Contenuto e scopo presentazione. Modelli Lineari Interi/Misti. Piani di taglio. Piani di taglio. Piani di taglio Versione 31/08/

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Contenuto e scopo presentazione. Modelli Lineari Interi/Misti. Piani di taglio. Piani di taglio. Piani di taglio Versione 31/08/"

Transcript

1 Contenuto e scopo presentazione Contenuto: viene presentato un altro metodo di soluzione di problemi di ILP o di MILP. Modelli Lineari Interi/Misti Piani di taglio Versione /8/. Scopo: fornire le capacità di risolvere all ottimo problemi di ILP o di MILP, Piani di taglio Idea di base: Se la soluzione di RL non è intera allora la soluzione ottima intera è interna al poliedro P formulazione corrente del problema di ILP. Si aggiungono vincoli a P cercando di ottenere formulazioni migliori eliminando solamente parti di P che non contengono soluzioni intere. Si risolve una sequenza di problemi rilassati sempre più vincolati fino a quando la soluzione del problema rilassato corrente non sia intera. Idea di base (cont.): Dato il problema ILP o LP Piani di taglio ma {z= c, P} dove P={ Z n : A b}, una sua formulazione iniziale P ={ R n : A b}, e una soluzione ottima del problema rilassato *, si costruisce una sequenza di poliedri (formulazioni), detta sequenza di Gomory, tale che: P P P... P t P r Z n =P r- * P r t *= * (soluzione intera ILP) La sequenza è costruita aggiungendo via via a P un insieme di vincoli detti tagli.

2 Tagli: Tagli Una disuguaglianza a a è un taglio per un poliedro P r associato al RL di un problema ILP se, detta r * la soluzione ottima non intera del RL, si ha: ) la disuguaglianza è valida, i.e., a a P soluzione ammissibile di ILP ) la disuguaglianza è non è soddisfatta da r *, i.e., a r *> a Il metodo dei piani di taglio determina la soluzione ottima intera introducendo un numero finito di tagli. Ogni taglio separa la soluzione non intera del RL corrente dalle soluzioni ammissibili per ILP. Taglio di Gomory (Taglio Frazionario) Una possibile successione di tagli di validità generale è quella data dai tagli frazionari di Gomory. Metodo di costruzione: Determinata la soluzione di base ottima * di un RL di ILP. Sia S l insieme delle variabili in base e R l insieme delle variabili non in base, dalla teoria sulla LP continua è noto che le variabili in base possono essere espresse come: i = y i - Σ j R y ij j i S In particolare * è t.c. i = y i, i S, j =, j R Se non tutti gli y i sono interi si deve generare un taglio separatore. 5 6 Taglio di Gomory (Taglio Frazionario) Metodo di costruzione (cont.): Con il taglio di Gomory si sceglie una componente della base con valore non intero e si definiscono delle condizioni che devono essere rispettate perché essa sia invece intera. Sia i la componente non intera. Allora y i = y i + f i < f i < y ij = y ij + < Si può riscrivere il primo membro della ima equazione i.e., y i = i + Σ j R y ij j + Σ j R j i + Σ j R y ij j i + Σ j R y ij j y i = y i + f i Per qualunque Z n intero si verifica che i + Σ j R y ij j risulta intero. Ma allora se i + Σ j R y ij j è intero non può essere superiore a y i poiché f i <. Quindi... Taglio di Gomory (Taglio Frazionario) Metodo di costruzione (cont.):... per qualunque Z n intero i + Σ j R y ij j y i Cambiando segno alla disuguaglianza e sostituendo i nella equazione i = y i - Σ j R y ij j si ottiene Σ j R y ij j + Σ j R j - y i - f i - Σ j R y ij j - y i semplificando Σ j R j f i detto taglio di Gomory (taglio frazionario) 7 8

3 Taglio di Gomory (Taglio Frazionario) Teorema del taglio di Gomory: Per ogni componente i non intera della soluzione di un RL la disequazione è un taglio rispetto al poliedro P. Σ j R j f i Taglio di Gomory (Taglio Frazionario) Dimostrazione: Ogni soluzione ammissibile di ILP soddisfa il taglio di Gomory. Si supponga per assurdo che esista una soluzione ammissibile per ILP tale che Σ j R j < f i. Poiché è ammissibile la componente i soddisfa l equazione i = y i - Σ j R y ij j = y i + f i - Σ j R y ij j - Σ j R j Poiché i è intero f i - Σ j R j intero, inoltre poiché < f i < e e j ne consegue f i - Σ j R j in contraddizione con l ipotesi iniziale. La soluzione di base non intera * da cui la disequazione è stata generata separa * dal nuovo poliedro ottenuto aggiungendo tale disequazione ai vincoli della formulazione iniziale. Sia i * la componente ima frazionaria della soluzione, * soddisfa Σ j R j * < f i infatti j *=, j R, quindi Σ j R j * =, inoltre poiché i * = y i + f i è frazionario ne consegue f i > e quindi la disequazione è soddisfatta. 9 ma = 6,, Z 5 Un esempio 5 ma = = = =,,,, 5, Z Si costruisce un taglio dalla seconda riga del tableau ottimo del rilassamento lineare i coefficienti 9 = + = + = + 9 il taglio *= (/, 9/) (fractional cut) relativizzando il vincolo / + / 5 / rispetto a ed si ottiene disequazione non soddisfatta dal punto (/, 9/) IP-7

4 Taglio di Gomory (Taglio Frazionario) nell essere un tipo di taglio applicabile in generale, il taglio di Gomory fa in generale convergere l algoritmo di piani di taglio in modo estremamente lento. Inoltre il calcolo del taglio di Gomory presenta spesso problemi di stabilità numerica. molto più efficiente è utilizzare tagli specifici per ogni tipo di problema, possibilmente tagli che coincidano con le facce massimali dell involucro convesso delle soluzioni intere. In generale determinare tali tagli è però un problema difficile. Tagli di Chvatal-Gomory: Taglio di Chvatal-Gomory Data una formulazione P={: A b} di un problema ILP e un vettore u, è detto taglio di Chvatal-Gomory il vincolo ua ub un taglio di Chvatal-Gomory si ottiene eseguendo una qualunque combinazione conica dei vincoli della formulazione iniziale ed arrotondondando i valori ottenuti all intero inferiore in generale il vincolo ottenuto non è implicato da quelli già presenti nella formulazione P ogni taglio di Chvatal-Gomory è valido, i.e., qualunque soluzione intera del problema ILP lo soddisfa, infatti se intero ua = ua. Prima chiusura: Chiusure l insieme P ={: A b, ua ub, u } è detto prima chiusura e si dimostra essere un politopo, i.e., è sufficiente un sottoinsieme finito D f di disequazioni ua ub per ottenerne una descrizione minimale P ={: A b, ua ub, u } = {: A b, D f } = {: A b } P è una nuova formulazione, non peggiore di P, del problema ILP applicando il ragionamento sui vincoli di P si può ottenere una seconda chiusura, nuova formulazione, non peggiore di P, del problema ILP iterando si ottiene una successione di poliedri P P P... P t formulazioni progressivamente migliori (non peggiori) del problema ILP 5 Chiusure Teorema (Chvatal - Schrijver): Per ogni ILP che ammetta formulazione razionale o limitata esiste un intero finito t t.c. l involucro convesso delle soluzioni intere ammissibili coincide con la chiusura tma: P t = conv(s) teoricamente si potrebbe risolvere un problema ILP generando una successione di tagli di Chvatal-Gomory. Può convenire comunque limitarsi a tagli ottenibili attraverso tale procedura. in generale però è difficile la formulazione minimale di conv(s) richiede comunque un numero esponenziale di tagli ed inoltre è difficile individuare quali coefficienti u si devono utilizzare esempi di tagli di Chvatal-Gomory sono i tagli di Gomory e i tagli di minimal cover. 6

5 Cover e minimal cover: dato un problema di zaino KP(U,s,c,B, ma), e.g, ma , i {,} si definisce cover un qualunque sottoinsieme C degli indici I t.c. Σ i C s i >B e.g., C={,, 5} {,,,, 5}=I è un cover del problema nell esempio. Un cover C è minimale se Σ i C s i >B e Σ i C-{j} s i B, j C, i.e., un cover C è minimale se qualunque suo sottoinsieme (tranne C di stesso) non è cover, può cioè essere contenuto nello zaino. e.g., C={, } e C={,, 5} sono minimali, C={,, 5} non è minimale : data il rilassamento lineare di un problema di zaino KP(U,s,c,B, ma), e.g, ma , i per ogni cover minimale C, il vincolo Σ i C i C - è una diseguaglianza valida rispetto all involucro convesso delle soluzioni ammissibili intere. Anche per ogni cover C non minimale si potrebbero definire vincoli analoghi, ma questi ultimi sarebbero implicati da quelli associati ai cover minimali C inclusi in C. E.g., C={, } + C = {,, } + + ridondante rispetto a + e 7 8 i tagli di cover minimale sono dei tagli di Chvatal - Gomory di primo ordine, e.g., dato ma , i i=,..., 5 - i i=,..., 5 il vincolo associato alla cover minimale C ={,, 5} si ottiene eseguendo la seguente combinazione conica / , / - / - / / e quindi prendendo la parte intera dei coefficienti frazionari Commenti (cont.): alcuni tagli di cover minimale sono delle facce massimali per l involucro convesso delle soluzioni intere ammissibili, e.g., dato ma , i {,} dim(conv(s)) = 5, infatti banalmente dim(conv(s)) 5 ed inoltre esistono 6 soluzioni intere affinemente indipendenti ammissibili per il problema =[,,,,] e =[,,,,], =[,,,,],..., =[,,,,] Ogni faccia massimale F per Conv(S) deve essere tale che dim(conv(f)) =, i.e., deve soddisfare all uguaglianza 5 soluzioni intere affinemente indipendenti, e.g., + associato a C ={, } soddisfa all uguaglianza le soluzioni ammissibili =[,,,,], =[,,,,], =[,,,,], =[,,,,], =[,,,,] 9

6 Commenti (cont.): non tutte le facce massimali sono associate a vincoli di minimal cover. Qualche faccia massimale è associata ad estensioni delle minimal cover, altre ai vincoli i, altre ancora (la stragrande maggioranza) ad altre condizioni. Se C è una cover minimale, si definisce estensione di C, l insieme E(C) l insieme E(C)=C {j I\C:s j ma i C (s i )}. E.g., C={,, 5} E(C)={,,, 5} C={,} E(C)={, } Se C E(C) il vincolo Σ i E(C) i C - e.g., è un taglio valido più forte del corrispondente Σ i C i C - e.g., + + Commenti (cont.): i tagli di cover minimale possono essere numerosi conviene generali dinamicamente attraverso l uso di un oracolo di separazione: Si considera inizialmente solo un sottoinsieme dei vincoli di covering minimali (eventualmente nessuno) e si determina la soluzione ottima del problema rilassato per continuità corrispondente; la soluzione corrente è quindi valutata dall oracolo di separazione che o ne certifica l ammissibilità (e quindi l ottimalità) per il problema originario o restituisce almeno uno dei vincoli violati; se la soluzione non è ammissibile si aggiunge il vincolo fornito dall oracolo a quelli inizialmente considerati e si itera. Esempio: Passo ) ma i soluzione z RL =78 RL = [,,.7,, ] cover minimale violata + Passo ) ma i soluzione z RL =76 RL = [,,,,.] cover minimale violata Esempio (cont.): Passo ) ma i soluzione z RL =7.857 RL = [,.7,.86,,.86 ] cover minimale violata: nessuna. Imporre solo i tagli di cover minimale non è sufficiente. In questo caso introducendo il taglio legato all estensione E(C)={,,, 5} di C={,, 5} si ottiene una soluzione intera ottima

7 Esempio (cont.): Passo ) ma (ridondante) i soluzione * = [,,,, ] intera quindi ottima, z*=7 Rimane da definire l oracolo di separazione che permetta di determinare automaticamente i tagli di cover minimale da introdurre. Oracolo di separazione: data una soluzione RL si vuole determinare un vincolo di struttura Σ i C i C -, dove C è una cover minima, che sia violato. Detto vincolo può essere riscritto come Σ i I α i i Σ i I α i - dove α i sono i coefficienti, o (se la corrispondente variabile non appare nel vincolo) o (se la corrispondente variabile appare nel vincolo), da determinare. Osservare che Σ i I α i = C Ad esempio data la soluzione al passo RL = [,,.7,, ] si deve trovare un vincolo α + α + α + α + α 5 5 α + α + α + α + α 5 - violato da RL e tale che l insieme degli indici per cui α i = sia un cover minimale Oracolo di separazione (cont.):... Considerate le α i come incognite si deve risolvere il problema α + α +.7 α + α + α 5 > α + α + α + α + α 5 - α + α + α + 6α + α 5 > α i {,} questo, poiché la prima condizione equivale a (-)α + (-)α + (-+.7) α -α -α 5 > - e poiché le variabili sono intere, equivale a determinare se il problema ma z = -.86 α -α -α 5 α + α + α + 6α + α 5 α i {,} ha soluzioni ammissibili t.c. z sia maggiore strettamente di -. Da cui... Esempio:... Passo ) ma i soluzione z RL =78 RL = [,,.7,, ] Oracolo di separazione: ma z = -.86 α -α -α 5 α + α + α + 6α + α 5 α i {,} soluzione z = -.86 α = [,,,, ] da cui cover minimale è C= {,} quindi vincolo + 7 8

8 Esempio (cont.): Passo ) ma i soluzione z RL =76 RL = [,,,,.] Oracolo di separazione: ma z = - α -.6α 5 α + α + α + 6α + α 5 α i {,} soluzione z = -.6 α = [,,,, ] da cui cover minimale è C= {,, 5} quindi vincolo Esempio (cont.): Passo ) ma i soluzione z RL =7.857 RL = [,.7,.86,,.86 ] Oracolo di separazione: ma z = -.86 α -.7 α -.7 α 5 α + α + α + 6α + α 5 α i {,} soluzione z = - non strettamente maggiore di - quindi: non esistono tagli di cover minimali applicabili si deve procedere con altri tagli o passare al branch and bound a partire da questa formulazione migliorata, eventualmente si potranno applicare ragionamenti analoghi ai nodi successivi. al passo si dovrebbe tentare di rafforzare il taglio passando dalla cover alla sua estensione (questa è determinabile in tempo polinomiale poiché basta scandire i coefficienti del vincolo iniziale) l oracolo di separazione in generale fornisce una cover non necessariamente minimale, il cut and branch è il metodo di soluzione (molto promettente per vari problemi di ILP) che introduce inizialmente tagli al fine di avere una buona formulazione e quindi passa al branch and bound. L algoritmo viene detto di branch and cut se si reitera l approccio in ogni nodo. conviene introdurre tagli solo se l onere computazionale per la loro determinazione è inferiore all onere computazionale che la loro introduzione fa risparmiare alla procedura di branch and bound. Ad esempio non conviene introdurre i tagli frazionari di Gomory, né tagli per cui l algoritmo di separazione sia eccessivamente complesso. Commenti (cont.): l oracolo necessario a risolvere un problema di zaino deve affrontare un problema equivalente. E però vero che non è necessario determinare la soluzione ottima dell oracolo, bensì basta una soluzione ammissibile a cui sia associato un valore della funzione obiettivo maggiore di -. Spesso basta arrotondare la soluzione rilassata ai valori interi superiori, oppure si blocca il branch and bound non appena la soluzione correntemente ottima è maggiore di -. Ad esempio la soluzione del problema rilassato al passo ma z = -.86 α -α -α 5 α + α + α + 6α + α 5 α i conduce alla soluzione α RL = [,,.786,, ] che arrotondata conduce ancora ad una cover ammissibile, in quanto z([,,,, ]) = -.86 > - in generale i problemi di zaino e quelli simili per l oracolo di separazione dei tagli di cover sono risolti in modo approssimato con procedure ad hoc efficienti.

9 Commenti (cont.): i tagli di cover vengono utilizzati per problemi anche con struttura più complessa dei problemi di zaino. Si osservi infatti che i ragionamenti visti possono essere applicati anche quando alcuni i coefficienti del vincolo sono negativi facendo degli opportuni cambi di variabili, e.g., dato ma i si pone = - e = - ottenendo ma =9 i i dopo avere determinato i tagli nelle nuove variabili, si può eventualmente riscriverli nelle variabili originali (il segno dei coefficienti all'obiettivo non interessa). Inoltre, quando nella formulazione iniziale è presente più di un vincolo, si possono considerare i vincoli di cover indotti da ogni vincolo separatamente Esempio: Problema ma i {,} Passo ) ma i soluzione z RL =9. RL = [.78,,,,.866] Esempio: Passo - taglio primo vincolo) posto = - e = - il problema diventa ma ' i, la soluzione da tagliare RL = [.78,,,,.866] il taglio di cover minimale è che nelle variabili originali diventa Esempio: Passo - taglio secondo vincolo) posto 5 = - 5 il problema diventa ma i, la soluzione da tagliare RL = [.78,,,,.] il taglio di cover minimale è + + che nelle variabili originali rimane invariata Si osservi che alla cover minimale C={,,} corrisponde l estensione E(C)={,,,} e quindi il taglio può essere rafforzato in

10 Esempio (cont.): Passo ) ma i soluzione * = [,,,, ] intera quindi ottima z RL = Es ) Esercizi Dimostrare che i vincoli i e - i sono facce massimali per il problema dello zaino. Es ) Dato il seguente problema -LP ma i {,} indicare i tagli di estensione di minimal cover indotti dalla soluzione del problema rilassato continuo considerando separatamente i due vincoli 7 8 Es ) Dato il seguente problema -LP Esercizi ma i {,} risolverlo con il metodo dei piani di taglio di Gomory e successivamente con i tagli di estensione di minimal cover Es ) Dato il seguente problema -LP Esercizi ma i {,} risolverlo con il metodo dei piani di taglio di Gomory e successivamente con i tagli di estensione di minimal cover 9

Il metodo dei Piani di Taglio (Cutting Planes Method)

Il metodo dei Piani di Taglio (Cutting Planes Method) Il metodo dei Piani di Taglio (Cutting Planes Method) E un metodo di soluzione dei problemi (IP) di tipo generale. L idea di base: Se la soluzione di (RL) non è intera allora la soluzione ottima intera

Dettagli

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Nozioni di geometria Definizione: Un vettore y R n è combinazione conica dei vettori { 1,, k } se esistono k coefficienti reali λ

Dettagli

Programmazione Lineare Intera

Programmazione Lineare Intera Programmazione Lineare Intera Andrea Scozzari a.a. 2012-2013 May 10, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare Intera May 10, 2013 1 / 16 Programmazione Lineare Intera: Metodo dei Piani

Dettagli

5.3 Metodo dei piani di taglio

5.3 Metodo dei piani di taglio 5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti

Dettagli

Matrici unimodulari e totalmente unimodulari

Matrici unimodulari e totalmente unimodulari Matrici unimodulari e totalmente unimodulari Sia una matrice intera di dimensione con, si dice unimodulare se presa una qualsiasi sottomatrice di ordine massimo (di dimensione ) vale det = 1, +1, 0. Una

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

5.5 Metodi dei piani di taglio

5.5 Metodi dei piani di taglio 5.5 Metodi dei piani di taglio Problema generale di Programmazione Lineare Intera (PLI) max{c t x : x X} dove X = {x Z n + : Ax b}, con A matrice m n e b vettore n 1 razionali Proposizione: conv(x) = {x

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

Programmazione Lineare Intera: Piani di Taglio

Programmazione Lineare Intera: Piani di Taglio Programmazione Lineare Intera: Piani di Taglio Andrea Scozzari a.a. 2014-2015 April 22, 2015 Andrea Scozzari (a.a. 2014-2015) Programmazione Lineare Intera: Piani di Taglio April 22, 2015 1 / 23 Programmazione

Dettagli

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista)

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Domenico Salvagnin 2011-06-12 1 Introduzione Dato un problema di programmazione lineare intera (mista), non è sempre possibile (o conveniente)

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera Teoria della Programmazione Lineare Intera Laura Galli Dipartimento di Informatica Largo B. Pontecorvo, 567 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 7 Ottobre 0 Ricerca Operativa Laurea

Dettagli

Tagli Split per Programmazione Lineare Intera Mista

Tagli Split per Programmazione Lineare Intera Mista Tagli Split per Programmazione Lineare Intera Mista Domenico Salvagnin 2011-05-29 1 Introduzione Consideriamo la regione ammissibile di un problema di programmazione lineare intera mista Ax + Gy = b (1.1)

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (5 punti) Sia dato il seguente problema di PL: max x + x 2 x 2x 2 + x 3 = 4 x x 2 x 3 = 3 x 2 + 2x 3 = x, x 2, x 3 0 Utilizzando il metodo due fasi, si stablisca

Dettagli

COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04

COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04 COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04 Esercizio 1 1)Dato il seguente problema di PL: max 2x 1 x 2 x 1 + x 2 2 x 1 + 2x 2 7 x 1 + x 2 1 x 1, x 2 0 trasformarlo in forma standard (2 punti) 2)

Dettagli

Algoritmo Branch and Cut (B&C)

Algoritmo Branch and Cut (B&C) Programmazione Lineare Intera: III Algoritmo Branch and Cut Daniele Vigo DEIS Università di Bologna dvigo@deisuniboit rev.0 aprile 2005 Algoritmo Branch and Cut (B&C) Sviluppato negli anni 90, nasce come

Dettagli

Programmazione Lineare Intera (ILP)

Programmazione Lineare Intera (ILP) Programmazione Lineare Intera (ILP) (P) min (x), x F Z : R n ->R è lineare: (x) = c, x = c 1 x 1 + c 2 x 2 +... + c n x n F R n è definito da : g i (x) 0 (i = 1,...,m), con g i : R n R lineare i Z insieme

Dettagli

1 Il metodo dei tagli di Gomory

1 Il metodo dei tagli di Gomory Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare

Dettagli

Programmazione lineare

Programmazione lineare Capitolo 1 Programmazione lineare ESERCIZIO 1.1. Porre in forma canonica i seguenti programmi lineari. min 3x 1 + 4x 2 2x 3 x 1 + 2x 2 x 3 5 2x 1 + 4x 3 = 12 x 1 + x 2 + x 3 15 x 1, x 2 0, x 3 libera.

Dettagli

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem Introduzione al Column Generation Caso di Studio: il Bin Packing Problem November 15, 2014 1 / 26 Introduzione Il column generation è una metodologia che può essere usata per risolvere problemi di ottimizzazione

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 Esercizio 1 Si risolva con il metodo branch-and-bound il seguente problema di PLI max x 1 + x 4x 1 + x + x = 0 x 1 + x + x 4 = x 1, x, x, x 4 0 x 1, x,

Dettagli

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Problema di PLI in forma standard: max cx Ax = b x 0, x I n I insieme degli interi. Regione ammissibile:

Dettagli

Massimo flusso e matching

Massimo flusso e matching Capitolo Massimo flusso e matching. Problema del massimo matching. Nel problema del massimo matching è dato un grafo non orientato G(V, A); un matching in G è un insieme di archi M A tale che nessuna coppia

Dettagli

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI 3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:

Dettagli

Per formalizzare il concetto sono necessarie alcune nozioni relative ai poliedri e alla loro descrizione.

Per formalizzare il concetto sono necessarie alcune nozioni relative ai poliedri e alla loro descrizione. 3.7.4 Disuguaglianze valide forti Cerchiamo disuguaglianze valide forti, ovvero disuguaglianze valide che forniscano migliori formulazioni (più stringenti). Per formalizzare il concetto sono necessarie

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 + x 3 x 1 x 2 + x 3 = 1 x 1 x 2 + x 4 = 1 x 2 + x 5 = 2. x 1, x 2, x 3, x 4 0

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 + x 3 x 1 x 2 + x 3 = 1 x 1 x 2 + x 4 = 1 x 2 + x 5 = 2. x 1, x 2, x 3, x 4 0 COMPITO DI RICERCA OPERATIVA ESERCIZIO 1. (7 punti) Sia dato il seguente problema di PL: max x 1 + x 2 + x 3 x 1 x 2 + x 3 = 1 x 1 x 2 + x 4 = 1 x 2 + x 5 = 2 x 1, x 2, x 3, x 4, x 5 0 Lo si risolva con

Dettagli

5.5 Programmazione quadratica (PQ)

5.5 Programmazione quadratica (PQ) 5.5 Programmazione quadratica (PQ Minimizzare una funzione quadratica soggetta a vincoli lineari: 1 min x t Qx + c t x 2 s.v. a t i x b i i D (P a t i x = b i i U x R n dove Q matrice n n, D e U sono gli

Dettagli

RICERCA OPERATIVA (9 cfu)

RICERCA OPERATIVA (9 cfu) a PROVA scritta di RICERCA OPERATIVA (9 cfu) gennaio Cognome Nome Ai fini della pubblicazione (cartacea e elettronica) del risultato ottenuto nella prova di esame, autorizzo al trattamento dei miei dati

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sommario 1. Sistemi di disequazioni lineari e poliedri 2. Poliedri e insiemi convessi 3. Disequazioni

Dettagli

5.5 Metodi generali per la soluzione di problemi

5.5 Metodi generali per la soluzione di problemi 5.5 Metodi generali per la soluzione di problemi di PLI I problemi di PLI hanno caratteristiche molto diverse dai problemi di PL. In alcuni casi, la soluzione del problema lineare rilassato, ottenuto cioè

Dettagli

PROGRAMMAZIONE LINEARE A NUMERI INTERI

PROGRAMMAZIONE LINEARE A NUMERI INTERI PROGRAMMAZIONE LINEARE A NUMERI INTERI N.B. Nei seguenti esercizi vengono utilizzate, salvo diversa indicazione, le seguenti notazioni: PLO programma lineare ordinario S a insieme delle soluzioni ammissibili

Dettagli

Programmazione Non Lineare

Programmazione Non Lineare Capitolo 1 Programmazione Non Lineare 1.1 Introduzione Un problema di ottimizzazione viene definito come la minimizzazione o la massimizzazione di una funzione a valori reali su un insieme specificato.

Dettagli

Esercizi sulla Programmazione Lineare Intera

Esercizi sulla Programmazione Lineare Intera Soluzioni 4.7-4.0 Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare Intera 4.7 Algoritmo del Simplesso Duale. Risolvere con l algoritmo del simplesso duale il seguente

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Si consideri il problema min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando una partizione (ricorsiva)

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + 2x 2 + x 3 x 1 x 2 + x 3 = 1 2x 1 + 3x 2 + x 4 = 2

COMPITO DI RICERCA OPERATIVA. max x 1 + 2x 2 + x 3 x 1 x 2 + x 3 = 1 2x 1 + 3x 2 + x 4 = 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (9 punti) Sia dato il seguente problema di PL: max x + 2x 2 + x 3 x x 2 + x 3 = 2x + 3x 2 + x 4 = 2 x, x 2, x 3, x 4 0 Si determini il duale del problema ( punto).

Dettagli

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione.

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione. Se è unimodulare e è intero allora il poliedro 0 ha vertici interi. Sia un vertice di Per definizione esiste allora una base di tale che, 0 Poiché è non singolare ( invertibile det 0) si ha che det 1 è

Dettagli

Parte V: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte V: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte V: Rafforamento di formulaioni e algoritmo dei piani di taglio Noioni di geometria Definiione: Un vettore y R n è combinaione conica dei vettori {,, k } se esistono k coefficienti reali λ,,λ k tali

Dettagli

Il metodo del simplesso

Il metodo del simplesso Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

5.3 Tagli di Chvàtal-Gomory per il problema della massima clique

5.3 Tagli di Chvàtal-Gomory per il problema della massima clique 5.1 Posizionamento di aeroporti hub Nel trasporto aereo non ci sono connessioni dirette tra ogni coppia di aeroporti. Ad esempio, i passeggeri dei viaggi intercontinentali in partenza da aeroporti minori

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare L. De Giovanni G. Zambelli 1 Definizione del problema duale La teoria della dualità in programmazione

Dettagli

4.4 Programmazione quadratica

4.4 Programmazione quadratica 4.4 Programmazione quadratica Minimizzare una funzione quadratica soggetta a vincoli lineari: min 1 2 xt Qx + c t x s.v. a t i x b i i D (P) a t i x = b i i U x R n dove Q matrice n n, D e U sono gli insiemi

Dettagli

Sistemi compatibili (Il metodo di Fourier-Motzkin)

Sistemi compatibili (Il metodo di Fourier-Motzkin) Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Universitàdegli Studi di L Aquila Sommario 1. Poliedri 2. Diseguaglianze implicate 3. Poliedri compatibili 4. Proiezione di un poliedro

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera 0 Teoria della Programmazione Lineare Intera 0. INTRODUZIONE Come visto precedentemente, molti problemi particolarmente importanti dal punto di vista applicativo sono riconducibili alla soluzione di un

Dettagli

PROGRAMMAZIONE LINEARE E DUALITA'

PROGRAMMAZIONE LINEARE E DUALITA' PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 2)

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 2) RICERCA OPERATIVA Tema d esame del 04/12/2008 (Simulazione 2) COGNOME: NOME: MATRICOLA: 1. Un azienda di telefonia mobile deve installare delle antenne per la copertura di sei zone sul territorio. Sono

Dettagli

COMPITO DI RICERCA OPERATIVA. min 2x 1 x 2 + x 3 x 4 x 1 x 2 + x 3 + x 4 = 5 x 1 + x 2 + x 3 3. x 1, x 2, x 3, x 4, x 5 I

COMPITO DI RICERCA OPERATIVA. min 2x 1 x 2 + x 3 x 4 x 1 x 2 + x 3 + x 4 = 5 x 1 + x 2 + x 3 3. x 1, x 2, x 3, x 4, x 5 I COMPITO DI RICERCA OPERATIVA ESERCIZIO. (8 punti) Sia dato il seguente problema di PL: min x x + x x 4 x x + x + x 4 = 5 x + x + x x, x, x, x 4 0 Lo si trasformi in forma standard ( punto). Si determini

Dettagli

Programmazione Matematica: III.1 - Programmazione Lineare

Programmazione Matematica: III.1 - Programmazione Lineare Programmazione Matematica: III.1 - Programmazione Lineare Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.0 ottobre 2003 Programmazione Lineare Def.: (F, ϕ ) è un problema di Programmazione

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi, poliedri Sia a un vettore non nullo

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Algoritmi generali per PLI

Algoritmi generali per PLI Programmazione Lineare Intera: II Algoritmo Cutting Planes Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev.. ottobre Algoritmi generali per PLI Metodi esatti tradizionali (anni 6 oggi):

Dettagli

Soluzione di problemi di Programmazione Lineare Intera

Soluzione di problemi di Programmazione Lineare Intera 10 Soluzione di problemi di Programmazione Lineare Intera 10.1 ESERCIZI SULLA SOLUZIONE DI PROBLEMI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 10.1.1 Risolvere con il metodo del Branch and Bound il seguente

Dettagli

7.9 Il caso vincolato: vincoli di disuguaglianza

7.9 Il caso vincolato: vincoli di disuguaglianza 7.9 Il caso vincolato: vincoli di disuguaglianza Il problema con vincoli di disuguaglianza: g i (x) 0, i = 1,..., p, (51) o, in forma vettoriale: g(x) 0, può essere trattato basandosi largamente su quanto

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x 0 PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

RICERCA OPERATIVA. Tema d esame del 13/12/2005

RICERCA OPERATIVA. Tema d esame del 13/12/2005 RICERCA OPERATIVA Tema d esame del 13/12/2005 COGNOME: NOME: MATRICOLA: 1. Un associazione umanitaria ha raccolto 150.000 euro per inviare dei pacchetti regalo natalizi ai bambini di Haiti. Per l acquisto

Dettagli

COMPITO DI RICERCA OPERATIVA. max 8 5x 1 3x 2 x 3 = 1 + 4x 1 + x 2 x 4 = 1 x 1 + x 2 x 5 = 5 x 1 x 2

COMPITO DI RICERCA OPERATIVA. max 8 5x 1 3x 2 x 3 = 1 + 4x 1 + x 2 x 4 = 1 x 1 + x 2 x 5 = 5 x 1 x 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (5 punti) Dato un problema di PL, la sua riformulazione rispetto alla base B = {x 3, x, x 5 } é la seguente: max 8 5x 3x x 3 = + x + x x = x + x x 5 = 5 x x Solo

Dettagli

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema Compito di Ricerca Operativa II Esercizio ( punti). ia dato il problema di flusso massimo sulla rete in figura (le capacit a degli archi sono riportate sopra di essi). 0 8 i consideri il seguente flusso

Dettagli

5.4.5 Struttura dell algoritmo ed esempi

5.4.5 Struttura dell algoritmo ed esempi CAPITOLO 5. IL METODO DEL SIMPLESSO 6 5.4.5 Struttura dell algoritmo ed esempi Come abbiamo già ampiamente osservato, la fase II del metodo del simplesso, a partire da una soluzione di base ammissibile,

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

Algoritmi generali per PLI

Algoritmi generali per PLI Programmazione Lineare Intera: Parte II: Algoritmo Cutting Planes Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 3.1 ottobre 23 Algoritmi generali per PLI Metodi esatti tradizionali

Dettagli

COMPITO DI RICERCA OPERATIVA. max 3x 1 + 2x 2 x x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3

COMPITO DI RICERCA OPERATIVA. max 3x 1 + 2x 2 x x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3 COMPITO DI RICERCA OPERATIVA ESERCIZIO 1. (7 punti) Sia dato il seguente problema di PL: max 3x 1 + 2x 2 x 1 + 1 2 x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3 Lo si risolva con l algoritmo che si ritiene più opportuno

Dettagli

1 Programmazione Lineare Intera

1 Programmazione Lineare Intera 1 Programmazione Lineare Intera Fino ad ora abbiamo affrontato problemi in cui le variabili potevano assumere valori reali. Ora invece ci concentreremo su problemi in cui le variabili possono assumere

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Consideriamo un generico problema di ottimizzazione min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

RICERCA OPERATIVA (a.a. 2018/19)

RICERCA OPERATIVA (a.a. 2018/19) Secondo appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: min y + y y y y y = y + y y = y, y, y, y Si verifichi se la soluzione ȳ =,,, sia ottima

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Esercizi per il corso di ricerca operativa 1

Esercizi per il corso di ricerca operativa 1 Esercizi per il corso di ricerca operativa Ultimo aggiornamento: 8 gennaio 004 Indice I Esercizi 5 Programmazione lineare 7 Dualita 3 3 Analisi di sensitivita 7 4 Programmazione intera 5 Introduzione

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min f () s.v. X n insieme delle soluzioni ammissibili con funzione obiettivo

Dettagli

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0 Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )

Dettagli

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 5 Febbraio , : ; ;,, trovare il punto di

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 5 Febbraio , : ; ;,, trovare il punto di Verona, Febbraio 99 ) Dato il problema min( cx + cx ) x+ x x = x + x x = ax + x x = x i 0 i =,... a) dire, giustificando, per quali valori di c, c ed a in una soluzione ammissibile si ha x =x =/; la soluzione

Dettagli

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli.

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli. ESERCIZIO 1 Sia dato il grafo orientato in Figura 1. Si consideri il problema di flusso a 1 2 4 Figura 1: costo minimo su tale grafo con b 1 = 4 b 2 = 2 b = b 4 = e c 12 = 2 c 1 = 4 c 14 = 1 c 2 = 1 c

Dettagli

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. ( punti) La riformulazione di un problema di PL rispetto alla base B = {x, x, x } è la seguente: max 2x + x 2 x = 2 + x x 2 x = + x 2 x = 2 + x + x 2 x, x 2, x,

Dettagli

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0.

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0. 5 IL METODO DEL SIMPLESSO 6.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Soluzione di problemi di Programmazione Lineare Intera

Soluzione di problemi di Programmazione Lineare Intera 11 Soluzione di problemi di Programmazione Lineare Intera 11.1 ESERCIZI SULLA SOLUZIONE DI PROBLEMI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 11.1.1 Risolvere con il metodo del Branch and Bound il seguente

Dettagli

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab Ricerca Operativa Programmazione Lineare Università Mediterranea di Reggio Calabria Decisions Lab Ottimizzazione In un problema di ottimizzazione si cerca di massimizzare o minimizzare una quantità specifica,

Dettagli

Sull algoritmo di ascesa duale per il problema della localizzazione di impianti

Sull algoritmo di ascesa duale per il problema della localizzazione di impianti Sull algoritmo di ascesa duale per il problema della localizzazione di impianti A. Agnetis In queste note presentiamo l algoritmo di ascesa duale per la generazione di lower bound di buona qualità per

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sommario Poliedri Poliedri compatibili Diseguaglianzeimplicate Proiezione di un poliedro Definizione

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli

Teoria della dualità nella Programmazione Lineare. Corso di Ricerca Operativa A.A

Teoria della dualità nella Programmazione Lineare. Corso di Ricerca Operativa A.A Teoria della dualità nella Programmazione Lineare Corso di Ricerca Operativa A.A. 2015-2016 Argomenti Problema duale Problema duale Problema duale Problema duale Problema duale Problema duale Problema

Dettagli

Capitolo 2: Preliminari ed elementi di analisi convessa. E. Amaldi DEIB, Politecnico di Milano

Capitolo 2: Preliminari ed elementi di analisi convessa. E. Amaldi DEIB, Politecnico di Milano Capitolo 2: Preliminari ed elementi di analisi convessa E. Amaldi DEIB, Politecnico di Milano 2.1 Concetti di base In R n con norma euclidea x S R n è un punto interno di S se ε > 0 tale che B ε (x) =

Dettagli

3.4 Metodo di Branch and Bound

3.4 Metodo di Branch and Bound 3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land

Dettagli

Il Branch & Bound. Definizione 1. Sia S R n. La famiglia S = {S 1, S 2,..., S k S} tale che S 1 S 2 S k = S viene detta suddivisione di S.

Il Branch & Bound. Definizione 1. Sia S R n. La famiglia S = {S 1, S 2,..., S k S} tale che S 1 S 2 S k = S viene detta suddivisione di S. Il Branch & Bound Il metodo Branch & Bound è una tecnica che permette di risolvere all ottimo un generico problema di Programmazione Lineare Intera. Tale metodo si basa su due concetti cardine: quello

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2014-2015 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Daniele Vigo rev. 1.1.a ottobre 2014 Fondamenti di Ricerca Operativa

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 + x 2 1 x 1 + x 2 2. Lo si trasformi in forma standard e se ne determini una soluzione ottima.

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 + x 2 1 x 1 + x 2 2. Lo si trasformi in forma standard e se ne determini una soluzione ottima. COMPITO DI RICERCA OPERATIVA APPELLO DEL 06/07/05 ESERCIZIO 1. (5 punti) Sia dato il seguente problema di PL: max x 1 + x 2 x 1 + x 2 1 x 1 + x 2 2 x 1 0 x 2 0 Lo si trasformi in forma standard e se ne

Dettagli

Esame di Ricerca Operativa del 16/02/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 16/02/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y +0 y +0 y +y + y y y +y y y y

Dettagli

4. METODI DUALI DEL SIMPLESSO

4. METODI DUALI DEL SIMPLESSO 4. MEODI DUALI DEL SIMPLESSO R. adei 1 Una piccola introduzione R. adei 2 MEODI DUALI DEL SIMPLESSO L obiettivo del capitolo è illustrare e giustificare i metodi duali del simplesso. Entrambi i metodi

Dettagli

La funzione esponenziale e logaritmica

La funzione esponenziale e logaritmica La funzione esponenziale e logaritmica Roberto Boggiani Versione 4. 8 aprile 24 Le potenze dei numeri reali. Potenza con esponente intero di un numero reale Diamo la seguente Definizione. Sia a R ed n

Dettagli

Parte III: Algoritmo di Branch-and-Bound

Parte III: Algoritmo di Branch-and-Bound Parte III: Algoritmo di Branch-and-Bound Divide et Impera Sia z * max {c T x : x S} (1) un problema di ottimizzazione combinatoria difficile da risolvere. Domanda: E possibile decomporre il problema (1)

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli