Paradosso di Feynman
|
|
|
- Cristina Bossi
- 9 anni fa
- Visualizzazioni
Transcript
1 Paradosso di Feynman David Marzocca 27 luglio 2007 Paradosso di Feynman [] Immaginiamo di avere una bobina fissata coassialmente ad un disco di materiale isolante. Sul bordo di questo disco, a distanza R dall asse (R molto maggiore delle dimensioni della bobina), è fissata una carica q. All inizio il sistema è fermo e nel solenoide scorre una corrente stazionaria I, questa crea un campo magnetico costante B. Il momento angolare meccanico del sistema è nullo. Immaginiamo che il solenoide sia fatto di un materiale superconduttore: la corrente scorre al suo interno senza bisogno di alcuna forza elettromotrice. Dopo un certo tempo la temperatura del solenoide supera quella di transizione e la corrente si ferma. Dato che c è una variazione di campo magnetico e quindi di flusso di B all interno della circonferenza di raggio R, ci dovrà essere un campo elettrico tale che la sua circuitazione sia pari all opposto della derivata temporale del flusso del campo magnetico. Questo campo elettrico, data la simmetria del sistema, dovrà essere tangente alla circonferenza di raggio R e uniforme su questa; ci sarà quindi una forza F = qe applicata alla carica, quindi un momento M e da questo ci deve essere una variazione del momento angolare, quindi il sistema comincerà a girare. Alla fine, quindi, il momento angolare del sistema è diverso da zero. ATTENZIONE! Sembra che il momento angolare non si conservi!
2 Soluzione [2] Qualsiasi campo elettromagnetico trasporta energia con densità u, ha una densità di quantità di moto pari al vettore di Poynting/c 2 e quindi una densità di momento angolare l. u = 2 ǫ 0E 2 + 2µ 0 B 2 p = S c 2 l = r p = c 2 r S Possiamo quindi ipotizzare che nell istante iniziale il nostro sistema abbia un momento angolare non nullo localizzato nel campo elettromagnetico. Verifica Momento angolare meccanico finale Calcoliamo per prima cosa qual é il momento angolare del sistema nell istante finale, cioè quando la corrente che scorre nella bobina è nulla. Definiamo il momento magnetico della bobina come: m = NSIẑ Dove N è il numero di spire, S la superficie di una di queste spire ed I la corrente elettrica che vi scorre. Per distanze molto più grandi delle dimensioni lineari della bobina, possiamo approssimare il campo magnetico che genera la bobina a quello di una spira di momento magnetico m: B( r) = µ 0 4π { m r 3 r 5 r m r 3 Sul piano del disco m r = 0 quindi questa espressione si riduce a: B( r) = µ 0 m 4πr 3 } 2
3 Per calcolare il flusso di B nel disco di raggio R occorre stare attenti; infatti l espressione che abbiamo dato per il campo è valida per distanze grandi dalla bobina, quindi non è valida in tutti i punti del disco vicini a questa. Si può, a questo punto, utilizzare la seconda equazione di Maxwell ( B = 0) che ci dice che il flusso di B attraverso una qualsiasi superficie chiusa è uguale a zero. Prendiamo quindi quindi come superficie chiusa la semisfera di raggio infinito con il piano equatoriale complanare al disco. Questa superficie è fatta di 3 parti: il disco (d), la sua estensione fino all infinito (e) e la mezza calotta sferica di raggio infinito ( ). Φ d + Φ e + Φ = 0 ( flusso nel disco + flusso nell estensione + flusso all infinito = 0) Ma il campo B all infinito è nullo quindi la terza componente è uguale a zero, otteniamo infine: Φ d = Φ e Esplicitamente: Φ d = Φ e = 2π e R ] B( r) ẑds µ 0 m = R o 4πr 3rdθdr = µ ( 0m2π ) 4π r 2dr = µ 0m 2 [ r R = µ 0m 2R Adesso dalla terza equazione di Maxwell otteniamo il campo elettrico E sulla circonferenza di raggio R: E = B t E2πR = Φ d t E = µ 0 dm 4πR 2 dt ẑ ˆr 3
4 Cioè il campo elettrico è tangente alla circonferenza di raggio R, il verso dipende dalla derivata del momento magnetico. La forza che questo campo elettrico esercita sulla carica q è F = q E. Il momento associato a questa forza è uguale alla derivata del momento angolare meccanico, per cui: d L mecc dt L mecc = = M = R F = µ oq dm 4πR dt ẑ [dato che ˆr (ẑ ˆr) = ẑ] Lf Per cui, dato che m f = 0 e m i = m: L i d L = µ oq 4πR L mecc = µ oq m 4πR mf Momento angolare elettromagnetico iniziale m i d m ẑ Il momento angolare di un campo elettromagnetico è, in generale: L em = spazio r S c 2dV dove S = E B µ 0 Dato che la nostra configurazione presenta notevoli difficoltà per il calcolo diretto del momento angolare, non lo calcoliamo direttamente ma immaginiamo che all inizio la carica elettrica sia a distanza infinita (per cui S = 0 L = 0) e la avviciniamo lentamente a velocità costante fino alla sua posizione sul disco. Calcolando il momento delle forze esterne necessario per mantenere questa traiettoria, possiamo conoscere la derivata del momento angolare e quindi il suo valore finale. Per prima cosa calcoliamo le forze interne al sistema quando la carica si trova a distanza r dall asse, sul piano del disco, diretta con velocità v verso la sua posizione: ( F = q v B = q v µ ) o m 4πr 3 = qµ 0 m v 4πr3 4
5 La forza esterna, affinchè il moto rimanga rettilineo, dovrà essere opposta a questa: F e = qµ 0 m v 4πr3 Il momento di questa forza sarà: Da cui, integrando, ottengo L: M e = r F e = qµ 0vm 4πr 2 ẑ = qµ 0m dr 4πr 2 dt ẑ = dl dt R qµ 0 m L em = 4πr 2 drẑ = qµ 0m 4πR ẑ Per cui otteniamo che il momento angolare iniziale, contenuto nel campo elettromagnetico, è pari a quello meccanico finale ed uguale a: Osservazioni L = µ 0q m 4πR Nello stato iniziale del sistema, anche non considerando il momento angolare del campo elettromagnetico, non è vero che quello totale è precisamente nullo, infatti nella bobina circola una corrente I, per cui degli elettroni sono in movimento nel superconduttore in traiettorie circolari, hanno quindi un loro momento angolare. Dato che però la massa di un elettrone è trascurabile rispetto a quella di un protone, la velocità angolare finale del sistema, se l effetto fosse solo questo (cioè se non ci fosse la carica q), sarebbe sicuramente piccolissima. Una prima stima può essere questa. Immaginiamo che gli elettroni di conduzione siano per atomo della bobina, e che il materiale abbia numero atomico Z. Trascuriamo inoltre completamente la massa del disco. Se la bobina ha raggio a ed il filo sezione A in cui gli elettroni hanno una densità n e si muovono con una velocità media v d, abbiamo: I = J ˆndS = JA e J = ne v d = ne v d A Il momento angolare per elettrone è pari a: l = a (me v d ) = am e v d ẑ Il volume del filo è: V = 2πaAN, quindi in totale ci sono 2πaANn elettroni. Il momento angolare totale è (assumendo A << a ): L 0 = 2πa 2 ANnm e v d ẑ 5
6 = 2πa 2 ANJ m e e ẑ = 2SNI m e e ẑ L 0 = 2m e e m Possiamo notare che esce fuori anche in questo caso il rapporto giromagnetico. Notiamo inoltre che ha segno opposto rispetto a quello che avevamo calcolato per il campo elettromagnetico. Come dicevamo, poniamo che adesso questo momento angolare venga trasferito ai soli protoni della bobina in numero uguale agli elettroni di conduzione, non considerando il resto della massa del sistema. Il momento angolare finale del sistema, con questa approssimazione, si trova seguendo gli stessi passaggi di prima imponendo una velocità v f uguale per gli Z protoni, neutroni ed elettroni (assumo il numero di neutroni uguale al numero atomico): L f = 2πa 2 ANnZ(m e + m p + m n )v f ẑ Imponendo quindi la conservazione del momento angolare otteniamo: v f v d = m e Z(m e + m p + m n ) = 2, Z (m e = 9, kg m p =, kg kg) Quindi la velocità angolare finale è minore di decimillesimo di quella iniziale degli elettroni (v d /a), non avendo considerato neanche la massa e l inerzia del disco. Per un calcolo più precisto basta scrivere il momento finale come L f = I n ω, dove I n è il momento d inerzia di tutto il sistema, e, uguagliandolo al momento angolare iniziale, calcolare la velocità angolare ω. 2 Nel calcolo del momento angolare iniziale del campo elettromagnetico, non abbiamo considerato che una carica in movimento produce un campo magnetico. Questo fatto, però, non è un errore in quanto questo campo non agisce sulla carica che lo crea. 3 Quest ultima affermazione mi ha fatto riflettere invece sul calcolo del momento angolare meccanico finale. La carica q, quando la corrente nella bobina smette di circolare, comincia a ruotare attorno all asse a distanza R. Quindi, insieme al campo elettrico generato dalla carica, ci deve essere anche un campo magnetico. Entrambi sono variabili in quanto la carica è in movimento. Questo fatto mi ha fatto venire in mente due dubbi: 6
7 - Questo campo elettromagnetico potrebbe avere un suo momento angolare intrinseco e quindi il calcolo che abbiamo fatto non è corretto. 2- Dato che la carica segue una traiettoria circolare, allora è accelerata e quindi irradia energia elettromagnetica. Dopo un po, quindi, mi aspetto che tutto il sistema si fermi di nuovo in una condizione in cui sarà presente solo un campo elettrostatico generato da q. Allora il momento angolare del sistema sarà nullo veramente (B = 0) e quello che esisteva all inizio si starà propagando nello spazio sotto forma di onda elettromagnetica. Questo ragionamento rafforza ancora di più il punto, in quanto questa radiazione emessa DEVE possedere un momento angolare e quindi il punto deve essere vero. Sicuramente il momento angolare deve rimanere costante in ogni istante, spostandosi al massimo tra campo elettromagnetico e sistema meccanico. Non vedo, però, dove possa essere sbagliato il conto per il momento angolare finale. Riferimenti bibliografici [] The Feynman Lectures on Physics - Robert Leighton ; Matthew Sands ; Richard P. Feynman: Vol.II, 7.4, 27.6 [2] Soluzione ed immagini da: induccion/mangular/mangular.htm 7
Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.
Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:
Esercizio (tratto dal problema 7.36 del Mazzoldi 2)
Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante
LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA
LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale
Fisica Generale II (prima parte)
Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle
Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.
ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in
Esercizi di magnetismo
Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]
La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.
La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza
Esercizi sulla quantità di moto e momento angolare del campo elettromagnetico
Esercizi sulla quantità di moto e momento angolare del campo elettromagnetico. Si consideri un condensatore a facce piane e parallele (superficie A e distanza tra le armature d), la faccia inferiore (a
Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito
Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico
Problema (tratto dal 7.42 del Mazzoldi 2)
Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata
Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.
Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E
Fisica II. 7 Esercitazioni
Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione
1.2 Moto di cariche in campo elettrico
1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica
Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?
Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore
Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1
Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume
MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO
MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo
ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II
ELETTROLOGIA Cap II Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica 1 Anello di raggio R uniformemente carco con carica Q. Anello di dimensioni trasversali trascurabili rispetto al
Esercizi di Fisica LB: Induzione Elettromagnetica
Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con
APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO
APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata
SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA
SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROBLEMA 1. PROVA DI AMMISSIONE A.A.:2007-2008 SOLUZIONE DELLA PROVA SCRITTA DI FISICA a) da g = GM segue: M = gr2 R 2 G b) La forza centripeta che fa descrivere
Olimpiadi di Fisica 2015 Campo elettrico Franco Villa
1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione
Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.
Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere
1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère
CRCUTAZONE E FLUSSO DEL CAMPO MAGNETCO Abbiamo gia detto che per determinare completamente un campo vettoriale dobbiamo dare il valore della sua circuitazione ed il flusso del campo attraverso una superficie
1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)
1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della
La corrente alternata
La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello
Compito del 14 giugno 2004
Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica
Meccanica quantistica (5)
Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (
Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1
Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare
Prova scritta del corso di Fisica e Fisica 1 con soluzioni
Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato
MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).
MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate
Applicazioni delle leggi della meccanica: moto armnico
Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di
Principio di inerzia
Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual
L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)
L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia
Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico
Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico
Potenziale elettrostatico
Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire
FISICA (modulo 1) PROVA SCRITTA 23/06/2014
FISICA (modulo 1) PROVA SCRITTA 23/06/2014 ESERCIZI E1. Un corpo puntiforme di massa m = 2 Kg si muove su un percorso che ha la forma di un quarto di circonferenza di raggio R = 50 cm ed è disposta su
Compitino di Fisica II 15 Aprile 2011
Compitino di Fisica II 15 Aprile 2011 Alcune cariche elettriche q sono disposte ai vertici di un quadrato di lato a come mostrato in figura. Si calcoli: +2q y +q a) il momento di dipolo del sistema; b)
Misura del rapporto carica massa dell elettrone
Relazione di: Pietro Ghiglio, Tommaso Lorenzon Laboratorio di fisica del Liceo Scientifico L. da Vinci - Gallarate Misura del rapporto carica massa dell elettrone Lezioni di maggio 2015 Lo scopo dell esperienza
CAMPO MAGNETICO E FORZA DI LORENTZ
QUESITI 1 CAMPO MAGNETICO E FORZA DI LORENTZ 1. (Da Medicina e Odontoiatria 2013) Un cavo percorso da corrente in un campo magnetico può subire una forza dovuta al campo. Perché tale forza non sia nulla
Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue
1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare
Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1
Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:
Quesiti dell Indirizzo Tecnologico
Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella
FORMULARIO ELETTROMAGNETISMO
FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica
QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff
QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente
Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza
Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente
(a) ;
Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili
Appunti di elettromagnetismo
Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei
15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.
Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con
DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA
DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema
COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1
COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA STATICA
Forze su cariche nei fili: il motore elettrico
Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di
Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia
Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro
Correzione 1 a provetta del corso di Fisica 1,2
Correzione 1 a provetta del corso di Fisica 1, novembre 005 1. Primo Esercizio (a) Indicando con r (t) il vettore posizione del proiettile, la legge oraria del punto materiale in funzione del tempo t risulta
Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI
Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite
Compito di Fisica II del 14/09/2009
Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee
df = I dl B df = dq v B
Forza Magnetica su un conduttore Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle
Corso di CHIMICA LEZIONE 2
Corso di CHIMICA LEZIONE 2 MODELLO ATOMICO DI THOMSON 1904 L atomo è formato da una sfera carica positivamente in cui gli elettroni con carica negativa, distribuiti uniformemente all interno, neutralizzano
IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.
IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE
Soluzioni della prova scritta di Fisica Generale
Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 1 Febbraio 2011 Parte 1 Esercizio 1 Un punto parte dall origine dell asse x con velocità v 0 positiva. Il punto viaggia
Formulario Elettromagnetismo
Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza
circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac
La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
Derivata materiale (Lagrangiana) e locale (Euleriana)
ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,
Esercitazioni Fisica Corso di Laurea in Chimica A.A
Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo
Compito di Fisica Generale (Meccanica) 13/01/2014
Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella
LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti
LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio 2012 Campo magnetico e suoi effetti Alunno:................................................ Domande a risposta
Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi
1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).
MOMENTI DI INERZIA PER CORPI CONTINUI
MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI
Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003
Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno
Capitolo 12. Moto oscillatorio
Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre
8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente
1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie
Esercizio 1 Meccanica del Punto
Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa
(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )
1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta
Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI
FISICA LES SAPERI MINIMI CLASSE TERZA LE GRANDEZZE FISICHE E LA LORO MISURA Nuovi principi per indagare la natura. Il concetto di grandezza fisica. Misurare una grandezza fisica. L impossibilità di ottenere
Campi Elettromagnetici Stazionari - a.a
Campi Elettromagnetici Stazionari - a.a. 2005-06 I Compitino - 17 Novembre 2005 Due anelli di raggio a=1 cm e sezione trascurabile, disposte come in Figura 1, coassiali tra loro e con l'asse x, in posizione
1.11.3 Distribuzione di carica piana ed uniforme... 32
Indice 1 Campo elettrico nel vuoto 1 1.1 Forza elettromagnetica............ 2 1.2 Carica elettrica................ 3 1.3 Fenomeni elettrostatici............ 6 1.4 Legge di Coulomb.............. 9 1.5 Campo
Istituzioni di Matematiche Modulo B (SG)
Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.
Lezione 5 MOTO CIRCOLARE UNIFORME
Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.
Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia
Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere
Teoria Atomica di Dalton
Teoria Atomica di Dalton Il concetto moderno della materia si origina nel 1806 con la teoria atomica di John Dalton: Ogni elementoè composto di atomi. Gli atomi di un dato elemento sono uguali. Gli atomi
Università del Sannio
Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare
Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014
Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro
Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA
Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante
Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce
1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo
Dinamica Rotazionale
Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione
Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica
Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una
Energia del campo elettromagnetico
Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano
Moto circolare uniforme
Moto circolare uniforme Un oggetto si muove lungo una circonferenza con velocità costante T, il tempo che impiega a tornare al punto di partenza, è il periodo f = 1/T è la frequenza (s 1 o Hertz (Hz))
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I
Conservazione della carica elettrica
Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione
Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2
Formulario (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q Q 2 r 2 = Q Q 2 4πε r 2 Campo elettrico: E F q Campo coulombiano generato da una carica
Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013
Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo
I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z)
I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) 05-11-2015 Una pallina da tennis viene lanciata con velocità V0 = 40 m/s ed angolo rispetto all orizzontale = /3. Il campo da tennis è lungo 30 m e
CAMPO ELETTRICO. F r e = q E r. Newton ;
1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un
rdr = 1 2!Bl2 = 0:5 V:
Lauree in Ing. Gest. dell Inform. e Industr. e Ing. Ambientale A.A. 2010/2011 Corso di Fisica Generale II_con Lab. 28 Gilberto Giugliarelli 4.1 Una sbarretta conduttrice di lunghezza l = 10 cm ruota con
Campo magnetico terrestre
Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come
Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile
Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,
