Concetti fondamentali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Concetti fondamentali"

Transcript

1 Concetti fondamentali elemento insieme sequenza tutto si riconduce a questi insieme: esempi {,3,5,7,9} insieme dei numeri dispari positivi minori di dieci {Antonio, Beatrice, Carlo, Daria} insieme dei cugini di Gino {{d,c}, {r}, {f,e,r,t}} un insieme di insiemi di lettere { i i=,,, } insieme delle potenze positive di due notare: insiemi infiniti, insiemi di insiemi insiemi: appartenenza, sottoinsiemi x S = x è un elemento dell insieme S esempio: Carlo {Antonio, Beatrice, Carlo, Daria} P S = S contiene tutti gli elementi di P esempio: {,3,5,7,9} {,,3,,5,6,7,8,9} formale: se x P allora x S sequenze: esempi,,3,,5 sequenza dei primi cinque numeri interi,,,,, sequenza di risultati di partite ogni risultato è una coppia come,, cioè una sequenza di due numeri p,a,r,o,l,a una sequenza di lettere forma abbreviata: parola concetti derivati stringa sequenza di caratteri (elementi di un certo alfabeto)

2 funzione insieme di coppie con certe proprietà relazione insieme di coppie... [altro?] concetti derivati: relazioni esempio: relazione genitore-figlio: { marco,giulia, giulia,luca, gianni,roberto, } due elementi a e b sono in relazione se a,b relazione a,b e b,a non sono la stessa cosa!: marco,giulia relazione marco è un genitore di giulia giulia,marco relazione giulia è un genitore di marco marco giulia luca gianni roberto relazioni simmetriche esempio: relazione fratello-di se marco è fratello di Luca allora luca è fratello di marco formale: relazione simmetrica: se a,b relazione allora b,a relazione viceversa: automatico non tutte le relazioni sono simmetriche concetti derivati: funzioni esempio: funzione quadrato

3 {,,,,,, 3,9,,6, } interpretazione: f(x) è = y tale che x,y funzione indefinita se non esiste x,y funzione funzioni: rappresentazione grafica per chiarezza: elementi duplicati stesso significato coppie rappresentate con frecce esempio: freccia da a significa:, funzione condizioni sulle funzioni tutte non esistono x,y funzione e x,z funzione con y z iniettive non esistono x,y funzione w,y funzione con x w suriettive per ogni y esiste x tale che x,y funzione 3

4 esempi grafici relazioni e funzioni 3 3 maggiore: relazione (non è una funzione) {,,,,, } quadrato: funzione {,,,,, } [ note ] La prima non è una funzione, come si vede dalle due coppie con lo stesso primo elemento. funzioni iniettive e non quadrato: funzione iniettiva {,,,,, } 3 modulo due: non iniettiva {,,,,, }

5 [ note ] La seconda non è iniettiva, come si vede dalle due coppie con lo stesso secondo elemento. funzioni suriettive e non esempio con funzioni da interi a interi 3 dimezzamento intero: suriettiva (funzione numero//) 3 doppio: non suriettiva (funzione numero*) [ note ] La seconda non è suriettiva, dato che 3 non è un valore possibile. Notare che la suriettività dipende da come si definisce il codominio delle funzione: la seconda sarebbe suriettiva sugli interi pari. operazioni su insiemi unione A B contiene gli elementi di A e quelli di B esempio: {,3,5} {,3,,5,9,} = {,,3,,5,9,} intersezione A B contiene solo gli elementi che sono sia in A che in B esempio: {,3,5} {,3,,5,9,} = {3,5} 5

6 insieme vuoto quello che non contiene nessun elemento simbolo: o anche {} contenimento e contenimento stretto A B contenimento: anche uguali {,,3} {,,3} A B contenimento stretto, come {,3} {,,3} vale che A per qualsiasi insieme A ma A solo se A non è vuoto sottoinsieme, insieme delle parti sottoinsieme di A = un insieme contenuto in A i sottoinsiemi di {,,3}: {,,3} {,} {,3} {,3} {} {} {3} l insieme di questi: insieme delle parti di A simbolo P(A) oppure A insieme delle parti: esempi insieme insieme delle parti S={Carlo, Luca} P(S)={, {Carlo}, {Luca}, {Carlo, Luca}} T={} P(T)={, {}} R={,,, } P(R)={,{, },{, },{,,, }} cardinalità di un insieme = numero dei suoi elementi {,3,9,} = {Luca,Antonio} = = P(A) = A 6

7 domanda: A B = A + B? cardinalità di un unione {,} = {,3} = {,} {,3} = {,,3} = 3 non vale A B = A + B però: A B A + B per l intersezione? cardinalità dell interesezione A B può anche essere zero: {,} {3,} = = vale: A B min( A, B ) confronto fra insiemi L H T E A C ci sono più lettere maiuscole sopra la riga o sotto? ovviamente: tre sopra tre sotto stesso numero [ note ] Non è una domanda a trabocchetto: si parla solo delle lettere (maiuscole) del disegno (HLTEAC). 7

8 insiemi più grandi V G H W K F D L T S P X Y A J I M B E O C U stessa domanda: più sopra o più sotto? questa volta ci vuole un po [ note ] Sicuri di aver contato anche la I sotto la linea? E la F sopra? Le lettere sono non allineate apposto per rendere il conteggio difficile. facilitazione A B C D E F G H I J K L M O P S T U V W X Y stesse lettere versione facilitata 8

9 H G V W K D F L T P S B O U C E M Y I A J X spostando le lettere: stesso numero in generale contare e confrontare per confrontare due insiemi: contare gli elementi facile con pochi farli corrispondere sempre possibile infiniti elementi: impossibile contarli cardinalità di insiemi infiniti insiemi con numero infinito di elementi: impossibile contare quanti elementi sono però: i positivi sono quanti i negativi in generale: vedere se gli elementi corrispondono confronto fra insiemi infiniti non si può dire il numero di elementi di un insieme infinito, ma si può dire se è grande quanto un altro 9

10 positivi = negativi altro esempio interi positivi e sequenze di bit che iniziano con : corrispondono stessa grandezza interi = sequenze di bit che iniziano con l albergo di Hilbert 3 5 è un albergo con un numero infinito di stanze numerate: stanza, stanza, stanza 3, sono tutte piene arriva un nuovo cliente gli trovano una stanza! non cacciano nessun cliente sempre un cliente per stanza come fanno? albergo di Hilbert: non soluzione metto il cliente nella stanza infinito+ non esiste! infinito non è un numero significa solo che per ogni intero c è una stanza stanza n con cliente n albergo di Hilbert: soluzione

11 3 5 si spostano i clienti: quello della stanza va nella quella della nella 3 quello della 3 nella albergo di Hilbert, dopo lo spostamento 3 5 il nuovo cliente va nella! clienti precedenti: cliente n stanza n+ i clienti da in poi entrano nelle stanze da in poi in generale attenzione ai sottoinsiemi interi e interi maggiori di tre: corrispondono stessa grandezza interi = interi maggiori di tre ma però cardinalità dei sottoinsiemi finiti: se A B allora: B è più grande di A o uguale

12 infiniti: lo stesso se A B allora A B e se A B? sottoinsiemi stretti insiemi finiti: se A B allora A < B insiemi infiniti: interi maggiori di tre interi ma: corrispondono (= stessa grandezza) interi maggiori di tre = interi es: interi ma interi maggiori di tre elemento che l altro insieme non ha ma: stessa cardinalità interi e interi pari sottoinsieme stretto: ogni pari è intero 5 è intero ma non pari ma: corrispondono stessa cardinalità pari = interi interi e pari gli interi sono di più!!! (o no?) ragionamento (errato): ogni intero pari è un intero 5 è intero ma non pari quindi gli interi sono più dei pari (falso)

13 grandezza di insiemi infiniti A B non implica A < B es pari e interi la cardinalità di un insieme infinito indica il suo ordine di grandezza, non il numero specifico di elementi (questo numero non esiste) se A B allora A B definizione formale per ogni intero c è un pari (il doppio) e per ogni pari c è un intero (la metà) gli interi positivi pari sono quanti gli interi positivi se esiste una funzione suriettiva f:a B allora A B suriettiva: per ogni y esiste x tale che f(x)=y insiemi grandi come gli interi interi maggiori di tre interi positivi pari interi negativi coppie di interi coppie di interi (,) (,) (,3) (,) (,5) (,6) può funzionare? coppie di interi: disposizione errata (,) (,) (,3) (,) (,5) (,6) ci sono infinite coppie (,numero) a (,) non ci arrivo mai: non si può mettere (,) "dopo infinito": infinito = non ci si arriva mai 3

14 coppie di interi: soluzione (,) (,) (,) (,3) (,) (3,) come funziona? ordinamento delle coppie (,) (,) (,) (,3) (,) (3,) prima le coppie con somma : (,) poi quelle con somma 3: (,) e (,) poi con somma, ecc. corrispondenza coppie interi: matrice (,) (,) (,3) (,) (,) (,) (,3) (,) (3,) (3,) (3,3) (3,) visualizzando le coppie come una matrice corrispondenza coppie interi: grafico (,) (,) (,3) (,) (,) (,) (,3) (,) (3,) (3,) (3,3) (3,) sequenza di coppie: si parte da (,) e si seguono le frecce grafico alternativo

15 (,) (,) (,3) (,) (,) (,) (,3) (,) (3,) (3,) (3,3) (,) si segue la linea modifica (,) (,) (,3) (,) (,) (,) (,3) (,) (3,) (3,) (3,3) (,) raddrizzando la linea si ottiene linea raddrizzata (,) (,) (,3) (,) (,) (,) (,3) (,) (3,) (3,) (3,3) (,) raddrizzando la linea (,) (,) (,) (,3) (,)... si aggiungono 3 sopra la linea si ottiene la corrispondenza 5

16 cardinalità delle coppie di interi linea con interi sopra e coppie sotto coppie = interi perchè non per linee? (,) (,) (,3) (,) (,) (,3) (3,) (3,) (3,3) qual è l intero di (,)? (ce ne sono infiniti prima di lui) nell altro modo no, posizione di (n,m): somma n+m prima le diagonali a somma, 3, n+m- poi n lungo questa diagonale insiemi contabili sono quelli con la stessa cardinalità degli interi: interi negativi interi pari interi maggiori di tre coppie di interi definizione alternativa: si possono contare (= si mettono sotto la linea, poi: uno, due, tre, ) contabilità dei numeri razionali numero razionale coppia di interi es:,5 = 5/ (5,) razionali coppie di interi (la funzione inversa non è iniettiva, ma non ci interessa) dimostrato prima: coppie di interi interi quindi: 6

17 razionali interi razionali e interi razionali interi ma interi razionali quindi interi razionali quindi: razionali = interi non molto intuitivo sottoinsiemi di insiemi infiniti "gli interi sono molti meno dei razionali" infatti: già fra e ci sono infiniti razionali su insiemi infiniti non vuol dire niente invece: i reali sono davvero di più! stringhe es: ASCII stringa=sequenza di caratteri terminata da NUL carattere numero a otto bit (NUL ) stringa sequenza di tutti questi bit aggiungere all inizio stringhe sequenze di bit (neanche tutte le sequenze: lunghezza multipla di otto, zero solo alla fine) già visto: sequenze di bit = interi quindi: stringhe interi viceversa: numero sequenza di caratteri,,9 numeri reali 7

18 non ci interessa la definizione formale diciamo che: numero reale sequenza (anche infinita) di cifre quindi: reali = sequenze di cifre mettere i reali sotto la linea il sistema dei razionali non funziona: in che posizione si mette π? si dimostra che non si può fare contare i reali mettiamo la linea in verticale (è lo stesso),3,9533 3,5933,83 5, 6, consideriamo solo i numeri minori di dimostriamo che qualche numero non c è cifre in diagonale,3,9533 3,5933,83 5, 6, numero con quella cifra più uno (9 diventa ) 98,39 definizione di questo numero: sua cifra i = uno più cifra i del numero i 8

19 dove sta il numero in diagonale?,3,9533 3,5933,83 5, 6,673873,39 deve stare da qualche parte nella lista per esempio: posizione numero in posizione dieci,3,9533 3,5933,83 5, 6, x 8 y 9 z,39 c la diagonale interseca il numero alla decima cifra decima cifra,3,9533 3,5933,83 5, 6, x 8 y 9 z,39 c cifra del numero = uno più la cifra sulla diagonale per la decima cifra: c = uno più c conclusione: il numero non è in posizione dieci 9

20 posizione del numero,3,9533 3,5933,83 5, 6, n,39 indichiamo con n la sua posizione la diagonale lo interseca sulla n-esima cifra n-esima cifra del numero in diagonale definizione del numero: n,39 c sua cifra i = uno più cifra i del numero i se i=n: cifra n = uno più cifra n del numero n contraddizione! diagonalizzazione si assume che l elenco contenga tutti i reali si costruisce un reale prendendo una cifra modificata da ognuno si dimostra che se sta nell elenco in posizione n allora la sua n-esima cifra vale lei stessa più uno i reali non sono in corrispondenza con gli interi non sono contabili insieme delle parti insieme di tutti gli insiemi (anche infiniti) di interi rappresentazione:

21 {,3} {,,5} tutti pari < > con, davanti = numeri reali minori di uno in binario insiemi di interi = reali non contabili l insieme delle parti dell insieme dei numeri interi non è contabile contabili e non contabili contabili negativi, pari, sequenze di bit, coppie di interi, razionali, stringhe non contabili reali, insiemi di interi

METODI MATEMATICI PER L INFORMATICA. Canale E O a.a Docente: C. Malvenuto Prova intermedia 12 novembre 2009

METODI MATEMATICI PER L INFORMATICA. Canale E O a.a Docente: C. Malvenuto Prova intermedia 12 novembre 2009 METODI MATEMATICI PER L INFORMATICA Canale E O a.a. 2009 10 Docente: C. Malvenuto Prova intermedia 12 novembre 2009 Esercizio 1. (10 punti) 1. Siano A = {1, 2, 3} e B = {1, 3, 5, 7}. Determinare il prodotto

Dettagli

Capitolo 1: Concetti matematici di base

Capitolo 1: Concetti matematici di base Capitolo 1: Concetti matematici di base 1 Insiemi x A x é elemento dell insieme A. B A B é un sottoinsieme di A. B A B é un sottoinsieme proprio di A. A costituito da n elementi A = n é la sua cardinalitá.

Dettagli

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A.

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. 1 PRELIMINARI 1.1 NOTAZIONI denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. B A si legge B è un sottoinsieme di A e significa che ogni elemento di B è anche elemento di

Dettagli

a cura di Luca Cabibbo e Walter Didimo

a cura di Luca Cabibbo e Walter Didimo a cura di Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 principio di induzione finita (o matematica) cardinalità di insiemi pigeonhole principle espressioni

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

concetti matematici di base

concetti matematici di base concetti matematici di base Fabrizio d Amore Università La Sapienza, Dip. Informatica e Sistemistica A. Ruberti settembre 2008 concetti elementari di insiemistica Sia A un insieme x A significa che l elemento

Dettagli

1 Linguaggio degli insiemi

1 Linguaggio degli insiemi Lezione 1, Analisi, 18.09.2017 1 Linguaggio degli insiemi Ricordiamo di seguito in modo informale le prime notazioni e nozioni sugli insiemi. Il discorso sugli insiemi si sviluppa a partire dai termini

Dettagli

INSIEMI. Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X).

INSIEMI. Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X). INSIEMI Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X). Sia A = {A λ : λ Λ} una famiglia di insiemi. Definiamo: unione A = A λ è l insieme U tale

Dettagli

APPUNTI PER IL CORSO DI MATEMATICA APPLICATA. 1. Lezione 1 Richiamo brevemente alcune notazioni della teoria degli insiemi.

APPUNTI PER IL CORSO DI MATEMATICA APPLICATA. 1. Lezione 1 Richiamo brevemente alcune notazioni della teoria degli insiemi. APPUNTI PER IL CORSO DI MATEMATICA APPLICATA ERNESTO DE VITO - UNIVERSITÀ DI GENOVA, ITALY 1. Lezione 1 Richiamo brevemente alcune notazioni della teoria degli insiemi. insieme vuoto N insieme dei numeri

Dettagli

La cardinalità di Q e R

La cardinalità di Q e R La cardinalità di Q e R Ha senso chiedersi se ci sono più elementi in N o in Q? Sono entrambi due insiemi infiniti. I numeri naturali sono numerosi quanto i quadrati perfetti, infatti ad ogni numero naturale

Dettagli

Primi elementi di combinatoria Federico Lastaria, Analisi e Geometria 1

Primi elementi di combinatoria Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano. Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 Federico Lastaria Primi elementi di combinatoria 11 Ottobre 2016 Indice 1 Elementi di combinatoria 2 1.1

Dettagli

Indice. NUMERI REALI Mauro Saita Versione provvisoria. Ottobre 2017.

Indice. NUMERI REALI Mauro Saita   Versione provvisoria. Ottobre 2017. NUMERI REALI Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria. Ottobre 2017. Indice 1 Numeri reali 2 1.1 Il lato e la diagonale del quadrato sono incommensurabili: la scoperta dei numeri

Dettagli

1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale?

1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale? M ============= (A) Aritmetica ===================== rappresentazione dei numeri algebra dei numeri proprietà delle operazioni. (A) Quali tra le seguenti uguaglianze sono vere? e. 2 + 2 2 2 + = 2 2 + =

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi ppendice Elementi di teoria degli insiemi.1 Introduzione Comincia qui l esposizione di alcuni concetti primitivi, molto semplici da un punto di vista intuitivo, ma a volte difficili da definire con grande

Dettagli

I2. Relazioni e funzioni

I2. Relazioni e funzioni I2. Relazioni e funzioni I2. Relazioni Una relazione è un sottoinsieme del prodotto cartesiano. Esempio I2. Dati gli insiemi ={ldo, runo, Carlo} e ={nna, arbara} si consideri la relazione, espressa in

Dettagli

Prima lezione. Gilberto Bini. 16 Dicembre 2006

Prima lezione. Gilberto Bini. 16 Dicembre 2006 16 Dicembre 2006 Vediamo alcune nozioni di teoria ingenua degli insiemi. Vediamo alcune nozioni di teoria ingenua degli insiemi. Un insieme è una collezione di oggetti di cui possiamo specificare una proprietà

Dettagli

Matematica 1 per Ottici e Orafi. I Numeri Reali

Matematica 1 per Ottici e Orafi. I Numeri Reali Matematica 1 per Ottici e Orafi I Numeri Reali Indichiamo con N l insieme dei numeri naturali 1, 2, 3,.... Su N sono definite due operazioni : e + che soddisfano le seguenti proprietá formali : a, b, c

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Teoria degli Insiemi Docente: Francesca Benanti Ottobre 2017 1 Teoria degli Insiemi La Teoria degli Insiemi è una branca della matematica creata alla fine del diciannovesimo secolo principalmente dal matematico

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Teoria degli Insiemi Docente: Francesca Benanti Ottobre 2015 1 Teoria degli Insiemi La Teoria degli Insiemi è una branca della matematica creata alla fine del diciannovesimo secolo principalmente dal matematico

Dettagli

Elementi di teoria degli insiemi e funzioni tra insiemi

Elementi di teoria degli insiemi e funzioni tra insiemi Elementi di teoria degli insiemi e funzioni tra insiemi 1 / 50 Il concetto di insieme 2 / 50 Si considera il concetto di insieme come primitivo, cioè non riconducibile a nozioni più elementari. Più precisamente:

Dettagli

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica.

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Richiami di Matematica 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Insiemi Definizioni di base Dato un insieme A: x A: elemento x appartenente

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

ANALISI 1 1 QUARTA LEZIONE

ANALISI 1 1 QUARTA LEZIONE ANALISI 1 1 QUARTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 principio di induzione finita (o matematica) cardinalità di insiemi pigeonhole principle espressioni

Dettagli

Capitolo 1. Insiemi e funzioni. per elencazione: si elencano uno ad uno gli elementi dell insieme.

Capitolo 1. Insiemi e funzioni. per elencazione: si elencano uno ad uno gli elementi dell insieme. Capitolo 1 Insiemi e funzioni Con gli insiemi introduciamo il linguaggio universale della matematica. Il linguaggio degli insiemi ci permette di utilizzare al minimo le lingue naturali. 1.1 La descrizione

Dettagli

AL220 - Gruppi, Anelli e Campi

AL220 - Gruppi, Anelli e Campi AL220 - Gruppi, Anelli e Campi Prof. Stefania Gabelli - a.a. 2013-2014 Settimana 1 - Traccia delle Lezioni Funzioni tra insiemi Ricordiamo che una funzione o applicazione di insiemi f : A B è una corrispondenza

Dettagli

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente)

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente) Funzioni Dati due insiemi non vuoti A e B, si chiama funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B NOTAZIONE DELLE FUNZIONI

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

0 Insiemi, funzioni, numeri

0 Insiemi, funzioni, numeri Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo

Dettagli

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili.

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili. OBIETTIVO DELLA RICERCA SCIENTIFICA MODELLO DEL FENOMENO NATURALE stabilire se esistono relazioni tra le quantità che si ritengono essenziali per la descrizione di un fenomeno. è una costruzione ideale

Dettagli

I Esonero di Matematica Discreta - a.a. 06/07 Versione C

I Esonero di Matematica Discreta - a.a. 06/07 Versione C I Esonero di Matematica Discreta - a.a. 06/07 Versione C 1. a. Sono dati gli insiemi A = 1, 2, 3,, 5, 6} e B = numeri naturali dispari}. Determinare A B, A B, B C N (A), C N (A B), P(A B), P(A) P(B). b.

Dettagli

Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv

Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv Insiemi uguali? Vogliamo occuparci del confronto di insiemi, in particolare di insiemi infiniti. Prima di potere parlare di confronto di insiemi è necessario però fare alcune precisazioni a riguardo della

Dettagli

1 Numeri reali. 1.1 Linguaggio degli insiemi

1 Numeri reali. 1.1 Linguaggio degli insiemi 1 Numeri reali. 1.1 Linguaggio degli insiemi Ricordiamo di seguito in modo informale le prime notazioni e nozioni sugli insiemi. Il discorso sugli insiemi si sviluppa a partire dai termini elemento, insieme,

Dettagli

Complemento 1 Gli insiemi N, Z e Q

Complemento 1 Gli insiemi N, Z e Q AM110 Mat, Univ. Roma Tre (AA 2010/11 L. Chierchia) 30/9/10 1 Complemento 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

Richiami di teoria degli insiemi

Richiami di teoria degli insiemi Appartenenza Se A è un insieme con la notazione a A indichiamo che l elemento a appartiene ad A, con a A che non appartiene Spesso con la notazione {x x } dove con x si intende una certa proprietà per

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Logica. Claudio Sacerdoti Coen 09,11/10/ : Relazioni, Funzioni,... Universitá di Bologna. Claudio Sacerdoti Coen

Logica. Claudio Sacerdoti Coen 09,11/10/ : Relazioni, Funzioni,... Universitá di Bologna. Claudio Sacerdoti Coen Logica 1.75: Relazioni, Funzioni,... Universitá di Bologna 09,11/10/2017 Coppie ordinate Coppie Dati X, Y chiamiamo coppia ordinata di prima componente X e seconda componente Y,

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

LAUREA IN SCIENZE NATURALI MATEMATICA CON ELEMENTI DI STATISTICA

LAUREA IN SCIENZE NATURALI MATEMATICA CON ELEMENTI DI STATISTICA LAUREA IN SCIENZE NATURALI MATEMATICA CON ELEMENTI DI STATISTICA I parte: 5 crediti, 40 ore di lezione frontale II parte: 4 crediti, 32 ore di lezione frontale Docente: Marianna Saba Dipartimento di Matematica

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a A e b B. Es: dati A= {a,b,c} e B={1,2,3} A x B = {(a,1),(b,1),(c,1),(a,2),(b,2),(c,2),(a,3),(b,3),(c,3)

Dettagli

Nome e Cognome Matricola

Nome e Cognome Matricola Università di Roma "La Sapienza" Corsi di Laurea in Informatica e Tecnologie Informatiche Insegnamento di Logica Matematica, canale A-D Prova, a.a. 2007/08 FILA A Nome e Cognome Matricola Anno di corso.

Dettagli

Esempi di funzione...

Esempi di funzione... Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 2011

SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 2011 1 SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 011 Problema 1. Sia Z l insieme dei numeri interi. a) Sia F 100 l insieme delle funzioni

Dettagli

Appunti del Corso Analisi 1

Appunti del Corso Analisi 1 Appunti del Corso Analisi 1 Anno Accademico 2011-2012 Roberto Monti Versione del 5 Ottobre 2011 1 Contents Chapter 1. Cardinalità 5 1. Insiemi e funzioni. Introduzione informale 5 2. Cardinalità 7 3.

Dettagli

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso NOTA - Negli esercizi che seguono verranno adottate le seguenti notazioni: il simbolo Z

Dettagli

ù = {0,1,2,3,4,, } I NUMERI NATURALI Z = { -3,-2,-1,0,1,2,3, } GLI INTERI m n R = Q {irrazionali} I REALI ù Z Q R ESERCITAZIONE N.

ù = {0,1,2,3,4,, } I NUMERI NATURALI Z = { -3,-2,-1,0,1,2,3, } GLI INTERI m n R = Q {irrazionali} I REALI ù Z Q R ESERCITAZIONE N. GLI INSIEMI NUMERICI ESERCITAZIONE N.2 16 ottobre 2007 ù = {0,1,2,3,4,, } I NUMERI NATURALI Z = { -3,-2,-1,0,1,2,3, } GLI INTERI m Q = { m, n Z e n 0 } I RAZIONALI n R = Q {irrazionali} I REALI Funzioni

Dettagli

LOGICA MATEMATICA. Canale E O a.a Docente: C. Malvenuto Primo compito di esonero 10 novembre 2006

LOGICA MATEMATICA. Canale E O a.a Docente: C. Malvenuto Primo compito di esonero 10 novembre 2006 LOGICA MATEMATICA Canale E O a.a. 2006 07 Docente: C. Malvenuto Primo compito di esonero 10 novembre 2006 Istruzioni. Completare subito la parte inferiore di questa pagina con il proprio nome, cognome

Dettagli

Matematica Lezione 2

Matematica Lezione 2 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 2 Sonia Cannas 12/10/2018 Avviso Le lezioni di martedì dalle 9:00 alle 11:00 sono spostate in aula DELTA. Insieme complementare Definizione

Dettagli

Argomenti trattati. Informazione Codifica Tipo di un dato Rappresentazione dei numeri Rappresentazione dei caratteri e di altre informazioni

Argomenti trattati. Informazione Codifica Tipo di un dato Rappresentazione dei numeri Rappresentazione dei caratteri e di altre informazioni Argomenti trattati Informazione Codifica Tipo di un dato Rappresentazione dei numeri Rappresentazione dei caratteri e di altre informazioni Informazione mi dai il numero di Andrea? 0817651831 Il numero

Dettagli

DIDATTICA DELLA MATEMATICA. Dott.ssa Renieri Alessandra, PhD

DIDATTICA DELLA MATEMATICA. Dott.ssa Renieri Alessandra, PhD DIDATTICA DELLA MATEMATICA Dott.ssa Renieri Alessandra, PhD RELAZIONI Andrea, Paolo, Giulio, Anna, Stefano, Cristina e Mario sono nella stessa squadra di atletica. L allenatore ha assegnato loro uno strano

Dettagli

Laurea in Informatica Corso di Analisi Matematica I numeri reali

Laurea in Informatica Corso di Analisi Matematica I numeri reali Laurea in Informatica Corso di Analisi Matematica I numeri reali Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica INF 1 / 59 Outline 1 Insiemi

Dettagli

Generalità - Insiemi numerici

Generalità - Insiemi numerici Generalità - Insiemi numerici Docente:Alessandra Cutrì Informazioni corso Sito docente: http://www.mat.uniroma2.it/~cutri/ Programma: vedi sito docente Testi consigliati: vedi sito docente Orario Lezioni:

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili.

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili. OBIETTIVO DELLA RICERCA SCIENTIFICA MODELLO DEL FENOMENO NATURALE stabilire se esistono relazioni tra le quantità che si ritengono essenziali per la descrizione di un fenomeno. è una costruzione ideale

Dettagli

Il concetto di informazione

Il concetto di informazione Il concetto di informazione Qualunque informazione è definita tramite tre caratteristiche fondamentali: 1. Valore indica il particolare elemento assunto dall informazione 2. Tipo indica l insieme degli

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Vale la [1] perché per le proprietà delle potenze risulta a m a

Dettagli

Rappresentazione dei numeri. Rappresentazione di insiemi numerici mediante insiemi finiti di stringhe di bit Problemi:

Rappresentazione dei numeri. Rappresentazione di insiemi numerici mediante insiemi finiti di stringhe di bit Problemi: Argomenti trattati Rappresentazione dei numeri Calcoli in binario Rappresentazione di numeri naturali Rappresentazione di numeri relativi Rappresentazione di numeri reali (Virgola mobile) Rappresentazione

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

Appunti di Matematica 1 - Le funzioni - Le funzioni

Appunti di Matematica 1 - Le funzioni - Le funzioni Le funzioni Definizione : f : A B con A e B insiemi f è una funzione da A a B (A insieme di partenza, B insieme di arrivo ) se associa ad ogni elemento di A uno ed un solo elemento di B. Esempio: consideriamo

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

Introduzione al concetto di funzione

Introduzione al concetto di funzione Introduzione al concetto di funzione Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Introduzione al concetto di funzione Analisi A 1 / 36 Definizione di funzione: è

Dettagli

Funzioni Esercizi e complementi

Funzioni Esercizi e complementi Funzioni Esercizi e complementi e-mail: maurosaita@tiscalinet.it Novembre 05. Indice Esercizi Insiemi ininiti 6 Suggerimenti e risposte 9 Esercizi. Scrivere la deinizione di unzione e ornire almeno un

Dettagli

ANALISI MATEMATICA 1 ANALISI MATEMATICA A CORSI DI LAUREA TRIENNALE IN FISICA E MATEMATICA

ANALISI MATEMATICA 1 ANALISI MATEMATICA A CORSI DI LAUREA TRIENNALE IN FISICA E MATEMATICA ANALISI MATEMATICA 1 ANALISI MATEMATICA A CORSI DI LAUREA TRIENNALE IN FISICA E MATEMATICA 2017-18 Settimana 1 (1) Cap 1. 4.1, 4.2, 4.3, 4.4: Nozione intuitiva di funzione f : X Y, x f(x) Definizioni di

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Nozioni Preliminari e Terminologia. Alfabeti Stringhe Linguaggi

Nozioni Preliminari e Terminologia. Alfabeti Stringhe Linguaggi Nozioni Preliminari e Terminologia Alfabeti Stringhe Linguaggi Insiemi Def. Un insieme è una collezione non ordinata di oggetti o elementi Gli insiemi sono scritti tra { } Gli elementi sono inseriti tra

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2014-2015 L.Doretti 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta

Dettagli

Sipser, Capitolo 0. Alfabeti, Stringhe, Linguaggi

Sipser, Capitolo 0. Alfabeti, Stringhe, Linguaggi Sipser, Capitolo 0 Alfabeti, Stringhe, Linguaggi Def. Un insieme è una collezione non ordinata di oggetti o elementi Gli insiemi sono scritti tra { } Gli elementi sono inseriti tra le parentesi Insiemi

Dettagli

Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica

Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica Soluzione del compito di Matematica Discreta 1 del 7 novembre 003 1. Sia S un sottoinsieme di V = Z 9 e si consideri la famiglia

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

Matematica ed Elementi di Statistica. L insieme dei numeri reali

Matematica ed Elementi di Statistica. L insieme dei numeri reali a.a. 2010/11 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

GE220 Esercizi in preparazione dell esonero di Aprile Corretti i testi degli esercizi 2,5,7. Esercizio 1. Considerare le seguenti famiglie di insiemi:

GE220 Esercizi in preparazione dell esonero di Aprile Corretti i testi degli esercizi 2,5,7. Esercizio 1. Considerare le seguenti famiglie di insiemi: GE220 Esercizi in preparazione dell esonero di Aprile Corretti i testi degli esercizi 2,5,7. Esercizio 1. Considerare le seguenti famiglie di insiemi: F = {(a, b] : a, b Z} G = {(, a) : a Q} 1. F definisce

Dettagli

Algebra e Logica Matematica. Insiemi, relazioni

Algebra e Logica Matematica. Insiemi, relazioni Università di Bergamo Anno accademico 2015 2016 Ingegneria Informatica Foglio 1 Algebra e Logica Matematica Insiemi, relazioni Esercizio 1.1. Mostrare che per tutti gli insiemi A e B, (A\B) (B\A) = (A

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Corso di Calcolatori Elettronici I Rappresentazione dei numeri: sistemi di numerazione posizionale Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica

Dettagli

1. Cenni di teoria degli insiemi e operazione sugli insiemi. Insiemi numerici (N, Z, Q, R)

1. Cenni di teoria degli insiemi e operazione sugli insiemi. Insiemi numerici (N, Z, Q, R) 1. Cenni di teoria degli insiemi e operazione sugli insiemi. Insiemi numerici (N, Z, Q, R) 1 Indice della lezione 1. Gli insiemi Definizione Rappresentazione Sottoinsiemi Operazioni 2. Gli insiemi numerici

Dettagli

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I APPUNTI DI TEORIA DEGLI INSIEMI MAURIZIO CORNALBA L assioma della scelta e il lemma di Zorn Sia {A i } i I un insieme di insiemi. Il prodotto i I A i è l insieme di tutte le applicazioni α : I i I A i

Dettagli

Matematica. 1. Modelli matematici e relazioni funzionali. Giuseppe Vittucci Marzetti 1

Matematica. 1. Modelli matematici e relazioni funzionali. Giuseppe Vittucci Marzetti 1 Matematica 1. Modelli matematici e relazioni funzionali Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di

Dettagli

ANALISI MATEMATICA 1 ANALISI MATEMATICA A CORSI DI LAUREA TRIENNALE IN FISICA E MATEMATICA

ANALISI MATEMATICA 1 ANALISI MATEMATICA A CORSI DI LAUREA TRIENNALE IN FISICA E MATEMATICA ANALISI MATEMATICA 1 ANALISI MATEMATICA A CORSI DI LAUREA TRIENNALE IN FISICA E MATEMATICA 2018-19 Settimana 1 Cap 1. 4.1, 4.2, 4.3, 4.4: Nozione intuitiva di funzione f : X Y, Dominio, codominio, immagine,

Dettagli

Funzioni funzione univocità relazione univoca variabile dipendente variabile indipendente primo insieme secondo insieme

Funzioni funzione univocità relazione univoca variabile dipendente variabile indipendente primo insieme secondo insieme Funzioni Chiamiamo unzione un insieme di coppie ordinate che goda della seguente proprietà: non possono appartenere alla stessa unzione due coppie ordinate che abbiano lo stesso primo elemento e diversi

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

Funzioni reali continue

Funzioni reali continue E-school di Arrigo Amadori Analisi I Funzioni reali continue 01 Introduzione. Fra tutte le funzioni numeriche reali, le funzioni continue assumono una importanza particolare. Le funzioni continue rappresentano

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

Corso di Calcolatori Elettronici I A.A Lezione 2 Rappresentazione dei numeri: sistemi di numerazione posizionale ing. Alessandro Cilardo

Corso di Calcolatori Elettronici I A.A Lezione 2 Rappresentazione dei numeri: sistemi di numerazione posizionale ing. Alessandro Cilardo Corso di Calcolatori Elettronici I A.A. 2012-2013 Lezione 2 Rappresentazione dei numeri: sistemi di numerazione posizionale ing. Alessandro Cilardo Accademia Aeronautica di Pozzuoli Corso Pegaso V GArn

Dettagli

FUNZIONI TRA INSIEMI. Indice

FUNZIONI TRA INSIEMI. Indice FUNZIONI TRA INSIEMI LORENZO BRASCO Indice. Definizioni e risultati.. Introduzione.. Iniettività e suriettività.3. Composizione di funzioni 4.4. Funzioni inverse 5. Esercizi 5.. Esercizi svolti 5.. Altri

Dettagli

ELEMENTI DI ALGEBRA Logica, Insiemi, Funzioni, Relazioni, Ordinamenti, Reticoli LOGICA

ELEMENTI DI ALGEBRA Logica, Insiemi, Funzioni, Relazioni, Ordinamenti, Reticoli LOGICA ELEMENTI DI ALGEBRA Logica, Insiemi, Funzioni, Relazioni, Ordinamenti, Reticoli LOGICA 1. Cos è una proposizione logica? E una frase che possa essere qualificata come vera o falsa. Tali due valori vengono

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli