Prova Scritta di Robotica I

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prova Scritta di Robotica I"

Transcript

1 Prova Scritta di Robotica I Febbraio Si consideri un anipolatore R planare con lunghezze dei bracci l.6, l.5 [. Gli angoli di giunto θ, θ sono deiti secondo la convenzione di DH. I giunti hanno corsa illiitata. La base del anipolatore è posta nell origine della terna x, y assegnata.!"#$%#%! /, -!&$%#%!"&'#$%#%!&'.$%#%!&'.$%&'*%!#$%#%!"#$%&'#%!"&'#$%&'#%! +, -!"&'.$%&%!#$%&%!&'*$%&% Figura : Spazio di lavoro per il copito assegnato Con riferiento alla Fig., pianificare un caino paraetrico continuo che trasferisca l organo terinale del anipolatore tra i punti cartesiani.3 p in p [, e tale che siano soddisfatte le seguenti condizioni: il caino sia costituito da funzioni polinoiali del più basso grado possibile; la tangente al caino sia continua rispetto al paraetro; il anipolatore eviti collisioni con i due ostacoli ostrati in arancione. Fornire una soluzione e verificare graficaente l assenza di collisioni ad es., usando Matlab. Nel caso la soluzione proposta incontri una singolarità cineatica, indicare coe viene gestita tale situazione. Illustrare ine coe deve essere assegnata una legge oraria in odo che la traiettoria risultante abbia un coportaento soddisfacente. [5 inuti; libri aperti

2 Soluzione Febbraio Lo spazio di lavoro del anipolatore è una corona circolare con raggio interno pari a l l. e raggio esterno pari a l + l.. I due punti cartesiani assegnati sono quindi entrabi raggiungibili. Usando la funzione cineatica inversa del robot R si ottengono le due soluzioni θ left in θ right in [rad per il punto cartesiano iniziale p in, e le due soluzioni θ left.966 θ right [rad per il punto cartesiano ale p. Per evitare la collisione in questi due punti, occorre scegliere rispettivaente θ left in e θ right. Dato che queste soluzioni inverse sono di tipo differente, ne segue che il anipolatore dovrà attraversare una singolarità braccio steso o ripiegato nel suo oto. Pertanto il odo più seplice per risolvere il problea è quello di deire un caino nello spazio dei giunti, eventualente utilizzando una o più configurazione interedia. Il caino potrà attraversare configurazioni singolari senza creare problei di controllo in fase di esecuzione non è necessario invertire lo Jacobiano. Ovviaente, il problea di evitare le collisioni riane. Un approccio diretto, che prevede l interpolazione della configurazione iniziale e ale con un singolo caino lineare polinoio di grado più basso possibile, non è però aissibile. Si introduca il paraetro s [, per descrivere il caino θ qs q s q s T. Il caino lineare interpolante qs è qs θ right θ left in s + θ left in, s [,. Il anipolatore si troverà nella singolarità a braccio steso per s s tale che θ q s. Ciò avviene per s.75 θ q s.359 [rad. E facile vedere che si ha collisione con l ostacolo sulla destra, ad esepio con il anipolatore posto in θ.359 T. Una confera grafica si ha da un seplice prograa Matlab che ipleenta la generazione del caino e la cineatica diretta del robot, e traccia i risultati coe in Fig. con configurazione iniziale verde e ale rosso e caino dell organo terinale Figura : Moto stroboscopico del robot su un caino lineare nei giunti, con conseguente collisione

3 Per evitare tale situazione, si può pensare di sostituire nella la seconda coponente di θ right con il suo valore odulo π, ossia θ right π.8.4 [rad. Il caino lineare del secondo giunto passerà ora necessariaente per il valore θ π, ovvero nella singolarità a braccio ripiegato. Purtroppo questo non basta ad evitare collisioni si veda la Fig. 3. Per esepio, l organo terinale sarà in collisione per s.75, quando il anipolatore si trova nella configurazione θ T ossia, θ and θ Figura 3: Moto stroboscopico del robot su un altro caino lineare nei giunti, ancora con collisione A seguito di questa analisi, risulta necessario introdurre in fase di pianificazione una configurazione interedia, associata ad esepio a s.5. E conveniente scegliere tale configurazione coe quella singolare a braccio ripiegato in corrispondenza al punto cartesiano dove inizia il canale tra i due ostacoli, ossia θ id π [rad p id. La scelta di un valore negativo θ id, π anziché π segue la stessa logica precedente: data la continuità del oto, il secondo braccio ruoterà sepre in senso orario, raggiungendo la singolarità desiderata nel punto p id e riaprendosi nel odo utile ad evitare l ostacolo posto sulla destra. Le condizioni al contorno per il caino interpolante nello spazio dei giunti sono allora q θ left in , q θ id π [., q θ right.8.4, alle quali va aggiunta la condizione di continuità della tangente al caino nel punto interedio, ossia dqs dqs. 3 ds ds s s + Possiao quindi scegliere per ciascun giunto una funzione quadratica ed una lineare di s o viceversa sui due tratti del caino, avendo così a disposizione cinque coefficienti in totale per soddisfare le cinque condizioni al contorno. Tale caino polinoiale di grado isto qs è deito coe as + bs + c, per s [, qs ds + e, per s [,, 3

4 dove a,..., e sono vettori bi-diensionali di coefficienti. Iponendo le condizioni 3, e eliinando gli apici left e right per copattezza, si ottiene: 4θ 8θ id + 4θ in s + 6θ id 4θ in θ s + θ in, for s [, qs 4 θ θ id s + θ id θ, for s [,. Il caino di giunto così pianificato e la relativa tangente sono ostrati rispettivaente nelle Fig. 4 e 5, entre il oto risultante per il anipolatore è riportato in Fig. 6. Coe si può vedere, non avvengono collisioni. joint path positions rad paraeter s Figura 4: Caino quadratico/lineare nello spazio dei giunti: q s continuo, blu, q s tratteggiato, verde 8 joint path tangents 6 4 rad/length paraeter s Figura 5: Tangente al caino: dq s/ds continuo, blu, dq s/ds tratteggiato, verde Figura 6: Moto stroboscopico del robot sul caino quadratico/lineare nei giunti Per trasforare tale caino in una traiettoria occorre associare una legge oraria s st con t [, T. La scelta è qui arbitraria oto bang-bang in accelerazione, profilo di velocità 4

5 trapezoidale, polinoio cubico nel tepo,... e dipenderà dalle specifiche aggiuntive sul copito e dai liiti di prestazione del robot. Occorre però scegliere un unica legge oraria per entrabi i giunti. In caso contrario, il oto dei giunti non è coordinato nel tepo e il caino cartesiano effettivaente eseguito dal robot non sarà quello pianificato, con possibile rischio di collisione. Considerazioni aggiuntive. Viene presentato qui di seguito del ateriale suppleentare alla soluzione richiesta, fornendo una soluzione alternativa al problea di pianificazione nella quale si usano due tratti di funzioni quadratiche in s, per un totale di sei coefficienti per ciascun giunto. Tale grado di libertà aggiuntivo può perettere un aggiore controllo sulla fora del caino soluzione. Occorre una condizione aggiuntiva per quadrare il problea di interpolazione, che si ottiene iponendo un valore θ id alla tangente al caino nel punto interedio: dqs ds s Si possono ovviaente fare diverse scelte per tale valore vettoriale. quadratico qs è deito coe as + bs + c, per s [, qs ds + es + f, per s [,, θ id. 5 Il caino totalente dove a,..., f sono vettori bi-diensionali. Iponendo le condizioni al contorno 5, si ha: 4θin θ id + θ id s + 4θ id θ in θ id s + θin, per s [, qs 4θ θ id θ id s + 4θ id θ + 3θ id s + θ θ id, per s [,. 6 La derivata pria rispetto a s la tangente al caino nello spazio dei giunti è: dqs 8θin θ id + 4θ id s + 4θid θ in θ id, for s [, ds 8θ θ id 4θ id s + 4θid θ + 3θ id, for s [,. Una pria scelta possibile per il vettore θ id si ha iponendo coe tangente al caino cartesiano nel punto p id un vettore nella direzione di y e a nora unitaria, ossia dps dp dq Jθ id θ id, 7 ds dθ ds s θθid s dove p kinθ è la cineatica diretta del anipolatore. Questa scelta è certaente aissibile, nonostante il anipolatore si trovi nella singolarità a braccio steso. Infatti lo Jacobiano del robot l sin θ Jθ l sinθ + θ l sinθ + θ l cos θ + l cosθ + θ l cosθ + θ assue il valore Jθ id l l l..5 RJθ id. La soluzione θ id a nora inia si ottiene ediante pseudoinversione della 7 o, in odo equivalente, usando la pseudoinversa della sola seconda riga/equazione: θ id J # θ id..5 #

6 Il caino di giunto risultante, la sua tangente e la sua curvatura sono ostrati nelle Fig Si noti che la curvatura ha una discontinuità nel punto interedio. Il oto del anipolatore è illustrato in Fig. 9. Anche in questo caso non si hanno collisioni. joint path positions rad paraeter s Figura 7: Caino quadratico nei giunti: q s continuo, blu, q s tratteggiato, verde joint path tangents joint path curvatures rad/length rad/length paraeter s paraeter s Figura 8: [Sin Tangente al caino: dq s/ds continuo, blu, dq s/ds tratteggiato, verde. [Dex Curvatura: d q s/ds continuo, blu, d q s/ds tratteggiato, verde Figura 9: Moto stroboscopico del robot sul caino quadratico nei giunti Si riportano anche i risultati per altre possibili scelte di θ id. Si può ad esepio risolvere il problea iponendo anche la continuità della curvatura del caino nei giunti in corrispondenza del punto interedio. La derivata seconda rispetto a s della funzione interpolante 6 è d qs 8θ in θ id + 4θ id, per s [, ds 8θ θ id 4θ id per s [,, 6

7 ossia costante a tratti. Uguagliando i valori in s.5, si ottiene: θ id θ θ in..87 Il caino di giunto risultante, la sua tangente e la sua curvatura sono ostrate nelle Fig., dove si ha ora curvatura continua costante. Tuttavia, il oto del robot non è aissibile a causa della collisione con l ostacolo di sinistra che avviene poco pria del punto ale Fig.. Questa è una conseguenza della richiesta continuità aleno per la classe di funzioni interpolanti scelta. joint path positions rad paraeter s Figura : Caino quadratico nei giunti con curvatura continua: q s continuo, blu, q s tratteggiato, verde 6 joint path tangents 3.5 joint path curvatures 4.5 rad/length rad/length paraeter s paraeter s Figura : [Sin Tangente al caino: dq s/ds continuo, blu, dq s/ds tratteggiato, verde. [Dex Curvatura: d q s/ds continuo, blu, d q s/ds tratteggiato, verde Figura : Moto stroboscopico del robot sul caino quadratico nei giunti con curvatura continua, con conseguente collisione 7

8 Tale problea insorge a causa dell elevato slancio iposto al robot nel passaggio per il punto interedio. Il fatto che la scelta di θ id risulti olto critica per la classe scelta di funzioni interpolanti si può essere illustrare in odo piuttosto draatico ponendo per esepio θ id.,.6.5 ossia un valore cento volte più grande della soluzione a nora inia data dalla 8. Il oto del robot è forteente oscillatorio in questo caso, coe ostrato in Fig. 3. Viceversa, la soluzione ottenuta per θ id è olto siile a quella della Fig Figura 3: Moto stroboscopico del robot su un caino quadratico nei giunti, con elevato θ id 8

Prova Scritta di Robotica I

Prova Scritta di Robotica I Prova Scritta di Robotica I 0 Luglio 2009 Esercizio Si consideri il robot planare RP in figura, dove l è la lunghezza del primo braccio e sono indicate le coordinate generalizzate da utilizzare. Sia p

Dettagli

Prova Scritta di Robotica I

Prova Scritta di Robotica I Prova Scritta di Robotica I 11 Settembre 2008 Esercizio Si consideri il manipolatore mobile in figura, costituito da una base mobile su ruote car-like con a bordo un manipolatore 2R planare. Siano: (x,

Dettagli

Prova Scritta di Robotica I 9 Febbraio 2009

Prova Scritta di Robotica I 9 Febbraio 2009 Esercizio Prova Scritta di Robotica I 9 Febbraio 9 Si consideri l estensione al secondo ordine in accelerazione dello schema di controllo cinematico di traiettoria cartesiana. A tale scopo, si assuma che

Dettagli

Table of contents Introduction. Controllo dei Robot. Pianificazione di traiettorie

Table of contents Introduction. Controllo dei Robot. Pianificazione di traiettorie Table of contents Introduction Controllo dei Robot Dipartimento di Ing. Elettrica e dell Informazione (DEI) Politecnico di Bari e-mail: paolo.lino [at] poliba.it Controllo dei Robot L obiettivo della pianificazione

Dettagli

Esercizi svolti di Statica e Dinamica

Esercizi svolti di Statica e Dinamica Esercizi svolti di Statica e Dinaica 1. La assa è sospesa coe in figura. Nota la costante elastica k della olla, deterinarne l allungaento in condizioni di equilibrio. 1.6 Kg ; θ 30 ; k 10 N -1 θ Il diagraa

Dettagli

Prova Scritta di Robotica I

Prova Scritta di Robotica I Esercizio 1 Prova Scritta di Robotica I 8 Gennaio 4 Il robot planare in figura è costituito da due giunti rotatori ed uno prismatico. L P Assegnare le terne di riferimento secondo la convenzione di Denavit-Hartenberg,

Dettagli

Esercitazione 09: Forze d inerzia e oscillatore armonico

Esercitazione 09: Forze d inerzia e oscillatore armonico Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo II Prof. Leonardo BERTINI Ing. Ciro SANTUS Esercitazione 09: Forze d inerzia e oscillatore aronico Indice 1 Moto relativo

Dettagli

Prova Scritta di Robotica I

Prova Scritta di Robotica I Prova Scritta di Robotica I 5 Marzo 004 Esercizio 1 Si consideri un robot mobile a due ruote ad orientamento fisso (ed una passiva riorientabile e non centrata di appoggio) comandate indipendentemente

Dettagli

Robotica I. Test 2 18 Dicembre 2009

Robotica I. Test 2 18 Dicembre 2009 Robotica I Test 8 Dicembre 9 Si consideri il robot con quattro giunti rotatori in Figura. Le terne di Denavit-Hartenberg sono già assegnate, con la terna posta all intersezione tra primo e secondo asse

Dettagli

1 Simulazione di prova d Esame di Stato

1 Simulazione di prova d Esame di Stato Siulazione di prova d Esae di Stato Problea Risolvi uno dei due problei e 5 dei 0 quesiti in cui si articola il questionario Sia y = f) una funzione reale di variabile reale tale che la sua derivata seconda

Dettagli

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2)

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2) Esercizio tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa 0.5 Kg è agganciato ad un supporto fisso traite una olla di costante elastica 2 N/; il corpo è in quiete nel punto O di un piano orizzontale,

Dettagli

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo;

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo; 1 Esercizio (tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa = 1.5 Kg è agganciato ad una olla di costante elastica k = 2 N/, di lunghezza a riposo = 50 c, fissata ad una parete verticale in x

Dettagli

Cinematica differenziale inversa Statica

Cinematica differenziale inversa Statica Corso di Robotica 1 Cinematica differenziale inversa Statica Prof. Alessandro De Luca Robotica 1 1 Inversione della cinematica differenziale trovare le velocità di giunto che realizzano una velocità generalizzata

Dettagli

PIANIFICAZIONE DI TRAIETTORIE

PIANIFICAZIONE DI TRAIETTORIE PIANIFICAZIONE DI TRAIETTORIE generazione degli ingressi di riferimento per il sistema di controllo del moto Percorso e traiettoria Traiettorie nello spazio dei giunti Traiettorie nello spazio operativo

Dettagli

Prova Scritta di Robotica I. 12 Gennaio 2005

Prova Scritta di Robotica I. 12 Gennaio 2005 Esercizio 1 Prova Scritta di Robotica I 12 Gennaio 2005 Si consideri il robot (un manipolatore su base mobile) in figura, in moto sul piano (x, y) La base mobile è dotata di due ruote fisse poste a distanza

Dettagli

Forze Centrali e Problema dei Due Corpi

Forze Centrali e Problema dei Due Corpi Forze Centrali e Problea dei Due Corpi In questo capitolo studiao il oto di un punto ateriale sottoposto ad una forza centrale. Uno dei risultati più iportanti che verrà presentato è la derivazione delle

Dettagli

Prova Scritta di Robotica I

Prova Scritta di Robotica I Prova Scritta di Robotica I 3 Dicembre 27 Esercizio Si consideri il robot a due giunti rotatori schematizzato in figura. Utilizzando la notazione di Denavit-Hartenberg, si fornisca l espressione della

Dettagli

Prova Scritta di di Meccanica Analitica. 3 luglio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = k 2 x2 + l2 2x 2 x > 0

Prova Scritta di di Meccanica Analitica. 3 luglio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = k 2 x2 + l2 2x 2 x > 0 Prova Scritta di di Meccanica Analitica 3 luglio 015 Problea 1 Un punto di assa unitaria si uove soggetto al potenziale V (x) = k x + l x x > 0 a) disegnare lo spazio delle fasi e calcolare la frequenza

Dettagli

Prova Scritta di Robotica II. 5 Aprile 2005

Prova Scritta di Robotica II. 5 Aprile 2005 Esercizio Prova Scritta di Robotica II 5 Aprile 005 Per il robot a due gradi di libertà RP in figura, in moto su un piano verticale (x, y), sono indicate le coordinate generalizzate q e q, le masse m ed

Dettagli

Prova Scritta di Robotica I

Prova Scritta di Robotica I Prova Scritta di Robotica I 7 Gennaio 8 Esercizio Si consideri il robot planare a tre giunti rotatori nella configurazione mostrata in figura Le lunghezze dei bracci sono l 5, l, l 3 5 [m] Si determini

Dettagli

PROBLEMA 1 Nel piano cartesiano Oxy è data la circonferenza C con centro O e raggio r = 3.

PROBLEMA 1 Nel piano cartesiano Oxy è data la circonferenza C con centro O e raggio r = 3. Sessione ordinaria all estero (AMERICHE) 8 - ESAMI DI STATO DI LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO AMERICHE CORSO DI ORDINAMENTO Indirizzo: SCIENTIFICO Tea di: MATEMATICA Il candidato risolva

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezioni 2/3 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezioni 2/3 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Inoratica TUTORATO DI FISICA Esercizio n Lezioni /3 - Meccanica del punto ateriale Due blocchi di assa 3Kg e 5Kg sono uniti da una une inestensibile

Dettagli

Prova Scritta di Robotica II

Prova Scritta di Robotica II Prova Scritta di Robotica II 10 Giugno 009 Esercizio 1 Ricavare l espressione della matrice d inerzia Bq per il robot planare PRP mostrato in figura. Per i = 1,, 3, siano: m i = massa del braccio i; I

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

Automazione I. 16 Gennaio 2015

Automazione I. 16 Gennaio 2015 Autoazione I 6 Gennaio 5 Esercizio Si consideri un sistea di autoazione industriale in cui, a livello di coordinaento, è necessario portare a terine i seguenti task periodici:. ogni t.u., una laiera viene

Dettagli

Compito di febbraio 2004

Compito di febbraio 2004 Copito di febbraio 004 Una laina oogenea di assa, avente la fora di un disco di raggio da cui è stato asportato il triangolo equilatero inscritto ABC, rotola senza strisciare lungo l asse delle ascisse

Dettagli

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2) 1 Esercizio (tratto dal Problea 4.7 del Mazzoldi 2) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica = 70 N/, che si trova alla lunghezza

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) 1 Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accadeico 2008-2009 Esercizio n.1: Un punto ateriale di assa è inizialente fero su di un piano orizzontale scabro. Siano µ s e µ d i coefficienti di attrito

Dettagli

Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018

Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018 Noe Cognoe Nuero di atricola Coordinata posizione Quarto copito di isica Generale + Esercitazioni, a.a. 207-208 3 Settebre 208 ===================================================================== Preesse

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 07-08 7 VARIAZIOE DELLA VELOCITA accelerazione Principio d inerzia Un corpo perane nel suo stato di oto rettilineo unifore (o di quiete) a eno che non intervenga una forza esterna (I Legge di

Dettagli

Fisica 1, a.a : Oscillatore armonico

Fisica 1, a.a : Oscillatore armonico Fisica 1, a.a. 2014-2015: Oscillatore aronico Anna M. Nobili 1 Oscillatore aronico in una diensione senza dissipazione e in assenza di forze esterne Ad una olla di assa trascurabile, costante elastica

Dettagli

Pianificazione di traiettorie

Pianificazione di traiettorie Corso di Robotica 1 Pianificazione di traiettorie Prof. Alessandro De Luca Robotica 1 1 Pianificazione delle traiettorie ORGANI DI GOVERNO NEL ROBOT sensori esterni ambiente task planner* trajectory planner*

Dettagli

generazione degli ingressi di riferimento per il sistema di controllo del moto

generazione degli ingressi di riferimento per il sistema di controllo del moto PIANIFICAZIONE DI TRAIETTORIE generazione degli ingressi di riferimento per il sistema di controllo del moto Percorso e traiettoria Traiettorie nello spazio dei giunti Traiettorie nello spazio operativo

Dettagli

Moto di caduta di un corpo. Un corpo K, supposto puntiforme e di massa m, cade verso il suolo da un altezza h. Studiamone il moto.

Moto di caduta di un corpo. Un corpo K, supposto puntiforme e di massa m, cade verso il suolo da un altezza h. Studiamone il moto. Moto di caduta di un corpo 1. Preessa Un corpo K, supposto puntifore e di assa, cade verso il suolo da un altezza h. Studiaone il oto. Si tratta allora di deterinare: tutte le forze agenti sul corpo; la

Dettagli

CINEMATICA DEL PUNTO MATERIALE

CINEMATICA DEL PUNTO MATERIALE CINEMATICA DEL PUNTO MATERIALE Regole di derivazione per il prodotto scalare e per il prodotto vettore Sia v funzione di un parametro reale t, t.c. 5 v : R R 3 t 7 v (t). (1) Proprietà: 1. Limite. Il concetto

Dettagli

Di seguito, per semplicità, mostreremo esempi in cui il termine di destra della (*) f è costante nel tempo. %%%%%%%

Di seguito, per semplicità, mostreremo esempi in cui il termine di destra della (*) f è costante nel tempo. %%%%%%% Note su uso delle equazioni differenziali in eccanica Spesso la risoluzione delle equazioni del oto si ottiene attraverso la risoluzione di equazioni differenziali lineari a coefficienti costanti. L uso

Dettagli

Robotica I. Test 11 Novembre 2009

Robotica I. Test 11 Novembre 2009 Esercizio 1 Robotica I Test 11 Novembre 009 Si consideri una rappresentazione minimale dell orientamento data dalla seguente sequenza di angoli definiti rispetto a assi fissi: α intorno a Y ; β intorno

Dettagli

Esercizi di Fisica Generale Foglio 3. Forze

Esercizi di Fisica Generale Foglio 3. Forze 31.01.11 Esercizi di Fisica Generale Foglio 3. Forze 1. Un corpo di assa viene sospeso da una olla con costante elastica k, coe in figura (i). La olla si allunga di 0.1. Se ora due corpi identici di assa

Dettagli

Liceo Scientifico Cassini Esercizi di fisica, classe 1I, foglio19, soluzioni

Liceo Scientifico Cassini Esercizi di fisica, classe 1I, foglio19, soluzioni Liceo Scientifico Cassini Esercizi di fisica, classe I, foglio9, soluzioni Problea Su un corpo di assa M=0kg agiscono 3 forze di uguale intensità =0N e dirette coe in figura. Calcola l accelerazione Problea

Dettagli

Prova Scritta di Robotica II. 25 Marzo 2004

Prova Scritta di Robotica II. 25 Marzo 2004 Prova Scritta di Robotica II 5 Marzo 004 Si consideri il robot planare RP in figura in moto in un piano verticale Siano: m 1 e m le masse dei due bracci; d 1 la distanza del baricentro del primo braccio

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 04/02/2019

Soluzione degli esercizi dello scritto di Meccanica del 04/02/2019 Soluzione degli esercizi dello scritto di eccanica del 04/02/209 Esercizio Un supporto orizzontale fisso e privo di attrito è costituito da due parti separate da un gradino (vedi figura). Una lastra di

Dettagli

Strumenti matematici. La forza intermolecolare. Introduzione al problema fisico Base di uno spazio vettoriale Serie di Fourier

Strumenti matematici. La forza intermolecolare. Introduzione al problema fisico Base di uno spazio vettoriale Serie di Fourier Struenti ateatici Struenti ateatici Introduzione al problea fisico Base di uno spazio vettoriale Serie di Fourier Serie di Taylor Nueri coplessi Stru. at. Stru. at. Forza di attrazione Forza di repulsione

Dettagli

POLITECNICO DI TORINO 1 a Facoltà di Ingegneria A.A. 2011/2012. Progetto di Infrastrutture Viarie. Corso di Laurea Magistrale in Ingegneria Civile

POLITECNICO DI TORINO 1 a Facoltà di Ingegneria A.A. 2011/2012. Progetto di Infrastrutture Viarie. Corso di Laurea Magistrale in Ingegneria Civile POLITECNICO DI TOINO a Facoltà di Ingegneria A.A. 0/0 Corso di Laurea Magistrale in Ingegneria Civile Progetto di Infrastrutture Viarie prof. Marco Bassani ing. oberto Melotti Esercizio : Progetto di una

Dettagli

II )INTEGRALE DI VAG. In modo più rigoroso possiamo calcolare l integrale delle uguaglianze parametriche

II )INTEGRALE DI VAG. In modo più rigoroso possiamo calcolare l integrale delle uguaglianze parametriche VII. ARA LLISS Area e Perietro llisse Cap. VII Pag. ARA DL STTOR DLL'LLISS I )Sia π S ( ) y d l area OCAA. La funzione S() deve essere tale ds( ) che y e poiché d è S ( ) y + area settore OAA' e l arco

Dettagli

Prova Scritta di Fondamenti di Automatica del 21 Giugno 2006 A

Prova Scritta di Fondamenti di Automatica del 21 Giugno 2006 A Prova Scritta di Fondaenti di Autoatica del Giugno 6 A Studente: Matricola: I F G( Motore Carico ) Per il sistea gru scheatizzato in figura, si assua che il otore sia descritto da una fdt F( G () s I(

Dettagli

Meccanica Applicata alle Macchine Compito 23/12/02 I modulo: punti 1 e 2 - I eii modulo: punti 1 e 3.

Meccanica Applicata alle Macchine Compito 23/12/02 I modulo: punti 1 e 2 - I eii modulo: punti 1 e 3. Meccanica Applicata alle Macchine Copito //0 I odulo: punti e - I eii odulo: punti e.. La figura rappresenta un cancello con eccaniso di apertura visto in pianta. La diensione della griglia è di, la distanza

Dettagli

I moti. Daniel Gessuti

I moti. Daniel Gessuti I oti Daniel Gessuti 1 introduzione Uno dei problei che ha interessato gli scienziati fin dall antichità e che costituisce un notevole capo d indagine della Fisica è senza dubbio quello che riguarda il

Dettagli

Esercizio: pendolo sferico. Soluzione

Esercizio: pendolo sferico. Soluzione Esercizio: pendolo sferico Si consideri un punto materiale di massa m vincolato a muoversi senza attrito sulla superficie di una sfera di raggio R e soggetto alla forza di gravita. Ridurre il moto alle

Dettagli

Meccanica Razionale 1: Primo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 somma

Meccanica Razionale 1: Primo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 somma Meccanica Razionale 1: Primo parziale 15.04.010 Cognome e nome:....................................matricola:......... es.1 es. es.3 somma 9 1 9 30 1. Consideriamo il seguente moto di un punto P : x =

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Prova Scritta di Fondamenti di Automatica del 21 Giugno 2006 B

Prova Scritta di Fondamenti di Automatica del 21 Giugno 2006 B Prova Scritta di Fondaenti di Autoatica del Giugno 6 Studente: Matricola: I F G( Motore Carico ) Per il sistea gru scheatizzato in figura, si assua che il otore sia descritto da una fdt G () s I( (.s +.8s

Dettagli

PIANIFICAZIONE DELLE TRAIETTORIE

PIANIFICAZIONE DELLE TRAIETTORIE PIANIFICAZIONE DELLE TRAIETTORIE Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona 1 11 Introduzione L obiettivo della pianificazione di traiettorie è quello di generare gli ingressi

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I

Facoltà di Ingegneria Prova scritta di Fisica I Facoltà di Ingegneria Prova scritta di Fisica I 6..6 CMPIT C Esercizio n. Un blocco, assiilabile ad un punto ateriale di assa = kg, partendo da fero, scivola da un altezza h = 7 lungo una guida priva di.

Dettagli

Curve nel piano ane euclideo e nello spazio ane euclideo

Curve nel piano ane euclideo e nello spazio ane euclideo Curve nel piano ane euclideo e nello spazio ane euclideo 13 Dicembre 2018 Federico Lastaria. Analisi e Geometria 1. Curve nel piano e nello spazio. 1/29 Curve parametrizzate regolari e biregolari. Denizione

Dettagli

ANALISI SPERIMENTALE E TEORICA DEI MOTI

ANALISI SPERIMENTALE E TEORICA DEI MOTI ANALISI SPERIMENALE E EORICA DEI MOI Elena Pizzinini Corso PAS, 19 settebre 014 Al candidato verrà richiesto di progettare un'unità di apprendiento relativa a un argoento deciso dal candidato e attinente

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 8-9 inaica del punto ateriale 7 Legge fondaentale della dinaica ota la forza possiao deterinare l equazione del oto d r a dt al oviento (accelerazione) risaliao alla forza che lo produce rincipio

Dettagli

Correzione 1 a provetta del corso di Fisica 1,2

Correzione 1 a provetta del corso di Fisica 1,2 Correzione 1 a provetta del corso di Fisica 1, novembre 005 1. Primo Esercizio (a) Indicando con r (t) il vettore posizione del proiettile, la legge oraria del punto materiale in funzione del tempo t risulta

Dettagli

Compito di Fisica Generale di Ingegneria CIVILE Giugno 2009

Compito di Fisica Generale di Ingegneria CIVILE Giugno 2009 Copito di Fisica Generale di Ingegneria CIVIE 9 1 Giugno 9 Esercizio 1: Un asse è disposto orizzontalente e passante per il punto O in figura. 'asse è perpendicolare al piano della figura. Una barretta

Dettagli

Esame 20 Luglio 2017

Esame 20 Luglio 2017 Esae 0 Luglio 07 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Dipartiento di ateatica Università degli Studi di Roa La Sapienza Anno Accadeico 06-07 Esae - Fisica Generale I 0 Luglio 07 R. Bonciani,

Dettagli

Compito di Fondamenti di Automatica - 21 giugno 2006 Soluzioni

Compito di Fondamenti di Automatica - 21 giugno 2006 Soluzioni Copito di Fondaenti di Autoatica - 21 giugno 200 Soluzioni Esercizio 1A. Dato lo schea di figura u k b y x dove = 1 é la assa dei due carrelli, k la costante elastica della olla, b il coefficiente di attrito

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://cms.pg.infn.it/santocchia/

Dettagli

Cinematica differenziale

Cinematica differenziale Corso di Robotica 1 Cinematica differenziale Prof Alessandro De Luca Robotica 1 1 Cinematica differenziale studio dei legami tra moto (velocità) nello spazio dei giunti e moto (velocità lineare e angolare)

Dettagli

Sezione III Metodi quantitativi per la misurazione e gestione dei rischi

Sezione III Metodi quantitativi per la misurazione e gestione dei rischi Sezione III Metodi quantitativi per la isurazione e gestione dei rischi Test n. Teoria della probabilità e distribuzioni di probabilità univariate e ultivariate ) Secondo la definizione classica, la probabilità

Dettagli

Trasformazione della metrica per cambiamenti di coordinate

Trasformazione della metrica per cambiamenti di coordinate TERZA ESERCITAZIONE Trasformazione della metrica per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x µ } (x, x, x, x 3. La sua metrica è ds (dx + (dx + (dx + (dx

Dettagli

SPAZIO DI LAVORO. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

SPAZIO DI LAVORO. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona SPAZIO DI LAVORO Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona 1 11 Introduzione Equazione Cinematica Diretta Esprime la posizione della terna utensile rispetto alla terna

Dettagli

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E.

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E. ANALISI VETTORIALE Soluzione esonero.1. Esercizio. Assegnato il campo E (x, y, z) = x(y + z ), y(x + z ), z(x + y ) } 1111 calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1),

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 17-18 8 Legge fondaentale della dinaica (II legge di Newton) Nota la forza possiao deterinare l equazione del oto d r F a dt al oviento (accelerazione) risaliao alla forza che lo produce Tipi

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

CINEMATICA DEL PUNTO MATERIALE

CINEMATICA DEL PUNTO MATERIALE CINEMATICA DEL PUNTO MATERIALE DOWNLOAD Il pdf di questa lezione è scaricabile dal sito http://www.ge.infn.it/ prati/didattica/ March 7, 2018 CINEMATICA E PUNTO MATERIALE: CONCETTI La cinematica studia

Dettagli

FM210 / MA - Seconda prova pre-esonero ( )

FM210 / MA - Seconda prova pre-esonero ( ) FM10 / MA - Seconda prova pre-esonero (3-5-018) 1. Un sistema meccanico è costituito da due sbarre uguali AB e BC, rettilinee, omogenee, di massa M e lunghezza l, incernierate tra loro in B. Le due sbarre

Dettagli

Gli strumenti necessari per lo studio

Gli strumenti necessari per lo studio La potenza di un fucile a olla Sunto E possibile deterinare la potenza di un fucile a olla quando sono note la costante elastica K della olla, la isura d della copressione e la assa del proiettile sparato?

Dettagli

Lezione n. 5. I serbatoi cilindrici: analisi dello stato di sollecitazione L equazione generale

Lezione n. 5. I serbatoi cilindrici: analisi dello stato di sollecitazione L equazione generale h Lezione n. 5 I serbatoi cilindrici: analisi dello stato di sollecitazione L equazione generale Tra le strutture bidiensionali si annoverano, oltre a quelle piane (lastre o piastre), quelle a seplice

Dettagli

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017 Prova Scritta di di Meccanica Analitica 1 Gennaio 017 Problema 1 Si studi il sistema meccanico costituito da un punto materiale di massa unitaria soggetto al potenziale V x) = a lnx) x > 0 x a) Scrivere

Dettagli

Compito d esame 14/11/2005

Compito d esame 14/11/2005 COGNOME NOME Compito d esame 14/11/2005 modulo 01CFI Robotica AA 2004/05 modulo 01CFI Robotica AA 2003/04 modulo 01BTT Modellistica dei manipolatori industriali modulo 01ALB Controllo dei Manipolatori

Dettagli

Lezione 5: Sistemi ad un grado di libertà: l oscillatore elementare (5)

Lezione 5: Sistemi ad un grado di libertà: l oscillatore elementare (5) Lezione 5: Sistei ad un grado di libertà: l oscillatore eleentare (5) Federico Cluni 7 arzo 25 Risposta sotto forzante qualsiasi - Integrale di Duhael. Sovrapposizione degli effetti L equazione del oto

Dettagli

POLITECNICO DI TORINO DIPLOMI UNIVERSITARI TELEDIDATTICI

POLITECNICO DI TORINO DIPLOMI UNIVERSITARI TELEDIDATTICI POLITECNICO DI TORINO DIPLOMI UNIVERSITARI TELEDIDATTICI Esae di Fisica I 21/10/98 1. Un lago alpino, a quota 2560, ha una superficie di circa 25 000 2. Durante l'inverno esso è coperto da uno strato di

Dettagli

Compito di Fisica Generale I di Ingegneria CIVILE Giugno 2009

Compito di Fisica Generale I di Ingegneria CIVILE Giugno 2009 Copito di Fisica Generale I di Ingegneria CIVILE 009 Giugno 009 Esercizio : Un asse è disposto orizzontalente e passante per il punto O in figura L'asse è perpendicolare al piano della figura Una barretta

Dettagli

ESERCIZI 121. P 1 z 1 y x. a) P 2. Figura 12.25: Sistema discusso nell esercizio 41.

ESERCIZI 121. P 1 z 1 y x. a) P 2. Figura 12.25: Sistema discusso nell esercizio 41. ESERCIZI 121 Esercizio 41 Un sistema meccanico è costituito da 3 punti 0, 1 e 2 di massa m vincolati a muoversi sulla superficie di un cilindro circolare retto di raggio r = 1. Si scelga un sistema di

Dettagli

MODELLI DINAMICI DI FENOMENI FISICI

MODELLI DINAMICI DI FENOMENI FISICI MODELLI DINAMICI DI FENOMENI FISICI Dott. Lotti Nevio Nello sforzo che facciao di rappresentare il ondo che ci circonda siao coe quel babino che curioso vuol capire coe funziona l orologio appeso alla

Dettagli

LAVORO DI UNA FORZA (1)

LAVORO DI UNA FORZA (1) LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

A. Teta APPUNTI DI MECCANICA RAZIONALE. Sistemi unidimensionali. a.a. 2016/17

A. Teta APPUNTI DI MECCANICA RAZIONALE. Sistemi unidimensionali. a.a. 2016/17 A. Teta APPUNTI DI MECCANICA RAZIONALE Sistei unidiensionali a.a. 16/17 1 INDICE 1. Introduzione pag. 3. Conservazione dell energia e riduzione alle quadrature 4 3. Equilibrio e stabilitá 6 4. Moti periodici

Dettagli

Funzioni di R n a R m e la matrice Jacobiana

Funzioni di R n a R m e la matrice Jacobiana 0.1 Funzioni di R n a R m. Politecnico di Torino. Funzioni di R n a R m e la matrice Jacobiana Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Funzioni di R n

Dettagli

È chiaro che l argomento che vogliamo trattare riguarda un moto di un corpo la cui traiettoria è una circonferenza.

È chiaro che l argomento che vogliamo trattare riguarda un moto di un corpo la cui traiettoria è una circonferenza. Moto circolare uniforme È chiaro che l argomento che vogliamo trattare riguarda un moto di un corpo la cui traiettoria è una circonferenza. Ricordiamo innanzitutto che la velocità è una grandezza vettoriale,

Dettagli

Meccanica A.A. 2010/11

Meccanica A.A. 2010/11 eccanica A.A. / Esercizi -) Un punto ateriale di assa = 5 kg, che si uoe con elocita = s -, collide elasticaente con un altro punto ateriale fero, di assa = 8 kg. Se iene deflesso di un angolo θ = 5, troare

Dettagli

Robotica: Errata corrige

Robotica: Errata corrige Robotica: Errata corrige Capitolo 1: Introduzione pag. 13: Nella nota 2, la frase Il dispositivo che ripartisce adeguatamente la velocità è il differenziale. va modificata come segue: Il dispositivo che

Dettagli

La lezione di oggi. Equilibrio statico e dinamico. Leve. L elasticità in un solido e la legge di Hooke

La lezione di oggi. Equilibrio statico e dinamico. Leve. L elasticità in un solido e la legge di Hooke 1 La lezione di oggi Equilibrio statico e dinaico Leve L elasticità in un solido e la legge di Hooke Corpo rigido Si definisce corpo rigido un corpo che non si può deforare, qualunque sia l entità delle

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 19 Ottobre

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 19 Ottobre Esercizi Di Geometria (BAER Canale Da consegnare Lunedi 9 Ottobre SETTIMANA 3 (2 8 Ottobre Moltiplicazione di matrici Gli esercizi sono presi dal libro Intorduction to Linear Algebra di Serge Lang Esercizio

Dettagli

Potenze, logaritmi, equazioni esponenziali e logaritmiche.

Potenze, logaritmi, equazioni esponenziali e logaritmiche. Potenze, logariti, equazioni esponenziali e logaritiche Potenza con esponente intero di un nuero reale Sia a R ed n Z Ricordiao, anzitutto, le seguenti definizioni: ) se n >, si chiaa potenza ennesia (che,

Dettagli

LEGGI ORARIE DI ALCUNI MOTI PARTICOLARI

LEGGI ORARIE DI ALCUNI MOTI PARTICOLARI LEGGI RARIE DI ALCUNI MTI PARTICLARI MT RETTILINE UNIFRME (1) v = costante; a = 0 Legge oraria: P(t) v x 0 è la posizione di P all istante t=0 (posizione iniziale) x 0 x(t) P(t=0) v x(t) = v t + x 0 Nel

Dettagli

Esercitazione Elettronica 1

Esercitazione Elettronica 1 sercitazione lettronica sercizio Utilizzando una configurazione e una configurazione si progetti un aplificatore di tensione per correnti alternate in grado di fornire un guadagno di tensione di -4/ su

Dettagli

Maturità scientifica P.N.I Q.1

Maturità scientifica P.N.I Q.1 Luigi Lecci\Liceo Scientifico G. Stapacchia - Tricase (LE) 08-54400 Maturità scientifica P.N.I. 99 Q. In un piano cartesiano ortogonale Oxy si considerino le parabole C e C di equazione rispettivaente:

Dettagli

In assenza di forze dissipative sul piano inclinato, con riferimento al P.R. 1, si applica il Teorema di conservazione 1 2

In assenza di forze dissipative sul piano inclinato, con riferimento al P.R. 1, si applica il Teorema di conservazione 1 2 Esercitazione n 6 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gabriele Fava) A.A. 00/0 Energia e lavoro. Una guida liscia, disposta su un piano verticale, è forata da tre parti: un piano inclinato di

Dettagli

VII. AREA E PERIMETRO ELLISSE

VII. AREA E PERIMETRO ELLISSE VII. AREA E PERIMETRO ELLIE Area e Perietro Ellisse Cap. VII Pag. AREA DEL ETTORE DELL'ELLIE I )ia ( x) y dx l area OCAA. La funzione (x) deve essere tale d( x) che y x e poiché dx è ( x) xy area settoreoaa'

Dettagli

Oscillatore semplice. ponendo. Vibrazioni armoniche libere o naturali

Oscillatore semplice. ponendo. Vibrazioni armoniche libere o naturali Oscillatore seplice Vibrazioni aroniche libere o naturali k x Se il corpo di assa è spostato di x verso destra rispetto alla posizione di riposo, è soggetto alla forza elastica di richiao della olla kx

Dettagli

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Perdite di carico nelle condotte in pressione Materia: Idraulica agraria (6 CFU)

Dettagli

Esercitazione 06: Verifica di strutture sollecitate a fatica

Esercitazione 06: Verifica di strutture sollecitate a fatica Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. eriodo II rof. Leonardo BERTINI Ing. Ciro SANTUS Esercitazione 06: Verifica di strutture sollecitate a fatica Indice Verifica della

Dettagli

Innalzamento e abbassamento di indici

Innalzamento e abbassamento di indici TERZA ESERCITAZIONE Innalzamento e abbassamento di indici Consideriamo lo spazio di Minkowski in coordinate sferiche {x µ } (t, r, θ, φ). La sua metrica è con ds dt + dr + r dθ + r sin θdφ g µν dx µ dx

Dettagli

Consideriamo un corpo di massa m libero di muoversi senza attrito lungo una

Consideriamo un corpo di massa m libero di muoversi senza attrito lungo una MECCANICA CLASSICA LA DINAMICA DEGLI URTI. QuantitÄ di oto Consideriao un corpo di assa libero di uoersi senza attrito lungo una sola direzione, sottoposto all azione di una forza continua intesa coe successioni

Dettagli

Prova scritta del corso di Fisica con soluzioni

Prova scritta del corso di Fisica con soluzioni Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 2/0/203 Quesiti. Una corpo di massa m = 250 g è appoggiato su un piano scabro (µ d = 0.2 e µ s = 0.6) e collegato ad una molla di

Dettagli