Probabilità II. Concetto di variabile casuale. Variabile casuale: definizione. Concetto di variabile casuale. Cos'è una variabile casuale?

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Probabilità II. Concetto di variabile casuale. Variabile casuale: definizione. Concetto di variabile casuale. Cos'è una variabile casuale?"

Transcript

1 Cocetto di variabile casuale Defiizioi pricipali. Valore atteso e Variaza. Probabilità II Variabili casuali discrete Teorema di Bieaymé - Čebičev. V.C. Notevoli: Beroulli e Biomiale. Cos'è ua variabile casuale? Idea di massima: ua gradezza il cui valore dipede dall'esito di u accadimeto dal risultato icerto. Perché abbia seso (e sia utile) debbo: Defiire cosa sia u accadimeto dall'esito icerto Distiguere i valori possibili da quello assuto. 1 Trovare u modo per discerere quali siao i valori più o meo probabili. Cocetto di variabile casuale Cos'è ua variabile casuale? Idea di massima: ua gradezza il cui valore dipede dall'esito di u accadimeto dal risultato icerto. Perché abbia seso (e sia utile) debbo: Defiire cosa sia u accadimeto dall'esito icerto (Nozioi di Esperimeto, Esito ed Eveto) Distiguere i valori possibili da quello assuto. (odalità ed osservazioe) Trovare u modo per discerere quali siao i valori più o meo probabili. (Calcolo delle probabilità) 3 Variabile casuale: defiizioe Defiizioe: ua variabile casuale è ua gradezza il cui valore è legato al verificarsi di u eveto. Ua v.c. viee descritta completamete associado ad ogi modalità la probabilità che questa sia osservata. Il tipo di associazioe cambia a secoda del tipo di v.c. Discrete: distribuzioe di probabilità. Cotiue: desità di probabilità. Nota: a volte si parla di variabili stocastiche o aleatorie. Esse soo sioime di v.c. 4

2 Variabile casuale: otazioi Ua v.c. viee idetificata co ua lettera maiuscola Y: esito del lacio di u dado a 6 facce. X: # mezzi pubblici usati da u veroese l'8/11/1. Variabile casuale discreta Defiita uivocamete dalla distribuzioe di probabilità. Distribuzioe di probabilità: possiamo cosiderarla come ua fuzioe reale di umeri reali così defiita p x =P X=x Le modalità si idicao co la lettera miuscola. y 1 = 1; y = ; y 3 = 3; y 4 = 4; y 5 = 5; y 6 = 6. x 1 = ; x = 1; x 3 = ; x 4 = 3; x 5 = 4;... L'eveto osservazioe della i-sima modalità si idica Y= y i => P(Y=y i ):probabilità che si osservi la modalità y i. X= x i => P(X=1):probabilità l'estratto abbia preso u mezzo. 5 Esempio D: esito del lacio di u dado a 6 facce truccato. - tabellare d i P(D=d i ) - grafica 1,16,16 3,16 4,16 5,16 6, tot 1, 6 Valore atteso E[.] Ache per ua v.c. si può defiire u idice di posizioe che sitetizzi la distribuzioe di probabilità. Valore atteso E[X] a volte idicato co µ Esempio di calcolo E[X ]= i=1 P X=xi x i D: lacio di u dado a 6 facce truccato. E[ D]= i=1 d i p d i E[ D]=1,16,16 3,16 4,16 5,16 6, E[ D]=3,6 E[X ]= i=1 p xi x i d i P(D=d i ) p(d i )d i 1,16,16,16,3 3,16,48 4,16,64 5,16,8 6, 1, 1, 7 3,6 Valore atteso E[.]: iterpretazioe Osservazioe: E[.] o è ua modalità, come la media. Osservazioe: E[X] descrive l'esito di diverse estrazioi tutte uguali (cocetto da defiire) di X. Prove idipedeti ed ideticamete distribuite (i. i. d.): Idipedeti: l'esito di ua prova o iflueza le successive. Ideticamete distribuite: tutte le prove hao la stessa p(x). E[X] descrive l'esito medio atteso a frote di tate prove i.i.d. 8

3 Valore atteso E[.]: proprietà - I I valori attesi di due vv.cc. lieari fra loro, hao lo stesso legame. Esempio: X = costo del pae i euro al kg i Italia. E[X] =.1 Y = costo del pae i euro all'etto i Italia. Y= 1 1 X E[Y ]= 1 1 E [ X ]= I valori attesi di due vv. cc. affii, hao lo stesso legame. Esempio Y=c X E[Y]=c E[ X] c R Y=a X b E [Y ]=a E [ X ] b a,b R X = temperatura a Veroa misurata i C. E[X] = 14.7 Y = temperatura a Veroa misurata i F. Y=1.8 X E[Y]=1.8 E[X ] 57.6=8.6 Valore atteso E[.]: proprietà - II Il valore atteso di ua combiazioe lieare di due vv. cc. è dato dalla stessa combiazioe lieare dei loro valori attesi. Z=c 1 X c Y Esempio: E[Z]=c 1 E[ X ] c E[Y] c 1, c R X = cosumo al km di ua auto gpl E[X] = Y = pedaggio al km di ua autostrada. E[Y] =.7 Z = costo di u viaggio di 4 km di cui 3 i autostrada. Z=4 X 3 Y E [ Z ]=4 E[ X ] 3 E[Y ]=6.1 La proprietà si estede alla combiazioe lieare di u umero qualuque (purché fiito) di vv. cc. Y= i=1 K K ci X i E[Y]= i=1 ci E[ X i ] c i R 1 Variaza Var[.] e deviazioe stadard Ache per le v.c. si può defiire u idice di variabilità. Variaza Var[X] Var[ X]= i=1 P X=xi x i E[ X] Var[ X]= i=1 p xi x i E[ X] Var[ X]= i=1 Deviazioe Stadard sd= = Var[X] Esempio di calcolo D: lacio di u dado truccato. E[ D]=3,6 d i p(d i ) d i Var[ D]= i=1 d i p d i E[D] Var[ D]= 16 3,6 =16 1,96=3,4 sd[ D]= Var[ D]= 3,4=1,74 xi p x i E[ X] p(d i )d i 1,16 1,16,16 4,64 3,16 9 1,44 4,16 16,56 5,16 5 4, 6, 36 7, 11 1, 16, Variaza Var[.]: proprietà - I Date due vv. cc. affii si ha la seguete relazioe Esempio: Y=a X b X = temperatura a Veroa misurata i C. Var[X] = 4.7 Y = temperatura a Veroa misurata i F. Y=1.8 X 57.6 Var[Y]=a Var[ X] a,b R Var[Y]= 1.8 Var[ X]=15.8 Osservazioe: La costate di proporzioalità fra le vv. cc. a compare al quadrato el legame fra le variaze. Questo fatto è facilmete iterpretabile ricodado come la variaza esprima la media del quadrato degli scarti. Osservazioe: La somma di ua quatità ota ad ua v.c. iflueza il valore atteso ma o la variaza (e quidi la variabilità). 1

4 Variaza Var[.]: proprietà - II La variaza della somma o delle differeza di vv. cc. idipedeti è data dalla somma delle variaze delle due vv. cc. Z= X Y Var[Z]=Var[X] Var[Y] Z= X Y Var[Z]=Var[X] Var[Y] Osservazioe: la variaza della somma algebrica di due vv. cc. è destiata a crescere rispetto a quelle origiali idipedetemete dal fatto che si le vv. cc. siao sommate o sottratte. 13 Teorema di Bieaymé - Čebičev Si dimostra che: data ua v.c. X co E[X] = µ e Var[X] = σ, La probabilità che X assuma valori che si discostao dal suo valore atteso più ε o supera la variaza divisa per il quadrato di ε. P X Cosiderado l'eveto complemetare si ha: V.c. (o prova) di Beroulli olto semplice: alcui autori la chiamao prova Beroulliaa. V. c. discreta X co due modalità x 1 = e x = 1. Le due probabilità solitamete hao omi propri p = P(X=1). q = P(X=) = 1 P(X=) = 1 P(X=1) = 1 p. P X 1 Esempio:ua v.c. X ha E[X]=1 e Var[X]=1, determiare u itervallo che abbia almeo il 6% di probabilità di coteere ua osservazioe Valore atteso: E[X] = p. Dimostrazioe: Variaza: Var[X] = pq. E[X ]= i=1 p x i x i = q 1 p= p [8.4 ; 11.58] Dimostrazioe: Var[ X]= i=1 p x i x i E[ X] Var[ X]=q p p 1 p =q p p q = pq p q = pq

5 V.c. (o prova) di Beroulli: esempi V.c. Biomiale X: lacio di ua moeta oesta. Somma di variabili di Beroulli i.i.d. Se impogo che X= se esce testa => P(X= ) =.5. Y= i=1 X i X i ~Ber p X= 1 se esce croce => P(X= 1) = modalità y 1 =, y = 1, y 3 =,, y +1 =. X ha la stessa distribuzioe di probabilità di ua v.c. Beroulliaa co p=.5, I simboli Si legge: X è distribuita come... Y: Estrazioe di u umero primo laciado u dado a 6 facce Se impogo che X~Ber.5 Y = se o esce u primo => P(Y = ) = /6. Si dimostra che: è detto coefficiete biomiale e vale Valore atteso: P Y=y k = p y k = y k p y k q y k a b a b = a! E[Y]= i=1 E[ X i ]= i=1 p=p b! a b! Ho che: Y = 1 se esce u primo => P(Y = 1) = 4/6. Y~Ber /3 17 Variaza: Var[Y]= i=1 Var[ X i ]= i=1 pq=pq 18 V.c. Biomiale: esempi - I B: # di 6 otteuti laciado di u dado oesto 1 volte. Se creo 1 variabili X 1,X,..., X 1 per cui impogo ho che X i = se l'esito del i-simo tiro sia diverso da 6 X i = 1 se l'esito del i-simo tiro sia 6 le variabili create soo idipedeti X~Ber 1/6 B= i=1 X i B: ha la stessa distribuzioe di probabilità di ua v.c. Biomiale co p=1/6 ed = 1. I simboli B~Bi 1 ;1/6 19 V.c. Biomiale: esempi - II T: # di teste otteute laciado ua moeta oesta 4 volte. T~Bi 4 ;.5 T : # di teste otteute laciado ua moeta oesta 1 volte. T ~Bi 1 ; T Bi(4,.5) T Bi(1,.5) E[T]= Var[T]=1 E[T]=5 Var[T]=.5

6 V.c. Biomiale: esempi - III T 3 : # di teste otteute laciado ua moeta disoesta 1 volte. T 3 ~Bi 1 ;.65 T 4 : # di teste otteute laciado ua moeta disoesta 1 volte. T 4 ~Bi 1 ; T 3 Bi(1,.65) T 4 Bi(1,.35) E[T 3 ]=6.5 Var[T 3 ]=.75 E[T 4 ]=3.5 Var[T 4 ]=.75 1 Ricapitolado - I Distribuzioe di probabilità di ua v.c. X: Valore atteso: Variaza: Variabili affii: p x =P X=x E[X ]= i=1 p xi x i Var[ X]= p xi i=1 x i E[ X] Y=a X b E[Y]=aE[ X] b Var[Y]=a Var[ X] K Combiazioe lieare di vv. cc. idipedeti Y= ci i=1 X i K E[Y]= ci i=1 E[ X i ] K Var[Y]= ci i=1 Var[ X i ] Teorema di Bieaymé - Čebičev Var[ X] P X E[X ] Ricapitolado - II Beroulliaa X~Ber p Biomiale X~Bi ; p p 1 = p ; p =1 p=q E[X ]= p Var[ X]= pq p k = k pk q k E[X ]=p Var[ X]=pq 3

Probabilità II. Concetto di variabile casuale. Variabile casuale: definizione. Concetto di variabile casuale. Cos'è una variabile casuale?

Probabilità II. Concetto di variabile casuale. Variabile casuale: definizione. Concetto di variabile casuale. Cos'è una variabile casuale? Cocetto di variabile casuale Defiizioi pricipali. Valore atteso e Variaza. Probabilità II Variabili casuali discrete Teorema di Bieaymé - Čebičev. V.C. Notevoli: Beroulli e Biomiale. Cos'è ua variabile

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

Probabilità II Variabili casuali discrete

Probabilità II Variabili casuali discrete Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 6

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 6 X c () 0 0 0 0 t dx e x t altrove x e x x f x t x X = =4 =8 E[X] = Var[X] = Teorema Z, Z,, Z N(0 ; ) e idipedeti X= Z + Z + +Z c () Nota Esistoo tavole dei puti percetuali delle distribuzioi chi-quadro

Dettagli

INTEGRAZIONI PER IL CORSO DI MATEMATICA E STATISTICA, SC. AMBIENTALI, 2018/19 ALESSANDRA FAGGIONATO

INTEGRAZIONI PER IL CORSO DI MATEMATICA E STATISTICA, SC. AMBIENTALI, 2018/19 ALESSANDRA FAGGIONATO INTEGRAZIONI PER IL CORSO DI MATEMATICA E STATISTICA, SC. AMBIENTALI, 208/9 ALESSANDRA FAGGIONATO I progress. Spazio campioario, esiti, eveti, spazio di probabilità Cosideriamo u esperimeto i seso ampio

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

Probabilità e Statistica (cenni)

Probabilità e Statistica (cenni) robabilità e Statistica (cei) remettiamo la distizioe tra i due cocetti: Defiizioe: dato il verificarsi di u eveto si defiisce la probabilità per l eveto cosiderato il rapporto tra il umero dei casi favorevoli

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

Inferenza Statistica. L inferenza statistica cerca di risalire al modello del fenomeno sulla base delle osservazioni.

Inferenza Statistica. L inferenza statistica cerca di risalire al modello del fenomeno sulla base delle osservazioni. Ifereza Statistica L ifereza statistica cerca di risalire al modello del feomeo sulla base delle osservazioi No coosciamo il modello del feomeo cioè la vc X A volte la coosceza può essere parziale (coosciamo

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2016/2017 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2016/2017 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea i Igegeria Iformatica Ao Accademico 26/27 Calcolo delle Probabilità e Statistica Matematica Nome... N. Matricola... Acoa, geaio 27. (8 puti) Si vuole stimare il parametro p di ua legge

Dettagli

0.1 Il teorema limite centrale

0.1 Il teorema limite centrale 0. Il teorema limite cetrale 0. Il teorema limite cetrale Teorema 0.. Teorema limite cetrale). Sia X i ) i N ua successioe di variabili aleatorie i.i.d. che ammettoo mometo secodo fiito, co media µ e co

Dettagli

UNIVERSITÀ DEGLI STUDI DI LECCE APPUNTI PER IL SEMINARIO DI ELEMENTI DI TEORIA DELLA PROBABILITÀ A.A. 2007/2008

UNIVERSITÀ DEGLI STUDI DI LECCE APPUNTI PER IL SEMINARIO DI ELEMENTI DI TEORIA DELLA PROBABILITÀ A.A. 2007/2008 UNIVERSITÀ DEGLI STUDI DI LECCE APPUNTI PER IL SEMINARIO DI ELEMENTI DI TEORIA DELLA PROBABILITÀ A.A. 007/008 Questi apputi soo stati cocepiti come u aiuto didattico per gli studeti della Facoltá di Ecoomia.

Dettagli

Una funzione delle osservazioni campionarie è una statistica che, nel contesto della stima di un parametro, viene definita stimatore.

Una funzione delle osservazioni campionarie è una statistica che, nel contesto della stima di un parametro, viene definita stimatore. Stimatori e stime Teoria della stima Supporremo che sulla popolazioe sia defiita ua variabile X la cui distribuzioe, seppure icogita, è completamete caratterizzata da u parametro q o da u isieme di parametri

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Università degli Studi di Salerno Pietro Coretto. Corso di Statistica FORMULARIO

Università degli Studi di Salerno Pietro Coretto. Corso di Statistica FORMULARIO Versioe: 16 ottobre 2017 (h17:25) Uiversità degli Studi di Salero Pietro Coretto Corso di Statistica FORMULARIO Valori osservati per statistiche di posizioe, variabilità e correlazioe Nota: per ua distribuzioe

Dettagli

Statistica Inferenziale Soluzioni 1. Stima puntuale

Statistica Inferenziale Soluzioni 1. Stima puntuale ISTITUZIONI DI STATISTICA A. A. 007/008 Marco Miozzo e Aamaria Guolo Laurea i Ecoomia del Commercio Iterazioale Laurea i Ecoomia e Ammiistrazioe delle Imprese Uiversità degli Studi di Veroa sede di Viceza

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità B - Soluzione

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità B - Soluzione Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità B - Soluzioe Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità D

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità D Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità D Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete modo: +1

Dettagli

Senza reimmissione. Le n v.a. non sono più indipendenti e identicamante distribuite. Campionamento da universo

Senza reimmissione. Le n v.a. non sono più indipendenti e identicamante distribuite. Campionamento da universo STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it Ifereza statistica Dal campioe alla popolazioe Co quale precisioe si possoo descrivere le caratteristiche di ua popolazioe sulla base

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Distribuzione normale o gaussiana

Distribuzione normale o gaussiana Distribuzioe ormale o gaussiaa Ua variabile radom si dice distribuita ormalmete (o secodo ua curva gaussiaa) se la sua fuzioe di desità di probabilità è del tipo: f () ( ) ep co - rappreseta il valore

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità C Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità C Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete modo: +1

Dettagli

Inferenza statistica. Come descrivo una generica popolazione? Che tipo di di informazioni posso ottenere?

Inferenza statistica. Come descrivo una generica popolazione? Che tipo di di informazioni posso ottenere? Iereza I Fodameti della teoria della stima Campioameto beroulliao ed i blocco Problema della stima: stima e stimatore Proprietà di uo stimatore Stima putuale e per itervallo: valore atteso e variaza Iereza

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018 Primo appello di Calcolo delle probabilità Laurea Trieale i Matematica 22/0/20 COGNOME e NOME... N. MATRICOLA... Esercizio. Siao X e Y due variabili aleatorie idipedeti, co le segueti distribuzioi: X Uif(0,

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità A - Soluzioni

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità A - Soluzioni Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità A - Soluzioi Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Itroduzioe Distribuzioi di robabilità Fio ad ora abbiamo studiato ua secifica fuzioe desità di robabilità, la fuzioe di Gauss, che descrive variabili date dalla somma di molti termii idiedeti es. ua misura

Dettagli

Lezione 4 Corso di Statistica. Domenico Cucina

Lezione 4 Corso di Statistica. Domenico Cucina Lezioe 4 Corso di Statistica Domeico Cucia Uiversità Roma Tre D. Cucia (domeico.cucia@uiroma3.it) 1 / 22 obiettivi della lezioe familiarizzare co il calcolo e le proprietà della media aritmetica familiarizzare

Dettagli

Probabilità CENNI DI PROBABILITÀ

Probabilità CENNI DI PROBABILITÀ CENNI DI PROBABILITÀ Itroduzioe I queste pagie verrao esposti i breve i cocetti base della teoria delle probabilità. Lo scopo è quello di forire le basi i modo che siao più compresibile l uso che e viee

Dettagli

Elementi di statistica

Elementi di statistica Elemeti di statistica La misura delle gradezze fisiche può essere effettuata direttamete o idirettamete. Se la misura viee effettuata direttamete si parla di misura diretta; se essa viee dedotta attraverso

Dettagli

(i) si calcoli la probabilità di non perdere soldi; P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

(i) si calcoli la probabilità di non perdere soldi; P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimaa 2 Esercizio 1. Si cosideri la seguete strategia per il gioco della roulette. Si scommette 1 sul rosso. Se esce rosso (si ricordi che la roulette è da 37 umeri, di cui 18 rossi e 18

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. CORSO DI CALCOLO DELLE PROBABILITÀ (o modulo) - PROVA d esame del 6/06/200 - Laurea Quadrieale i Matematica - (Prof. Nappo) Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo essere giustificate

Dettagli

LA MISURA IN PSICOLOGIA

LA MISURA IN PSICOLOGIA Prof. Giulio Vidotto (Uiversità di Padova) Lez. 3 - Distribuzioe ormale e stadardizzazioe delle misure Argometi della lezioe Stadardizzazioe Distribuzioe Normale Distribuzioe Normale Stadard Stadardizzazioe

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 24 maggio 26 Desità e distribuzioi cogiute e codizioate. Covergeza e approssimazioe Esercizio Uo studio dice che l ivestimeto i titoli di stato, rappresetato

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica La distribuzioe delle statistiche campioarie Matematica co elemeti di Iformatica Tiziao Vargiolu Dipartimeto di Matematica vargiolu@math.uipd.it Corso di Laurea Magistrale i Chimica e Tecologie Farmaceutiche

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Variabilità o Dispersione Definizione Attitudine di un fenomeno ad assumere diverse modalità

Variabilità o Dispersione Definizione Attitudine di un fenomeno ad assumere diverse modalità Variabilità o Dispersioe Defiizioe Attitudie di u feomeo ad assumere diverse modalità Le medie o bastao Esempio: caratteri quatitativi Codomiio A u.s. Numero televisori u 8 u 8 u3 8 u4 8 u5 8 Me=M=8 Codomiio

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli Esercitazioi del Corso di Probabilitá e Statistica Lezioe 6: Stime di parametri putuali e per itervalli Stefao Patti 1 19 geaio 005 Defiizioe 1 Ua famiglia di desitá f(, θ) ad u parametro (uidimesioale)

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. CAPITOLO OTTAVO LE VARIABILI CASUALI Sommario:. Geeralità. -. La variabile casuale biomiale. - 3. La variabile casuale di Poisso. - 4. La variabile casuale ormale. 5. La variabile casuale chi-quadrato.

Dettagli

Proprietà asintotiche stimatori OLS e statistiche collegate

Proprietà asintotiche stimatori OLS e statistiche collegate Proprietà asitotiche stimatori OLS e statistiche collegate Eduardo Rossi 2 2 Uiversità di Pavia (Italy) Maggio 2014 Rossi Proprietà asitotiche Ecoometria - 2014 1 / 30 Sommario Risultati prelimiari Distribuzioe

Dettagli

Lezione 14. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 14. A. Iodice. disuguaglianza di Markov

Lezione 14. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 14. A. Iodice. disuguaglianza di Markov Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 29 Outlie 1 2 3 4 5 6 () Statistica 2 / 29 Importati disuguagliaze Variabili casuali co distribuzioi o

Dettagli

II Esonero - Testo A

II Esonero - Testo A Dip. di Igegeria, Uiv. Roma Tre Prof. E. Scoppola, Dott.M. Quattropai Probabilità e Statistica, 2017-18, I semestre 29 Geaio 2018 II Esoero - Testo A Cogome Nome Matricola Esercizio 1. (20%) Si cosideri

Dettagli

L INFORMAZIONE E LE CODIFICHE

L INFORMAZIONE E LE CODIFICHE L INFORMAZIONE E LE CODIFICE UN PO DI STORIA - La Teoria dell iformazioe è ata ella secoda metà del 900, sebbee il termie iformazioe sia atico (dal latio mettere i forma) - I omi più importati soo Nyquist,

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

Esercitazione X Complementi di Probabilità a.a. 2011/2012

Esercitazione X Complementi di Probabilità a.a. 2011/2012 Esercitazioe X Complemeti di Probabilità a.a. 20/202 Argometi: covergeza e TLC. Esercizio. Sia {X k } k ua successioe di v.a. i.i.d. di legge Exp(. Sia G = S,. a Scrivere la fuzioe caratteristica φ di

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

STATISTICA 1 ESERCITAZIONE 5

STATISTICA 1 ESERCITAZIONE 5 STATISTICA ESERCITAZIONE 5 Dott. Giuseppe Padolfo 28 Ottobre 203 VARIABILITA IN TERMINI DI DISPERSIONE DA UN CENTRO Cetro Me o μ La dispersioe viee misurata come sitesi delle distaze tra le uità statistiche

Dettagli

8. STATISTICA INDUTTIVA

8. STATISTICA INDUTTIVA . STATISTICA INDUTTIVA.1 Regressioe lieare I molto esperimeti al ricercatore iteressa l aalisi delle variazioi di due o più variabili per evideziare le evetuali relazioi esisteti tra di loro e predire

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao Stimatori corretti stimatori efficaci e disuguagliaza di Cramer Rao Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche Defiizioe. Sia {X X 2... X } u

Dettagli

Scheda n.6: legame tra due variabili; correlazione e regressione

Scheda n.6: legame tra due variabili; correlazione e regressione Scheda.6: legame tra due variabili; correlazioe e regressioe October 26, 2008 Covariaza e coefficiete di correlazioe Date due v.a. X ed Y, chiamiamo covariaza il umero Cov (X, Y ) = E [(X E [X]) (Y E [Y

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini Lezioe 3 Stimatori, stima putuale e itervalli di cofideza Statistica L-33 prof. Pellegrii Oggi studiamo le proprietà della stima che ricaviamo da u campioe. Si chiama teoria della stima. La stima statistica

Dettagli

DISTRIBUZIONE NORMALE MULTIVARIATA

DISTRIBUZIONE NORMALE MULTIVARIATA Distribuzioe ormale uivariata DISTRIBUZIONE NORMALE MULTIVARIATA ANALISI MULTIVARIATA A.A. 00/ CORSO DI LAUREA IN STATISTICA Carla Rampichii Desità Normale μ, σ Normale stadardizzata: μ=0, σ= Distribuzioe

Dettagli

Entropia ed informazione

Entropia ed informazione Etropia ed iformazioe Primi elemeti sulla teoria della misura dell iformazioe Per trasmettere l iformazioe è ecessaria ua rete di comuicazioe, che, secodo l approccio teorico di Claude E. Shao e Warre

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Ricerca Operativa 2 modulo

Ricerca Operativa 2 modulo Ricerca Operativa modulo A.A. 008/009. Statistica descrittiva e calcolo delle probabilità pillole Pillole di statistica descrittiva Statistica: isieme di metodi scietiici applicati alla raccolta, classiicazioe,

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2009/10

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2009/10 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 9/1 Prova scritta del 13/1/1 Esercizio 1 Ua Ditta commerciale guadaga ogi ao ua somma X, ove si puo assumere che X N(µ, σ ). Ogi ao la Ditta paga ua tassa fissa

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A =.........

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 Statistica Matematica: Cocetti Fodametali Nell esperieza quotidiaa e ella pratica della professioe dell igegere occorre: predere decisioi e ciò ormalmete richiede la dispoibilità di specifiche iformazioi

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezione del 10/12/2002

Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezione del 10/12/2002 Esercitazioi di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dii Lezioe del 10/12/2002 1 Applicazioi del TCL 1.1 Ua ditta di trasporti iterazioali possiede 100 tir dello

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

Metodi di valutazione delle prestazioni di rete

Metodi di valutazione delle prestazioni di rete Metodi di valutazioe delle prestazioi di rete Prof. Ig. Carla Raffaelli Cofroto di diversi approcci Parametri di cofroto: precisioe requisiti di poteza di calcolo requisiti di memoria facilita' di approccio

Dettagli

1 Famiglia delle densità gamma

1 Famiglia delle densità gamma olitecico di Milao, Statistica INF, TEL [A-LZ], Epifai I., AA 7/8 Famiglia delle desità gamma Le espressioi delle desità espoeziale di parametro θ e χ date da (E(β)) (χ ) /θe x/β (, ) (x), β > (/) / x

Dettagli

Distribuzione normale

Distribuzione normale Distribuzioe ormale Tra le distribuzioi di frequeze, la distribuzioe ormale riveste u importaza cetrale. Essa ha ua forma a campaa ed è simmetrica rispetto all asse verticale che passa per il vertice (moda).

Dettagli

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni.

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni. Lezioe del 26 settembre. 1. Successioi. Defiizioe 1 Ua successioe di umeri reali e ua legge che associa a ogi umero aturale = 0, 1, 2,... u umero reale - i breve: e ua fuzioe N R; si scrive ella forma

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Doatella Siepi doatella.siepi@uipg.it tel: 075 5853525 05 dicembre 2014 6 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazioe dei

Dettagli

1 Sulla dimostrazione del TLC

1 Sulla dimostrazione del TLC 1 Sulla dimostrazioe del TLC Lo scopo della seguete variate di dimostrazioe è quello di evitare l uso del logaritmo i campo complesso, o diffi cile ma comuque u po isidioso. Nella dimostrazioe del TLC

Dettagli

1 Esercizi tutorato 27/5

1 Esercizi tutorato 27/5 Esercizi tutorato 7/5 Esercizi tutorato 7/5 Esercizio.. Si cosideri u compoete elettroico costituito da compoeti collegate i serie. Ogi compoete ha u tempo di vita T i Expλ), i =,..., idipedete. Sia X

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

1 Variabili aleatorie in casi più generali: indipendenza, LGN e TCL.

1 Variabili aleatorie in casi più generali: indipendenza, LGN e TCL. versioe 28-05-2004 0 Variabili aleatorie i casi più geerali: idipedeza, LGN e TCL.. Variabili aleatorie idipedeti Molte delle defiizioi e delle proprietà delle variabili aleatorie i spazi fiiti valgoo

Dettagli

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica 6/0/0 Corso di Statistica per l impresa Prof. A. D Agostio Ifereza statistica Per fare ifereza statistica si utilizzao le iformazioi raccolte su u campioe per cooscere parametri icogiti della popolazioe

Dettagli

Legge dei grandi numeri e Teorema Centrale Limite

Legge dei grandi numeri e Teorema Centrale Limite Legge dei gradi umeri e Teorema Cetrale Limite 5 maggio 017 Discutiamo due teoremi fodametali per raccordare probabilitá e statistica: la legge dei gradi umeri e il Teorema Cetrale Limite (TCL, ache detto

Dettagli

Elementi. di Calcolo Combinatorio. Paola Giacconi

Elementi. di Calcolo Combinatorio. Paola Giacconi Elemeti di Calcolo Combiatorio di Paola Giaccoi Premessa Co la Meccaica Quatistica Il cocetto di probabilità è etrato a fare parte itegrate della FISICA e quidi della ostra vita La visioe determiistica

Dettagli

1 Sulla dimostrazione del Teorema di Carathéodory

1 Sulla dimostrazione del Teorema di Carathéodory Sulla dimostrazioe del Teorema di Carathéodory Ricordiamo che la dimostrazioe del Teorema di Carathéodory procede secodo diversi passi, riassuti dal seguete diagramma: (A, P ) (B, P ) (P (Ω), P ) (C, P

Dettagli

Fonti e strumenti statistici per la comunicazione

Fonti e strumenti statistici per la comunicazione Foti e strumeti statistici per la comuicazioe Prof.ssa Isabella Migo A.A. 018-019 Idici Medi Esercizio:calcolo media soluzioe Numeri addetti xi i xi * i 10 18 180 1 15 180 14 5 350 16 10 160 18 9 5 0 18

Dettagli

Calcolo delle Probabilità Distribuzioni di probabilità

Calcolo delle Probabilità Distribuzioni di probabilità Calcolo delle Probabilità Distribuzioi di probabilità Istituzioi di Matematiche Scieze Naturali Sergio Cosole Tora alla prima pagia Distribuzioi di probabilità Facciamo u istogramma le cui barre rappresetao

Dettagli

Inferenza II. Inferenza: tipologie di approcci. Test di ipotesi: ipotesi alternativa. Test di ipotesi: ipotesi nulla.

Inferenza II. Inferenza: tipologie di approcci. Test di ipotesi: ipotesi alternativa. Test di ipotesi: ipotesi nulla. Ifereza: tipologie di approcci Defiizioi Costruzioe di u test Test sul valore atteso Ifereza II Test di ipotesi Test di adereza alla distribuzioe Test di idipedeza Teoria della stima: Cerco di otteere

Dettagli

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici.

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici. Calcolo combiatorio. Disposizioi - Permutazioi - Combiazioi Coefficieti biomiali - Biomio di Newto Disposizioi semplici. Disposizioi semplici di oggetti di classe soo tutti gli allieameti che è possibile

Dettagli

Campionamento e Statistiche Campionarie. Inferenza. Pietro Coretto Università degli Studi di Salerno

Campionamento e Statistiche Campionarie. Inferenza. Pietro Coretto Università degli Studi di Salerno Campioameto e Statistiche Campioarie Pietro Coretto pcoretto@uisa.it Uiversità degli Studi di Salero Corso di Statistica (0212700010) CDL i Ecoomia e Maagemet Curriculum i Maagemet e Iformatica a.a. 2018/2019

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

Inferenza II. Inferenza: tipologie di approcci. Test di ipotesi: ipotesi alternativa. Test di ipotesi: ipotesi nulla.

Inferenza II. Inferenza: tipologie di approcci. Test di ipotesi: ipotesi alternativa. Test di ipotesi: ipotesi nulla. Defiizioi Costruzioe di u test Test sul valore atteso Ifereza II Test di ipotesi Test di adereza alla distribuzioe Test di idipedeza 1 Ifereza: tipologie di approcci Teoria della stima: Cerco di otteere

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Stime puntuali. Statistica e biometria. D. Bertacchi. Stime puntuali. Intervalli di confidenza. Approfondiamo

Stime puntuali. Statistica e biometria. D. Bertacchi. Stime puntuali. Intervalli di confidenza. Approfondiamo Abbiamo visto che, data ua v.a. X di cui o si cooscao valore atteso e variaza, tali umeri si possoo stimare putualmete el seguete modo: si prede u casuale X 1,...,X di v.a. aveti la stessa legge di X;

Dettagli