di x n in forma algebrica e si confronti il risultato con la DFT su 64 campioni. La trasformata di x n si puo calcolare anche algebricamente x n cos(πn 3 16 )[u(n) u(n 16)] (Φ) 1 δ Φ δ Φ + 3 sin(16πφ) 16 sin(πφ) exp( j15πφ) ed è plottata in Fig. 3 (linea scura) a confronto con la DFT calcolata per 64 campioni (campioni in rosso).. LaDFTinFig.3none altroche(φ) Φk/64 (k). 4 Traslazione circolare e DFT Sia dato il segnale discreto di 5campioni x n δ n δ n 1 +3δ n δ n 3 + δ n 4. Detta { k } 4 k0 la DFT della sequenza x n si trovi l espressione della sequenza y n chehacomedft Y k k exp(j4πk/5), k 0,...,4. 3

4 Figura : Figura 3: 4

5 Risolviamo prima l esercizio algebricamente, poi lo verifichemo tramite Matlab. Moltiplicare la DFT di x n per exp(jπkn 0 /5) equivale nei tempi a traslare la sequenza x n n 0 campioni (verso sinistra - anticipo), ovvero x n n0 circolare DFT k exp(jπkn 0 /5) Per ottenere la traslazione circolare della sequenza, occorre ricordare che la trasformata di Fourier della sequenza x n periodicizzata a passo 5, x n P + p x n 5p e descritta dai soli campioni della DFT k di x n (la trasformata e infatti un segnale discreto e periodico di campioni, dove il periodo e cosituito dai campioni dell DFT { k } k0 - si veda la teoria). E noto dalla propieta del ritardo che x n+q k exp(j πkq ) el nostro caso q infatti x n+ k exp(j 4πk 5 ) quindi la sequenza y n con DFT k exp(j 4πk 5 ) e il periodo base (es tra 0 e 1) del segnale discreto periodico x n+, ovvero y n 3δ n δ n 1 + δ n + δ n 3 δ n 4. y n si puo ottenere equivalentemente applicando una traslazione circolare asinistradiq campioni del segnale discreto x n. Le sequenza x n e y n sono visualizzate in Fig 4 y n 6 x n+ OTA BEE!! ỹ n x n+,y n [ỹ n ],..., SI!! Il codice Matlab per risolvere l esercizio e mostrato in Fig. 5 (file matlab: traslazione_circolare.m). 3 x n, DFT ( k ) x(n) x~n y n, DFT ( k ) exp( j 4 π k / 5) y(n) x n ~ y ~ n x n+ y n Figura 4: 5 DFT della sequenza ritardata Si consideri la sequenza di lunghezza x 5x n δ n δ n 1 +3δ n δ n 3 + δ n dell esercizio precedente. Si descriva una procedura per ricavare la sequenza ritardata di q campioni x n q apartiredax n usando la DFT (k). Un traslazione circolare può coincidere con una traslazione lineare solo inserendo nella sequenza x n un numero opportuno di campioni nulli in modo da annullare l effetto del ricircolo dei campioni dovuto alla 5

6 Figura 5: circolarita della traslazione. La seguente procedura consente di ottenere la DFT di x n q apartiredalladft della sequenza x n in cui si sono aggiunti un numero opportuno di zeri: 1) inserire P q zeri alla sequenza x n, la sequenza (quindi il periodo base se si considera il segnale discreto periodicizzato) è ora composta da x + P campioni ) (k) P x n exp( jπkn/) èladftdix n dopo l aggiunta di zeri (k 0,..., 1) 3) Z(k) (k)exp( j πkq ) èladftdix n q (k 0,..., 1) Codice Matlab in figura 6 per il caso q (M-file: traslazione_lineare.m) Figura 6: 6 ConvoluzionecircolaredisequenzeeDFT Si consideri la sequenza x n δ n +δ n 1 +3δ n +4δ n 3 +5δ n 4,conDFT (k), sicalcoli 1) la sequenza z n che ha DFT (k); ) la sequenza q n che ha DFT (k) ; 3) la sequenza p n che ha DFT (k) (il simbolo sta per complesso coniugato) 6

7 1) Si utilizza la proprietà del prodotto di DFT: DFT[z n x n ~ x n ] (k) dove (k) e la DFT di x n. La sequenza z n chehacomedft (k) si ottiene dalla convoluzione circolare z n x n ~ x n.ilcalcolodiz n viene svolto in tre passi: a) calcolo della convoluzione lineare c n x n x n δ n +4δ n 1 +10δ n +0δ n 3 +35δ n 4 +44δ n δ n 6 +40δ n 7 +5δ n 8 (lunghezza della convoluzione 19campioni) b) periodicizzazione della convoluzione lineare: z n P + p c n 5p 1. c) valutazione del singolo periodo, la sequenza z n { z n } 4 45δ n +50δ n 1 +50δ n +45δ n 3 +35δ n 4 ha DFT (k) ) E noto che la DFT dell autocorrelazione circolare della sequenza x n vale (k), ovvero il modulo quadro dei campioni della DFT di x n DFT[q n x n ~ x n] (k) dove q n x n ~ x n.come nel punto precedente, il calcolo di q n viene svolto in tre passi: a) calcolo dell autocorrelazione della sequenza x n : a n x n x n 55δ n +40δ n 1 +40δ n+1 +6δ n + 6δ n+ +14δ n 3 +14δ n+3 +5δ n 4 +5δ n+4 (si noti che l autocorrelazione è una funziona pari) b) periodicizzazione dell autocorrelazione per ottenere l autocorrelazione della sequenza periodica: q n P + p a n 5p. c) q n q n,...,4 55δ n +45δ n 1 +40δ n +40δ n 3 +45δ n 4 ha DFT (k). Si noti che la sequenza periodica (autocorrelazione) q n èrealepari,lasuatrasformata(periodicaecostituita dai campioni (k) k 0,..., 1 come periodo base) è reale e pari. 3) La sequenza periodica p n x n ha trasfomata di Fourier (discreta e periodica) descritta dagli campioni della DFT (k), k0,.., 1. Il periodo base p n n 0,..., 1 di p n x n ha DFT (k), k 0,.., 1.La sequenza p n vale p n δ n +5δ n 1 +4δ n +3δ n 3 +δ n 4 ehadft (k). Le sequenze z n,q n,p n sono mostrate in figura 7, il codice e riportato in figura8(m-file: prodottodft.m) 7 Convoluzione lineare di sequenze tramite prodotto di DFT Si consideri la sequenza di x 3campioni x n δ n +δ n 1 + δ n,condft(k), e la sequenza w(n), finestra rettangolare di w campioni. Si calcoli la DFT della sequenza y n x n w(n). La DFT della convoluzione lineare di due sequenze coincide con il prodotto delle DFT delle sequenze in cui si e aggiunto un numero opportuno di zeri in modo che la convoluzione circolare x n ~ w(n) coincida con quella lineare nel singolo periodo. In particolare, dato che la lunghezza di y n x n w(n) e pari a x + w campioni, e sufficiente aggiungere x 1zeri a x n e w zeri a w(n).le due DFT (k),w(k), k0,..., 1, sono (k) W (k) x n exp( jπ nk ) 3 x n exp( jπ nk )1+exp( jπk )+exp( jπk) [4, j, 0, j] w(n)exp( jπ nk )1+exp( jπk )cos(π k 4 )exp( jπk 4 )[, cos(π 1 4 )exp( jπ1 4 ), 0, cos(π 3 4 ) e La DFT della sequenza y n x n w(n) δ n +3δ n 1 +3δ n + δ n 3 vale quindi (k)w (k) [8, 4j cos(π 1 4 )exp( jπ1 4 ), 0, 4j cos(π 3 4 )exp( jπ3 4 )] 1 Si noti che il segnale discreto e periodico z n ha TdF discreta e periodica di periodo 5campioni, descritta dagli campioni della DFT del periodo base z n, ovvero (k) Si noti che il segnale discreto e periodico q n ha TdF discreta e periodica di periodo 5campioni, descritta dagli campioni della DFT del periodo base q n, ovvero (k) 7

8 Figura 7: Figura 8: 8

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft diunasequenzafinita: algoritmifft La TDF di una sequenza finita può essere calcolata utilizzando algoritmi, computazionalmente efficienti, quali gli algoritmi Fast Fourier Transform (FFT). L efficienza

Dettagli

Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi

Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi Appunti Esercitazioni per il corso di elecomunicazioni Stefano Savazzi Parte Ricostruzione di segnali analogici - teorema del campionamento Sia dato il seguente segnale µ sin(90πt) x(t) cos(000πt) πt si

Dettagli

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s.

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. ASB 17/01/12 (270) Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. A 0 T 2T 3T t - A Si consideri il segnale

Dettagli

Come rintracciarmi. Orario di ricevimento: Martedì dalle 9:00 alle 11:00. Telefono:

Come rintracciarmi. Orario di ricevimento: Martedì dalle 9:00 alle 11:00. Telefono: Come rintracciarmi Orario di ricevimento: Martedì dalle 9:00 alle :00 Telefono: 0432-55-827 e-mail: bernardini@uniud.it Pagina web: http://www.diegm.uniud.it/ bernardini/didattica/sis/ September 25, 2003

Dettagli

ANALISI DI FOURIER. Segnali a Tempo Discreto:

ANALISI DI FOURIER. Segnali a Tempo Discreto: ANALISI DI FOURIER Segnali a Tempo Discreto: - - Sequenza periodica - Taratura degli assi frequenziali - TDF di una sequenza finita - Campionamento in Frequenza Serie discreta di Fourier Consideriamo una

Dettagli

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione p. 1 Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Dettagli

Problemi di base di Elaborazione Numerica dei Segnali

Problemi di base di Elaborazione Numerica dei Segnali Universita' di Roma TRE Corso di laurea in Ingegneria Elettronica Corso di laurea in Ingegneria Informatica Universita' di Roma "La Sapienza" Corso di laurea in Ingegneria delle Telecomunicazioni Problemi

Dettagli

Esercitazione ENS su periodogramma (27 e 28 Maggio 2008) Esercizio 1: Autocorrelazione e stima della densità spettrale di potenza

Esercitazione ENS su periodogramma (27 e 28 Maggio 2008) Esercizio 1: Autocorrelazione e stima della densità spettrale di potenza sercitazione S su periodogramma (7 e 8 Maggio 008 D. Donno sercizio : Autocorrelazione e stima della densità spettrale di potenza Si consideri la sequenza x n di lunghezza = 8 campioni. x n è somma di

Dettagli

( e j2π ft 0.9 j) ( e j2π ft j)

( e j2π ft 0.9 j) ( e j2π ft j) Esercitazione Filtri IIR Es. 1. Si consideri il filtro dato dalla seguente equazione alle differenze y[n]+0.81y[n-2]=x[n]-x[n-2] - Determinare la funzione di trasferimento del filtro Eseguendo la Trasformata

Dettagli

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Primo Appello 26/2/2015

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Primo Appello 26/2/2015 Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico 204-205 Primo Appello 26/2/205 Quesiti relativi alla prima parte del corso (tempo max. 90 min). Calcolare: la trasformata z di x(n) = ( )

Dettagli

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione Esercizio 1 [punti 4] SEGNALI E SISTEMI (a.a. 003-004) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 003 Testo e Soluzione Per ciascuno dei seguenti segnali dire se è periodico e,

Dettagli

7.Trasformata discreta di Fourier

7.Trasformata discreta di Fourier 7.Trasformata discreta di Fourier 7. Introduzione Nel capitolo 6 sono state prese in esame la definizione e le proprietà della trasformata discreta nel tempo di Fourier : X(e jω ), essendo ω una variabile

Dettagli

Elenco dei simboli 9. Prefazione 10

Elenco dei simboli 9. Prefazione 10 Indice Elenco dei simboli 9 Prefazione 10 1 Analisi nel dominio del tempo 11 1.1 Segnali tempo discreto... 11 1.1.1 Segnali notevoli tempo discreto... 13 1.1.2 Alcuni criteri di classificazione di segnali

Dettagli

Circuiti a Tempo Discreto DFT - La Trasformata di Fourier Discreta

Circuiti a Tempo Discreto DFT - La Trasformata di Fourier Discreta Circuiti a Tempo Discreto - La Trasformata di Fourier Discreta Prof. Michele Scarpiniti Dipartimento di Ingegneria dell Informazione, Elettronica e Telecomunicazioni Sapienza Università di Roma http://ispac.ing.uniroma1.it/scarpiniti/index.htm

Dettagli

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta SEGNALI A TEMPO DISCRETO Impulso e altri segnali canonici discreti Trasformata Zeta Sviluppo di Fourier discreto Trasformata di Fourier discreta Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

ESAME DI ELAB. NUM. DEL SEGNALE (0/0) (21/07/2015) Cognome e Nome: Matricola: Lab: Convoluzione veloce tramite overlap-and-save

ESAME DI ELAB. NUM. DEL SEGNALE (0/0) (21/07/2015) Cognome e Nome: Matricola: Lab: Convoluzione veloce tramite overlap-and-save Convoluzione veloce tramite overlap-and-save Si consideri il filtro IIR stabile avente funzione di trasferimento H(z) = 1 1 1.2z 1 0.45z 2 e sia h : Z C la sua risposta impulsiva. Sia h N : Z C la versione

Dettagli

( e j2! ft! 0.9 j) ( e j2! ft j)

( e j2! ft! 0.9 j) ( e j2! ft j) Esercitazione Filtri IIR Si consideri il filtro dato dalla seguente equazione alle differenze y[n]+0.81y[n-2]=x[n]-x[n-2] - Determinare la funzione di trasferimento del filtro Eseguendo la Trasformata

Dettagli

Elaborazione nel dominio delle frequenze. Elaborazione delle immagini digitali 1

Elaborazione nel dominio delle frequenze. Elaborazione delle immagini digitali 1 Elaborazione nel dominio delle frequenze Elaborazione delle immagini digitali 1 Serie di Fourier Elaborazione delle immagini digitali 2 Introduzione alla trasformata di Fourier Una funzione periodica può

Dettagli

Fondamenti di elaborazione numerica dei segnali

Fondamenti di elaborazione numerica dei segnali Esercizi per la I prova in itinere del corso: Fondamenti di elaborazione numerica dei segnali. Trasformata z di una sequenza illimitata causale Si consideri la sequenza causale ) 3 n x n = e i π 3 n, n

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie. Tecnologie e strumentazione biomedica. Accenni sulla Trasformata di Fourier.

UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie. Tecnologie e strumentazione biomedica. Accenni sulla Trasformata di Fourier. UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie Tecnologie e strumentazione biomedica Accenni sulla Trasformata di Fourier Alberto Macerata Dipartimento di Ingegneria dell Informazione Fourier (1768-183)

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

Analisi armonica su dati campionati

Analisi armonica su dati campionati Sistemi di misura digitali Analisi armonica su dati campionati - 1 Analisi armonica su dati campionati 1 - Troncamento del segnale Distorsione di leakage L analisi di Fourier è un metodo ben noto per ottenere

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 20/06/11 AA20102011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

1 Finestratura di una trasformata di Hilbert

1 Finestratura di una trasformata di Hilbert 1 Finestratura di una trasformata di Hilbert Considerando la sequenza a n = 1 ( 1)n ;

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

Corso di SEGNALI a.a Corso di SEGNALI. anno accademico Convoluzioni e Correlazioni discrete: esercizi d esame

Corso di SEGNALI a.a Corso di SEGNALI. anno accademico Convoluzioni e Correlazioni discrete: esercizi d esame Corso di SEGNALI anno accademico 2008-2009 Convoluzioni e Correlazioni discrete: esercizi d esame 1. Si calcoli la convoluzione delle seguenti sequenze per n = -2, -1,, 3: x(n) = cos (π n /2) y(n) = sin

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

CAPITOLO 2: Algoritmo Fast Fourier Transform (FFT)

CAPITOLO 2: Algoritmo Fast Fourier Transform (FFT) CAPITOLO : Algoritmo Fast Fourier Transform () L algoritmo (Fast Fourier Transform) è decisamente uno dei più utilizzati all interno dell elaborazione dei segnali digitali. Il suo scopo è quello di calcolare

Dettagli

Materiale di supporto

Materiale di supporto Nettuno Diploma Universitario a Distanza in Ingegneria delle Telecomunicazioni Sede di Torino Elaborazione Numerica dei Segnali - 9140F Materiale di supporto Tutore: Juan Carlos De Martin 1 1. Introduzione

Dettagli

Esercitazione ENS sulle finestre (22 Aprile 2008)

Esercitazione ENS sulle finestre (22 Aprile 2008) Esercitazione ENS sulle finestre ( Aprile 008) D. Donno Esercizio : Separazione di due segnali Si consideri un segnale z(t) somma di due segnali x(t) e y(t) reali e di potenza simile, ciascuno con semi

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

II Lezione: Uso della DFT e FFT

II Lezione: Uso della DFT e FFT II Lezione: Uso della DFT e FFT In questa lezione vengono proposti alcuni semplici esercizi riguardanti l uso della FFT per il calcolo della trasformata di Fourier di segnali a tempo discreto e a tempo

Dettagli

( ) ( ) = ( )* ( ) Z f X f Y f. sin 2 f. 0 altrove. Esempio di Modulazione

( ) ( ) = ( )* ( ) Z f X f Y f. sin 2 f. 0 altrove. Esempio di Modulazione Esempio di Modulazione z ( t) = x( t) y ( t) dove x( t ) e y () t ammetto trasformata di Fourier X ( f ) e Y ( f ) Per z ( t ) si ha (convoluzione degli spettri): Ad esempio se: ( ) = sin( 2π f t) x t

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Risposta in frequenza dei circuiti TD Rappresentazione nel dominio della frequenza,

Dettagli

Corso di Elaborazione Numerica dei Segnali Esame del 7 Luglio 2004

Corso di Elaborazione Numerica dei Segnali Esame del 7 Luglio 2004 Corso di Elaborazione Numerica dei Segnali Esame del 7 Luglio TOTALE PUNTI: L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello di preparazione

Dettagli

Rappresentazione di una sequenza a durata finita come un periodo di una sequenza periodica.

Rappresentazione di una sequenza a durata finita come un periodo di una sequenza periodica. La Trasformata di Fourier Discreta (DFT) 1. Sequenza x(n) lunga N è rappresentabile con sequenza periodica x(n) di periodo N, con andamento nel periodo identico a x(n); 2. x(n) è esattamente rappresentabile

Dettagli

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali

Dettagli

Laboratorio di Fondamenti di Segnali e Trasmissione

Laboratorio di Fondamenti di Segnali e Trasmissione Laboratorio di Fondamenti di Segnali e Trasmissione Alessandro Tomasoni Esercitazione n. del 7//009 La Trasformata di Fourier (TDF) Abbiamo visto a lezione che ad un segnale (t) funzione del tempo, si

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea Specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Cenni alla sintesi di Circuiti TD Generalità sulle tecniche di progetto. Filtri

Dettagli

Trasformata di Fourier

Trasformata di Fourier Trasformata di Fourier Ø Risposta impulsiva e integrale di convoluzione Ø Rappresentazione di segnali nel tempo e in frequenza Ø Filtri idealmente e fisicamente realizzabili, stabilità Ø Trasformazioni

Dettagli

Trasformazioni Winograd

Trasformazioni Winograd Trasformazioni Winograd L'ultimo punto che rimane da esaminare nel progetto di una FFT di fattori primi, è la determinazione di efficienti algoritmi circolari di convoluzione per piccoli Winograd ha sviluppato

Dettagli

Sistemi LTI a Tempo Continuo

Sistemi LTI a Tempo Continuo Capitolo 3 Sistemi LTI a Tempo Continuo 3.1 Proprietà di Linearità e Tempo Invarianza 3.1.1 Linearità Si indichi con T [.] la trasormazione ingresso-uscita, o unzione di traserimento, di un sistema S 1,

Dettagli

Modellazione e controllo Ca1 (a,b,c) Ca2 (d,e,f,g) Mec(a,c,d,e,g)

Modellazione e controllo Ca1 (a,b,c) Ca2 (d,e,f,g) Mec(a,c,d,e,g) Modellazione e controllo Ca1 (a,b,c) Ca (d,e,f,g) Mec(a,c,d,e,g) 13 Luglio 011 a) Una corpo di massa M e soggetto a una forza di richiamo elastica F el = K(x)x, una forza di attrito F att = hẋ e una forza

Dettagli

Serie di Fourier di segnali PWM

Serie di Fourier di segnali PWM Serie di Fourier di segnali PWM Ivan Furlan 1 14 settembre 2013 1 I. Furlan riceve il BSc in elettronica nel 2000 presso la SUPSI, ed il MSc in meccatronica nel 2009 presso il Politecnico di orino. Attualmente

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 20/06/11 AA20102011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

ANALISI DI FOURIER. Segnali tempo continui:

ANALISI DI FOURIER. Segnali tempo continui: ANALISI DI FOURIER Segnali tempo continui: Segnali aperiodici Introduzione alla Trasformata Continua di - Derivazione intuitiva della TCF a partire dallo Sviluppo in Serie di - Spettro di ampiezza e fase

Dettagli

SEGNALI E SISTEMI Ripasso per Io Compitino

SEGNALI E SISTEMI Ripasso per Io Compitino SEGNALI E SISTEMI Ripasso per Io Compitino Esercizio 1 Si consideri il segnale a tempo continuo x(t) = 2 ( 1) k 1 1 sin(kt), t R. k=1 k a. Trovare il periodo fondamentale T p di x(t) e dire se il segnale

Dettagli

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 3

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 3 ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 3 ESERCIZIO 1 Un generatore di tensione sinusoidale con alimenta la rete lineare mostrata in Fig. 1.1. Calcolare tutte le tensioni e le correnti di ramo considerando

Dettagli

Probabilità e Processi casuali Laboratorio 5 Segnali per le

Probabilità e Processi casuali Laboratorio 5 Segnali per le Probabilità e Processi casuali Laboratorio 5 Segnali per le Telecomunicazioni Prof. Prati Claudio Maria Autore: Federico Borra Politecnico di Milano, DEIB Email: federico.borra@polimi.it Aprile 17, Ultima

Dettagli

Corso di Elaborazione Numerica dei Segnali Esame del 30 settembre 2005

Corso di Elaborazione Numerica dei Segnali Esame del 30 settembre 2005 Corso di Elaborazione Numerica dei Segnali Esame del 30 settembre 005 TOTALE PUNTI: 44 L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello

Dettagli

Laboratorio II, modulo Segnali a tempo discreto (cfr.

Laboratorio II, modulo Segnali a tempo discreto (cfr. Laboratorio II, modulo 2 2012017 Segnali a tempo discreto (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_0.pdf Luise, Vitetta, D Amico

Dettagli

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Quantizzazione;

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI Fondamenti di Segnali e Trasmissione Risposta in requenza e banda passante La risposta in requenza di un sistema LTI e la trasormata di Fourier

Dettagli

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano Note relative a test di bianchezza rimozione delle componenti deterministiche da una serie temporale a supporto del Progetto di Identificazione dei Modelli e Analisi dei Dati Maria Prandini Dipartimento

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 0/06/11 AA010011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it Campionamento di segnali In MATLAB, qualunque segnale continuo è approssimato da una sequenza campionata. Si

Dettagli

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003 SECONDO COMPIINO DI SEGNALI E SISEMI 3 Dicembre 003 Esercizio. Si consideri il modello ingresso/uscita a tempo discreto e causale descritto dalla seguente equazione alle differenze: vk) con a parametro

Dettagli

COMUNICAZIONI ELETTRICHE

COMUNICAZIONI ELETTRICHE COMUNICAZIONI ELERICHE Diploma Universitario Ingegneria Elettronica - Ingegneria Inormatica ESERCIZIO : Si consideri il sistema mostrato in igura. Il iltro ha risposta in requenza H() = j segn (), dove

Dettagli

La Trasformata di Fourier Discreta. e sue applicazioni

La Trasformata di Fourier Discreta. e sue applicazioni Prof. Lucio Cadeddu Giorgia Tranquilli Università degli Studi di Cagliari Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica La Trasformata di Fourier Discreta e sue applicazioni Relatore: Tesi

Dettagli

Elaborazione di Segnali Multimediali

Elaborazione di Segnali Multimediali UNIVERSITA DEGLI STUDI DI CATANIA Facoltà di Ingegneria Corso di Laurea in Ingegneria Telematica Elaborazione di Segnali Multimediali = Elaborazione Numerica dei Segnali + Comunicazioni Multimediali Elaborazione

Dettagli

SEGNALI A TEMPO CONTINUO. Segnali a energia finita. t un segnale a energia finita e a tempo continuo. L energia specifica 2 *

SEGNALI A TEMPO CONTINUO. Segnali a energia finita. t un segnale a energia finita e a tempo continuo. L energia specifica 2 * Capitolo IV CARAERIZZAZIOE EERGEICA DEI SEGALI SEGALI A EMO COIUO Segnali a energia finita IV. Densità spettrale di energia. Sia s() t un segnale a energia finita e a tempo continuo. L energia specifica

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 LUGLIO 08 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: la correttezza del risultato ottenuto e della procedura utilizzata;

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA MEODI MAEMAICI PER LA FISICA PROVA SCRIA - 6 SEEMBRE 6 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNEGGIO: 6/3) Si calcoli l integrale S arccos() + 3 Suggerimento È utile iniziare con

Dettagli

Trasformata Discreta di Fourier (DFT)

Trasformata Discreta di Fourier (DFT) Trasformata Discreta di Fourier (DFT) Con dati discreti, usare finestre temporali significa prendere in considerazione un certo numero di campioni che cadono all interno della finestra. Potremo quindi

Dettagli

COMPITO DI SEGNALI E SISTEMI 23 Luglio 2003

COMPITO DI SEGNALI E SISTEMI 23 Luglio 2003 COMPITO DI SEGNALI E SISTEMI 3 Luglio 003 Esercizio. Si consideri il sistema a tempo discreto, LTI e causale, descritto dalla seguente equazione alle differenze ( v(k) a + ) v(k ) + a v(k ) = bu(k) + cu(k

Dettagli

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte II

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte II Metodi di Calcolo per la Chimica A.A. 2016-2017 Marco Ruzzi La Trasformata di Fourier: basi matematiche ed applicazioni Parte II Showing a Fourier transform to a physics student generally produces the

Dettagli

SEGNALI E SISTEMI Proff. N. Benvenuto, C. Dalla Man e M. Pavon (a.a ) IIIo Appello 24 agosto 2015 SOLUZIONI

SEGNALI E SISTEMI Proff. N. Benvenuto, C. Dalla Man e M. Pavon (a.a ) IIIo Appello 24 agosto 2015 SOLUZIONI SEGNALI E SISTEMI Proff. N. Benvenuto, C. Dalla Man e M. Pavon a.a. 04-05) IIIo Appello 4 agosto 05 SOLUZIONI Esercizio [punti 4]. Discutere le proprietà di: a) causalità, b) linearità, c) tempo-invarianza,

Dettagli

Analisi dei segnali nel dominio del tempo

Analisi dei segnali nel dominio del tempo Laboratorio di Telecomunicazioni - a.a. 200/20 Lezione n. 3 Analisi dei segnali nel dominio del tempo L.Verdoliva In questa seconda lezione determiniamo, con l uso di Matlab, i parametri che caratterizzano

Dettagli

In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di

In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di Appendice F Proprietà della trasformata di Fourier In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di Fourier per segnali TC e TD. Inoltre, sono riportate

Dettagli

Trasformate al limite

Trasformate al limite Bozza Data 6/0/007 Trasormate al limite La unzione generalizzata delta di Dirac Funzioni, unzionali e distribuzioni Prima di deinire la delta di Dirac conviene ricordare le seguenti deinizioni: unzione

Dettagli

Sviluppo in serie di Fourier

Sviluppo in serie di Fourier ... Sviluppo in serie di Fourier Consideriamo una funzione periodica f di periodo T: f(t) = f(t+t) t Qualunque funzione periodica di periodo T può essere rappresentata mediante lo sviluppo in serie di

Dettagli

Calcolo della DFT. Complessità del calcolo diretto. X(k) = x(n)w kn DFT. x(n) = 1 N. X(k)W kn. con W N = e j2π/n. Se x(n) è complessa: j{r[x(n)]

Calcolo della DFT. Complessità del calcolo diretto. X(k) = x(n)w kn DFT. x(n) = 1 N. X(k)W kn. con W N = e j2π/n. Se x(n) è complessa: j{r[x(n)] Calcolo della DFT Complessità del calcolo diretto DFT X(k) = x(n) = 1 1 n=0 1 x(n)w kn k = 0,..., 1 DFT k=0 con W = e j2π/. Se x(n) è complessa: X(k) = = 1 n=0 {R[x(n)] + ji[x(n)]}{r[w kn 1 n=0 }{{} (

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1 CAMPIONAMENTO E RICOSTRUZIONE Esercizio 1 Dato il segnale y(t), con trasformata di Fourier Y(f) rappresentata in figura, rappresentare lo spettro del segnale ottenuto campionando idealmente y(t) con a)

Dettagli

Esercitazione su filtro di Sobel per l elaborazione delle immagini

Esercitazione su filtro di Sobel per l elaborazione delle immagini Ver. 1. Esercitazione su filtro di Sobel per l elaborazione delle immagini Il filtro di Sobel opera sulle immagini come un gradiente lungo una direzione. In particolare detta f ( x, y) l intensità dell

Dettagli

SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE

SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE SISTEMI DI DUE EQUAZIONI IN DUE INCOGNITE Un equazione di primo grado in una incognita del tipo, con ha: una sola soluzione (equazione determinata) se nessuna soluzione (equazione impossibile) se tutte

Dettagli

Segnali ad energia ed a potenza finita

Segnali ad energia ed a potenza finita Bozza Data 07/03/008 Segnali ad energia ed a potenza finita Energia e potenza di un segnale Definizioni di energia e potenza Dato un segnale (t), in generale complesso, si definisce potenza istantanea

Dettagli

Capitolo 2 - DFT (parte IV)

Capitolo 2 - DFT (parte IV) Appunti di Elaborazione numerica dei segnali Capitolo - DFT (parte IV) Varie sulla DFT... DFT e campionamento di sinusoidi... Osservazione sul campionamento di una sinusoide...4 numero di campioni nel

Dettagli

SEGNALI STAZIONARI: ANALISI SPETTRALE

SEGNALI STAZIONARI: ANALISI SPETTRALE SEGNALI STAZIONARI: ANALISI SPETTRALE Analisi spettrale: rappresentazione delle componenti in frequenza di un segnale (ampiezza vs. frequenza). Fornisce maggiori dettagli rispetto all analisi temporale

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Prima esercitazione del corso di Sistemi di Telecomunicazione 1 A.A Demodulazione di ampiezza

Prima esercitazione del corso di Sistemi di Telecomunicazione 1 A.A Demodulazione di ampiezza Prima esercitazione del corso di Sistemi di Telecomunicazione 1 A.A. 2009-2010 Demodulazione di ampiezza 29th October 2009 Abstract Lo studente deve implementare in MATLAB una funzione per la demodulazione

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line)

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Milano 30/11/07 Corso di Laurea in Ingegneria Informatica (Laurea on Line) Corso di Fondamenti di Segnali e Trasmissione Prima prova Intermedia Carissimi studenti, scopo di questa prima prova intermedia

Dettagli

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizio Sia T > 0 e f : R R la funzione reale T -periodica la cui restrizione all intervallo [0, T ] vale f(t) := t(t

Dettagli

Metodi di progetto per filtri IIR: soluzione dei problemi proposti

Metodi di progetto per filtri IIR: soluzione dei problemi proposti 7 Metodi di progetto per filtri IIR: soluzione dei problemi proposti P-7.: Usando il metodo dell invarianza all impulso, la funzione di trasferimento del filtro analogico viene trasformata in una funzione

Dettagli

laboratorio di Calcolo Scientifico per Geofisici Prof. L. D Amore a.a. 2007/08

laboratorio di Calcolo Scientifico per Geofisici Prof. L. D Amore a.a. 2007/08 Esercizi sull utilizzo delle funzioni fft e ifft di matlab laboratorio di Calcolo Scientifico per Geofisici Prof. L. D Amore a.a. 2007/08 Utilizzando le funzioni fft e ifft di matlab, scrivere delle function

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

) $ ' con T0=5s e T=2s. La funzione deve essere

) $ ' con T0=5s e T=2s. La funzione deve essere Metodi per l Analisi dei Segnali Biomedici. Esercitazioni AA 2010/2011 Esercitazione 11/03/2011 " t!t es_1.1. Disegnare la funzione rect 0 % $ ' con T0=5s e T=2s. La funzione deve essere calcolata # T

Dettagli

La Trasformata di Fourier

La Trasformata di Fourier La rasformata di Fourier Mauro Zucchelli Univeristà degli studi di Verona, Dipartimento di Informatica April, 7 La serie di Fourier Data una funzione ft definita in un intervallo di tempo, la possiamo

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2006-07 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t).

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t). Cenni alla Modulazione di Ampiezza (AM) Nella modulazione di ampiezza, si trasmette il segnale v(t) = (V 0 + k I x(t)) cos (πf 0 t), dove x(t) è il segnale di informazione, con banda B, e f 0 è la frequenza

Dettagli

Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Ritardo Frazionario

Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Ritardo Frazionario Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI Ritardo Frazionario 8 marzo 2009 Indice Scopo dell esercitazione A La struttura di Farrow B Norme per la consegna dell esercitazione

Dettagli

Elaborazione numerica dei segnali

Elaborazione numerica dei segnali POLITECNICO DI TORINO Elaborazione numerica dei segnali Progetto di un filtro FIR Fiandrino Claudio Matricola: 138436 18 giugno 21 Relazione sul progetto di un filtro FIR Descrizione del progetto L obbiettivo

Dettagli

Anno accademico Presentazione del Corso di Teoria dei Segnali Docente: G.Poggi

Anno accademico Presentazione del Corso di Teoria dei Segnali Docente: G.Poggi Anno accademico 2014-2015 Presentazione del Corso di Teoria dei Segnali Docente: G.Poggi Informazioni generali sul docente E-mail: poggi@unina.it Sito Web: https://www.docenti.unina.it/giovanni.poggi http://wpage.unina.it/verdoliv/tds/

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 2 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 2 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 2 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it MATLAB: linguaggio di programmazione L ambiente MATLAB possiede un completo linguaggio di programmazione. Vediamo

Dettagli

PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FINITA (FIR) [Cap. 6] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali 1

PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FINITA (FIR) [Cap. 6] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali 1 PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FIITA (FIR) [Cap. 6] E. Del Re Fondamenti di Elaborazione umerica dei Segnali Considerazioni generali sul progetto di filtri numerici Specifiche di progetto Operazione

Dettagli

6 dbm, mentre il secondo ha una potenza di 3 dbm. Quale sarà la

6 dbm, mentre il secondo ha una potenza di 3 dbm. Quale sarà la DECIBEL, FILTRAGGIO, PROCESSI Esercizio 9 (sui decibel) Un segnale con potenza media di 0 dbm viene amplificato attraverso un dispositivo elettronico la cui H(f) è costante per ogni frequenza e pari a

Dettagli