BREVE STORIA DEL LOGARITMO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "BREVE STORIA DEL LOGARITMO"

Transcript

1 BREVE STORIA DEL LOGARITMO

2 Il logaritmo Idea molto antica Aristotele Si vuole semplificare il calcolo del prodotto di due numeri Due grandi matematici: Napier ( ) Briggs ( )

3 Idea di partenza Progressione geometrica di ragione 2 Moltiplicando due termini si ottiene ancora un termine della progressione, il cui indice è dato dalla somma dei due indici dei termini moltiplicati. Es: 4 x 16 = = 6 Gli indici sono gli esponenti dei termini considerati: 2^2 x 2^4 = 2^6 Indice Termine

4 Generalizzazione Dovendo moltiplicare due numeri qualunque della tabella, per ottenere il prodotto bastava sommare i due indici, andare all indice trovato e vedere il rispettivo termine. Torna a tabella Analogamente si può ridurre una divisione a una sottrazione e una potenza a una moltiplicazione.

5 Ma Idea inutilizzabile: si possono moltiplicare solo i numeri presenti nella tabella. Come faccio per esempio a calcolare 17 x 37? 17 e 37 non appartengono infatti alla progressione geometrica di ragione 2.

6 JOHN NAPIER (per i più, Nepero) Rende l idea utilizzabile: la ragione della progressione geometrica deve essere molto vicino a 1: 0, Conia il termine logaritmo (dal greco logon arithmos, numero della ragione, numero del rapporto ) Logaritmo = indice = esponente da attribuire a una prefissata base per ottenere una potenza uguale al termine dato. Non lavorava con i decimali, moltiplicava tutto per 10^7

7 Henry Briggs Viene a conoscenza delle opere di Nepero e dopo un incontro con il matematico decide di perfezionare le sue idee. I logaritmi sono gli esponenti Se usiamo la base 10 i calcoli si semplificano Costruisce tavole in modo decisamente diverso da Nepero: lavora con le radici di 10. Non dà definizione perché non sono ancora noti gli esponenti frazionari e irrazionali.

8 EULERO ( ) Dà la definizione di logaritmo che ancora oggi noi usiamo Si accorge che i logaritmi hanno applicazione in diversi ambiti della matematica Importanza esponenziali e logaritmi con base e (detto numero di Nepero, ma iniziale di Eulero!)

9 Logaritmi e realtà

10 Astronomia: rappresentazione Rappresentazione in scala logaritmica del Sistema Solare Se sulla carta quadrettata ponessimo uguale a un quadretto la distanza Sole-Mercurio, che è di circa 0,4 unità astronomiche, la Terra, che si trova a 1 unità astronomica, verrebbe posta a 2 quadretti e mezzo di distanza, mentre Marte si troverebbe a 4 quadretti. Nettuno, però, mantenendo intatta la scala delle distanze fissata, andrebbe collocato a 75 quadretti, ossia fuori dal foglio! Per non parlare poi di Plutone quando si trova nei pressi dell'afelio. Non è dunque possibile mantenere tutti i pianeti all'interno del foglio? Certamente. È sufficiente che ciascun pianeta venga sistemato non alla distanza effettiva dettata dalla scala, ma bensì al logaritmo di tale distanza. In questo modo anche se, per maggior comodità di lettura, fissassimo la distanza Sole-Mercurio in 10 quadretti anziché in uno solo, quella media di Plutone, circa 100 volte superiore, si ridurrebbe sì e no a una ventina di quadretti e resterebbe quindi abbondantemente contenuta all'interno del foglio. E ovvio che una rappresentazione del genere non rispecchia la realtà, ma per lo scopo che ci siamo prefissati, che era appunto quello di creare uno schema facilmente leggibile, ciò si rivela di secondaria importanza.

11 Sismologia: la scala Richter Per descrivere gli effetti di un terremoto si usa spesso la scala Richter, in base alla quale si calcola la magnitudo M di un terremoto valendosi della seguente formula: M = 2/3 log (E/E 0 ) dove E, in Joule, è l'energia totale sviluppata dal terremoto ed E 0 è la minima energia rilevata in un terremoto. La scala Richter misura quindi la magnitudine di un terremoto in base alla quantità di energia liberata all'epicentro. È importante sapere che la scala usata è logaritmica perché un terremoto di magnitudine 8 non è doppiamente più disastroso di uno di magnitudine 4. Poiché si lavora su esponenti, 10^8 rappresenta x 10^4 cioè volte più disastroso!

12 Chimica: la scala del ph Oggi il ph viene definito come il logaritmo negativo, in base 10, della concentrazione molare degli ioni idrogeno. Pertanto: ph = - Log [H + ]

13 Musica: le scale musicali dell altezza Se i logaritmi sono in base 2, il numero risultante dalla differenza dei logaritmi è l intervallo tra le note espresso in ottave; se i logaritmi sono, ad esempio, in base 2 1/12 allora il numero risultante è l intervallo espresso in semitoni.

14 Le spirali logaritmiche

15 Geometria Una spirale si dice logaritmica quando una qualunque semiretta di origine O intercetta sulla spirale raggi vettori che stanno in rapporto costante. Un frattale

16 Natura: il Nautilus NAUTILUS: Genere di molluschi cefalopodi tetrabranchiati

17 Natura: il falco pellegrino Il falco pellegrino, uno dei predatori più temibili per la vista acuta e l abilità di volo sfrutta le proprietà della spirale avvicinandosi alla sua preda secondo una spirale logaritmica.

18 Architettura Scala a chiocciola dell abbazia benedettina di Melk (Austria)

19 Meteorologia Sorprendentemente anche elementi naturali inorganici rimandano alla spirale mirabile: i cicloni tropicali, ma anche i tornado sia terrestri che marini, assumono la forma di immense spirali logaritmiche.

20 Fisiologia Verso la metà del 1800, i fisici tedeschi G. Fechner e E. Weber studiarono il tipo di reazioni che l'organismo umano manifesta quando varia l'intensità di uno stimolo fisico ( che può essere una luce, un suono, un odore,...). Essi osservarono che l'intensità S della sensazione corrispondente allo stimolo aumenta all'aumentare della intensità P dello stimolo, ma scoprirono che S non è proporzionale a P. Vale invece, in prima approssimazione, una legge di questo tipo: S = ln (P/Po) dove Po è l'intensità di soglia dello stimolo fisico, cioè la massima intensità P in corrispondenza della quale non si avverte alcuna sensazione (cioè risulta S=0).Per misurare l' intensità della sensazione prodotta da una sorgente sonora, si usa la seguente formula: S = 10x log (P/Po) dove S è la misura in decibel dell'intensità della sensazione sonora, P è una misura dell'intensità della vibrazione prodotta dall'onda sonora nell'aria e è l'intensità minima udibile dall'orecchio umano.

21 Aeronautica Gli altimetri della navigazione aerea sono basati sul fatto che all'aumentare della quota h diminuisce la pressione atmosferica p. Per determinare la quota h, dopo aver rilevato la pressione p, occorre tener presente che p dipende anche dalla temperatura T dell' aria, secondo la legge: h = (30T ) x ln (p o /p) dove la quota è misurata in metri, la pressione in cmhg, la temperatura in C e p o indica la pressione sul livello del mare.

Logaritmi (progressione aritmetica di ragione 1)

Logaritmi (progressione aritmetica di ragione 1) Logaritmi Dal greco logos = discorso, ragionamento e arithmos = numero. I logaritmi vennero scoperti dallo scozzese di nobile famiglia, John Napier, meglio conosciuto con il nome latinizzato di Nepero.

Dettagli

I logaritmi. Cenni storici

I logaritmi. Cenni storici 1 I logaritmi by Caterina Vespia "Poiché non vi è nulla di più ostico nell applicazione matematica, né che reca maggiori difficoltà nei calcoli, che la moltiplicazione, la divisione, l estrazione di radici

Dettagli

Proprietà dei logaritmi. Daniela Valenti, Treccani Scuola 1

Proprietà dei logaritmi. Daniela Valenti, Treccani Scuola 1 Proprietà dei logaritmi Daniela Valenti, Treccani Scuola 1 Perché le proprietà dei logaritmi? I logaritmi sono presenti in molte leggi scientifiche insieme ad altre operazioni; ecco due esempi: Per valutare

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

Prof. Emanuele ANDRISANI

Prof. Emanuele ANDRISANI Potenze con esponente razionale Sia a > 0 e a 1. Abbiamo definito a x quando x N. Poniamo a 0 = 1 a x = a m n = n a m se x = m n Q, x > 0, m, n N a x = 1 a x se x Q, x > 0. È così definita la potenza a

Dettagli

Proprietà dei logaritmi e problemi. Daniela Valenti, Treccani Scuola 1

Proprietà dei logaritmi e problemi. Daniela Valenti, Treccani Scuola 1 Proprietà dei logaritmi e problemi 1 Attività 2. Proprietà dei logaritmi e problemi Manca un problema da risolvere: calcolare i logaritmi in una base diversa da 10. È il primo problema che risolverete

Dettagli

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log Rappresentazione di Dati: Scala lineare Scala logaritmica Grafici Lin Lin Grafici Lin Log Grafici Log Log Grafici in scala lineare Grafici Lin Lin Nella rappresentazione di dati in un piano cartesiano

Dettagli

PreCorso di Matematica - PCM Corso A

PreCorso di Matematica - PCM Corso A PreCorso di Matematica - PCM Corso A DOCENTE: M. Auteri Numeri positi e negativi..... 6 5 4 3 2 1 0 1 2 3 4 5 6..... 0 2, 4, 5 2.14, 3.76, 21.9351-2, -4, -5-2.43, -12.54, -17.9136 Docente: Auteri, PreCorso

Dettagli

UNITA DI MISURA LOGARITMICHE

UNITA DI MISURA LOGARITMICHE UNITA DI MISURA LOGARITMICHE MOTIVAZIONI Attenuazione del segnale trasmesso esponenziale con la lunghezza mentre si propaga sulle linee di trasmissione (conduttori metallici) Utilizzando le unità logaritmiche

Dettagli

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Funzioni esponenziali e logaritmiche Indice

Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali...1 Funzioni logaritmiche...3 Funzioni esponenziali Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y =

Dettagli

Inquinamento acustico

Inquinamento acustico Programma Regionale I.N.F.E.A. Informazione Formazione ed Educazione Ambientale PROGETTO GEO Sensibilizzazione alla sostenibilità ambientale Inquinamento acustico Dott.ssa Barbara Bracci Controllo Agenti

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

Esercizi. 1. Disegnare il grafico qualitativo della seguente funzione:

Esercizi. 1. Disegnare il grafico qualitativo della seguente funzione: Esercizi. Disegnare il grafico qualitativo della seguente funzione: f(x) = x 2 per x 0 x per x > 0 e determinarne gli eventuali punti di massimo e minimo assoluti e relativi nell intervallo (,4]. Esercizi

Dettagli

Cifre significative delle misure di grandezze fisiche

Cifre significative delle misure di grandezze fisiche Cifre significative delle misure di grandezze fisiche Si definiscono grandezze fisiche tutte quelle entità con cui vengono descritti i fenomeni fisici e che sono suscettibili di una definizione quantitativa,

Dettagli

Funzioni esponenziali e logaritmiche

Funzioni esponenziali e logaritmiche Funzioni esponenziali e logaritmiche Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y = exp a (x) che fa corrispondere ad ogni x R il numero reale positivo a x. Proprietà

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

La funzione esponenziale

La funzione esponenziale La funzione esponenziale Potenze con esponente reale La potenza a x è definita: x R se a > 0, x R + se a = 0, x Z se a < 0, Funzione esponenziale Si chiama funzione esponenziale ogni funzione del tipo:

Dettagli

Scale Logaritmiche. Matematica con Elementi di Statistica, Anna Torre a.a

Scale Logaritmiche. Matematica con Elementi di Statistica, Anna Torre a.a Scale Logaritmiche SCALA LOGARITMICA: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti

Dettagli

SCALE MUSICALI E LOGARITMO IN BASE 2

SCALE MUSICALI E LOGARITMO IN BASE 2 SCALE MUSICALI E LOGARITMO IN BASE Gaetano Speranza Possiamo legare la frequenza di una nota alla lunghezza di una corda che vibrando la produce. Dimezzando tale lunghezza, abbiamo la nota omonima successiva

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16 Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti

Dettagli

LA SCALA LOGARITMICA

LA SCALA LOGARITMICA Decibel e suono LA SCALA LOGARITMICA Una scala descrive il rapporto tra due grandezze. La scala logaritmica si differenzia dalla scala lineare per il fatto che la proporzionalità tra le due grandezze non

Dettagli

TOMMASO ROSATI ELECTRONIC MUSIC IL SUONO 2 FREQUENZA

TOMMASO ROSATI ELECTRONIC MUSIC IL SUONO 2 FREQUENZA IL SUONO 2 FREQUENZA !2 Sorgente! Onda sonora! Apparato Uditivo Mezzo elastico (Per esempio l aria) !3 Le onde sono una variazione di pressione che provoca una successione di rarefazioni e compressioni

Dettagli

ISTITUTO SAN GABRIELE CLASSI 4 S E 4 SA PROF. ANDREA PUGLIESE IL SUONO

ISTITUTO SAN GABRIELE CLASSI 4 S E 4 SA PROF. ANDREA PUGLIESE IL SUONO ISTITUTO SAN GABRIELE CLASSI 4 S E 4 SA PROF. ANDREA PUGLIESE OGNI ONDA SONORA HA COME SORGENTE UN CORPO CHE VIBRA Il suono è un onda longitudinale, che consiste nell alternarsi di compressioni e rarefazioni

Dettagli

LA SCALA LOGARITMICA

LA SCALA LOGARITMICA Decibel e suono LA SCALA LOGARITMICA Una scala descrive il rapporto tra due grandezze. La scala logaritmica si differenzia dalla scala lineare per il fatto che la proporzionalità tra le due grandezze non

Dettagli

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log FUNZIONE LOGARITMO =log,,>0, 1 : 0,+ log a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà Esercitazioni di Matematica Generale A.A. 016/017 Pietro Pastore Lezione del 1 Novembre 016 Logaritmi e Proprietà Quando scriviamo log a b = c che leggiamo logaritmo in base a di b uguale a c, c è l esponente

Dettagli

Fondamenti di Acustica

Fondamenti di Acustica Fondamenti di Acustica Fisica Tecnica Corso di Laurea Scienze dell Architettura Definizione di suono Per suono in un punto si intende una rapida variazione di pressione, intorno alla pressione atmosferica,

Dettagli

Numeri interi relativi

Numeri interi relativi Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

Minimi quadrati pesati per la Regressione Lineare

Minimi quadrati pesati per la Regressione Lineare Minimi quadrati pesati per la Regressione Lineare Salto in alto oltre le formule Ing. Ivano Coccorullo Perchè? La tabella che segue riporta il raggio medio dell orbita R ed il periodo di rivoluzione T

Dettagli

RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche

RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche Linguaggio e notazioni: a x esponenziale di base a, a > 0, e di esponente x R. log a x logaritmo in base a, a > 0 e

Dettagli

LABORATORIO DI FISICA I

LABORATORIO DI FISICA I UNIVERSITA DEGLI STUDI DI PALERMO CORSO DI LAUREA IN SCIENZE FISICHE A.A. 2018/2019 13 Dicembre 2018 LABORATORIO DI FISICA I RELAZIONE TERZA ESPERIENZA DI LABORATORIO GRUPPO 1 Nigrelli Giulia Valenti Giuseppe

Dettagli

ONDE ELASTICHE. Un onda elastica è una perturbazione che si propaga in un mezzo elastico senza movimento netto di materia.

ONDE ELASTICHE. Un onda elastica è una perturbazione che si propaga in un mezzo elastico senza movimento netto di materia. ONDE ELASTICHE Un onda elastica è una perturbazione che si propaga in un mezzo elastico senza movimento netto di materia. Ogni punto del corpo elastico oscilla intorno alla sua posizione di equilibrio

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Maria Margherita Obertino [email protected] Davide Ricauda [email protected] Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle

Dettagli

Trasformazioni Logaritmiche

Trasformazioni Logaritmiche Trasformazioni Logaritmiche Una funzione y = f(x) può essere rappresentata in scala logaritmica ponendo Si noti che y = f(x) diventa ossia Quando mi conviene? X = log α x, Y = log α y. log α (x) = log

Dettagli

LE UNITÁ DI MISURA LOGARITMICHE

LE UNITÁ DI MISURA LOGARITMICHE LE UNITÁ DI MISURA LOGARITMICHE DAVIDE TAMBUCHI Sommario. Questo breve articolo vuole introdurre le unitá di misura logaritmiche utilizzate nell Elettronica e nello studio dei Sistemi di Comunicazione.

Dettagli

ISTITUTO COMPRENSIVO CAMERA SALA CONSILINA. DIDATTICA PER COMPETENZE SCHEDA PROGETTAZIONE DIPARTIMENTI DIPARTIMENTO Di MATEMATICA.

ISTITUTO COMPRENSIVO CAMERA SALA CONSILINA. DIDATTICA PER COMPETENZE SCHEDA PROGETTAZIONE DIPARTIMENTI DIPARTIMENTO Di MATEMATICA. ISTITUTO COMPRENSIVO CAMERA SALA CONSILINA Via Matteotti - 84036 Sala Consilina (SA) Tel. 097521013 Fax 097521013 e-mail [email protected]; posta cert. [email protected] DIDATTICA PER

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato)

RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) Se un quadrato ha l'area di 25 mq, qual è la misura del suo perimetro? E se l'area vale 30 mq? Table 1 Risoluzione 1 Poichè l'area

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

Programma di matematica e scienze

Programma di matematica e scienze Istituto Comprensivo di Fonzaso ANNO SCOLASTICO 2016/17 Programma di matematica e scienze Docente: Elisabetta Vittoria Rech Matematica Classe 2 A Le quattro operazioni con le Problemi con Settembre Addizionare,

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Matematica Lezione 11

Matematica Lezione 11 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 11 Sonia Cannas 15/11/2018 Funzione esponenziale Abbiamo disegnato il grafico qualitativo delle funzioni esponenziali y = a x con a

Dettagli

Seminario. Matematica e Musica. a.a. 2003/2004. Marco Costanzi Stefano Maragnoli. Docente: G. H. Greco. Introduzione: IL SUONO

Seminario. Matematica e Musica. a.a. 2003/2004. Marco Costanzi Stefano Maragnoli. Docente: G. H. Greco. Introduzione: IL SUONO Seminario Matematica e Musica a.a. 2003/2004 Marco Costanzi Stefano Maragnoli Docente: G. H. Greco Introduzione: IL SUONO 1. INTENSITÀ AMPIEZZA 2. ALTEZZA FREQUENZA 3. TIMBRO COMPOSIZIONE ARMONICA DELLE

Dettagli

Lezione 16. Elettrodinamica

Lezione 16. Elettrodinamica Lezione 16 Elettrodinamica Introduzione Nei conduttori solidi qualche elettrone per atomo può diventare libero di muoversi passando da un atomo all'altro. Applicando la teoria cinetica dei gas si trova

Dettagli

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25 RADICALI Termini x y a x = indice della radice y = esponente del radicando 25 = 5 perché 5 = 25 5 indica la radice quadrata di 5, non è un numero intero, è decimale, illimitato e non periodico. 16 = 2

Dettagli

MATEMATICA DI BASE 1

MATEMATICA DI BASE 1 MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme

Dettagli

LABORATORIO DI INFORMATICA ESERCITAZIONE VIII

LABORATORIO DI INFORMATICA ESERCITAZIONE VIII LABORATORIO DI INFORMATICA ESERCITAZIONE VIII Cercate di eseguire gli esercizi da soli. Se non ci riuscite, cercate di capire i messaggi di errore. Se non ci riuscite, provateci di nuovo. Poi chiamate

Dettagli

Funzione Esponenziale

Funzione Esponenziale Funzione Esponenziale y y O f : R (0,+ ), f(x) = a x con a > a 0 =, a = a a x > 0 x R strettamente crescente: x < x 2 a x < ax 2 se x tende a +, a x tende a + se x tende a, a x tende a 0 x O f : R (0,+

Dettagli

OBIETTIVI DI APPRENDIMENTO

OBIETTIVI DI APPRENDIMENTO 1. Strumenti della matematica L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di ricorrere a una calcolatrice. Sa applicare la nozione di

Dettagli

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro

Dettagli

3 Le grandezze fisiche

3 Le grandezze fisiche 3 Le grandezze fisiche Grandezze fondamentali e grandezze derivate Tra le grandezze fisiche è possibile individuarne alcune (fondamentali) dalle quali è possibile derivare tutte le altre (derivate) Le

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

Fondamenti di Acustica

Fondamenti di Acustica Fondamenti di Acustica Fisica Tecnica Corso di Laurea in Ingegneria dei trasporti Definizione di suono Per suono in un punto si intende una rapida variazione di pressione, intorno alla pressione atmosferica,

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.

Dettagli

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA

Dettagli

nelcasodigasoliquidi,chenonpossiedonoresistenzaelasticaagli dell onda che si propaga, per cui si parla di onde longitudinali;

nelcasodigasoliquidi,chenonpossiedonoresistenzaelasticaagli dell onda che si propaga, per cui si parla di onde longitudinali; Acustica Fondamenti Definizioni L Acustica è la scienza che studia la generazione, propagazione e ricezione di onde in mezzi elastici (solidi, liquidi e gassosi). Per onda acustica si intende ogni moto

Dettagli

Potenze, esponenziali e logaritmi 1 / 34

Potenze, esponenziali e logaritmi 1 / 34 Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione

Dettagli

Esercizi di matematica della Scuola Secondaria

Esercizi di matematica della Scuola Secondaria Esercizi di matematica della Scuola Secondaria 1. Quale é il risultato corretto della seguente operazione aritmetica? (dare la risposta senza eseguire la moltiplicazione) X = 23, 45 0, 0123 (A) X = 0,

Dettagli