LABORATORIO DI MATEMATICA LO STUDIO DELLE FUNZIONI
|
|
|
- Gustavo Grasso
- 9 anni fa
- Visualizzazioni
Transcript
1 LABORATORIO DI MATEMATICA LO STUDIO DELLE FUNZIONI ESERCITAZIONE GUIDATA Data la seguente famiglia di funzioni nella variabile reale, con il parametro, f ( ) =, costruiamo un foglio che, ricevuto un valore del parametro, permetta di ottenere: a) il dominio della funzione, b) le coordinate degli eventuali punti di intersezione con gli assi cartesiani, c) le equazioni degli eventuali asintoti, d) le coordinate degli eventuali punti di massimo e di minimo relativo, e) i grafici della funzione e degli asintoti dopo aver inserito gli estremi di variazione della. L analisi del problema a) Se! 0, il dominio della funzione è! ; se = 0, è dato da R (il grafico della funzione diventa una parabola). b) Notiamo che tutte le funzioni intersecano l asse y in (0; ). Intersezioni con l asse : = 0 con! 0, da cui =!, per!! 0, cioè! e!. Quindi, se! e!, le intersezioni con l asse sono (; 0) e (; 0). Se = o =, il grafico della funzione diventa quello di una retta con un punto di discontinuità di terza specie in b ;0 l. Proseguiamo lo studio delle funzioni escludendo i valori, 0, del parametro che portano ai casi particolari visti. c) Calcoliamo, lim =, lim ( = e lim " ) b l " =, ottenendo le " equazioni dell asintoto verticale d) Determiniamo la derivata prima ( ) = e dell asintoto obliquo y = +. fl + = e, per discuterla, calcoliamo il discriminante ( ) D del numeratore = Dquarti = 6. Se Dquarti 0, cioè, il grafico ammette due Dquarti punti estremanti, le cui ascisse sono = Dquarti e = +. Se Dquarti 0 e 0, cioè se 0, la funzione è crescente per valori esterni all intervallo [ ; ] ed è decrescente per valori interni, quindi la funzione ha un massimo in e un minimo in. Se Dquarti 0 e 0, cioè se 0, la funzione è crescente per valori interni all intervallo [ ; ] (se 0, ) ed è decrescente per valori esterni, quindi ha ancora un minimo in e un massimo in. Se Dquarti 0 e 0, cioè se, la funzione è sempre crescente. Se Dquarti 0 e 0, cioè se, la funzione è sempre decrescente. Il caso Dquarti = 0 porta a = o =, situazioni che abbiamo già considerato. La struttura del foglio Scriviamo le didascalie per ricordare il testo del problema, per indicare dove inserire il valore del parametro (nella cella bordata D) e per leggere i risultati. Imponiamo al sistema di rappresentare numeri con quattro cifre decimali, evidenziando la zona del foglio A:D e usando il comando Formato Celle Numero. Copyright 0 Zanichelli editore S.p.A., Bologna
2 Assegniamo alla cella D il nome e alla cella D il nome deltaq digitandoli nel campo Casella del nome. Basandoci sull analisi svolta immettiamo le formule di Ecel con le istruzioni condizionali, che selezionano i vari casi possibili. Per fornire il risultato del dominio, digitiamo = SE( = 0; R ; diverso da ) in B e = SE( = 0; ; /) in C. Selezioniamo il tipo di funzione scrivendo = SE(O( = ; = ); retta ; SE( = 0; parabola ; funzione razionale fratta )) in C7. Precisiamo le intersezioni con l asse digi tando = SE(C7 = retta ; ha ascissa ; hanno ascis se ) in C e formule con lo stesso controllo in A, B e C. Per lasciare vuote le celle adibite a mostrare i risultati degli asintoti e della crescenza della funzione, nei casi particolari, digitiamo all inizio di ogni formula la condizione = SE(O( = 0; = ; = ); ;...). Per esempio, scriviamo = SE(O( = 0; = ; = ); ; Gli asintoti hanno equazione: ) in A. Istruzioni analoghe vanno in A, B, D, A6, B6, C6, D6. D Per distinguere i vari casi di crescenza e di decrescenza di f (), calcoliamo il discriminante del numeratore della derivata prima. Nella cella D (quella che abbiamo chiamato deltaq) digitiamo = SE(O( = 0; = ; = ); ; 6 *^) e facciamo poi dipendere le uscite delle celle seguenti dal valore di deltaq. Digitiamo in = SE(O( = 0; = ; = ); ; La funzione ) A9 = SE(O( = 0; = ; = ); ; SE(deltaq 0; ha un massimo in ; SE( 0; è sempre crescente ; è sempre decrescente ))) B9 = SE(O( = 0; = ; = ); ; SE(deltaq 0; ( RADQ(deltaq))/; )) B0 = SE(O( = 0; = ; = ); ; SE(deltaq 0; (B0^ )/(*B0 ); )) D0 = SE(O( = 0; = ; = ; deltaq 0); ; La funzione ) A = SE(O( = 0; = ; = ); ; SE(deltaq 0; ha un minimo in ; )) B = SE(O( = 0; = ; = ); ; SE(deltaq 0; ( + RADQ(deltaq))/; )) B = SE(O( = 0; = ; = ); ; SE(deltaq 0; (B^ )/(*B ); )) D L uso del foglio Proviamo il foglio con un valore di, scrivendo = / in D. Otteniamo il foglio della figura. Figura Il foglio dopo l inserimento del valore nella casella D alla quale abbiamo assegnato il nome. Copyright 0 Zanichelli editore S.p.A., Bologna
3 Le tabelle per ricavare il grafico Costruiamo le tabelle con i valori della e i corrispondenti valori della f () in Foglio: una con i valori a sinistra del punto di discontinuità, una con i valori a destra. Inoltre determiniamo per ognuno dei due asintoti le coordinate di due dei loro punti agli estremi dell area visibile del grafico. Richiediamo, come dato d ingresso, l incremento della nella cella D di Foglio. Importiamo da Foglio il punto di discontinuità delle funzioni digitando = Foglio!$C$ nella cella D. Per il ramo a sinistra del punto di discontinuità scriviamo = D D in A9, = A9 $D$ in A0 e la copiamo sino alla cella A, = (A9^ )/(Foglio!$D$*A9 ) in B9 la copiamo sino alla cella B. Operiamo in modo simile con la tabella per il ramo a destra dell asintoto. Digitiamo = A in A, = Foglio!$B$6* A + Foglio!$D$6 in B, = C in A6 e = Foglio!$B$6*A6 + Foglio!$D$6 in B6, per determinare due punti appartenenti all asintoto obliquo. Scriviamo = D in C, = MIN(B9:B; D9:D; B:B6) in D, = D in C6, = MAX(B9:B; D9:D; B:B6) in D6, per determinare due punti dell asintoto verticale. Immettiamo 0, in D e le tabelle si aggiornano come in figura. Figura Le tabelle per i grafici della funzione e degli asintoti contenute in Foglio. Il grafico Evidenziamo la zona del foglio A:B (quella del ramo del grafico della funzione a sinistra dell asintoto verticale) e facciamo clic sul bottone Autocomposizione grafico. Scegliamo il tipo di grafico: Dispers.(XY), Dispersione con coordinate unite da linee smussate e senza indicatori di dati. Nella seconda finestra di dialogo sfruttiamo la possibilità di unire più grafici nello stesso riferimento cartesiano per rappresentare il ramo a destra dell asintoto e i due asintoti. Facciamo clic sul bottone Aggiungi e importiamo nel campo Valori della quelli contenuti nella zona C9:C e nel campo Valori della y quelli contenuti nella zona D9:D. Figura I grafici dei due rami della funzione, corrispondente al valore =, e dei due asintoti. Copyright 0 Zanichelli editore S.p.A., Bologna
4 Operiamo similmente per aggiungere il grafico dell asintoto obliquo, tenendo presente le zone nelle quali abbiamo determinato le coordinate di due dei suoi punti, la A:A6 e la B:B6. Scriviamo L asintoto obliquo nel campo Nome per farlo riportare da Ecel nella Legenda. Aggiungiamo pure l asintoto verticale, ricordando le zone con le coordinate di due dei suoi punti, la C:C6 e la D:D6. Togliamo la griglia dei valori e vediamo in Grafico il grafico di figura. Possiamo rappresentare un altra funzione facendo clic su Foglio e digitando un altro valore per il parametro, esclusi quelli dei casi limite. Esercitazioni Usa lo strumento informatico che hai a disposizione per svolgere una discussione completa sullo studio delle seguenti famiglie di funzioni, in relazione ai valori del parametro! R. Sul quaderno, poi, studia (in modo indipendente) la funzione che ottieni sostituendo i valori indicati del parametro e confronta i tuoi risultati con quelli del computer. f ( ) f ( ) =, =, = 7. + =, =, =. f ( ) =, =, =. f ( ) = + +, = e, =. ln( + ) 6 f ( ) = + +, =, =. = f ( ) e, =, =. Per ognuna delle seguenti famiglie di funzioni, nella variabile reale e parametro h! Z, opera in modo simile a quello proposto nelle esercitazioni precedenti f ( ) = ( ) h e, h = 0,,. f ( ) = sen+ hcos, h = 0,,. ( ) f ( ) = + h, h =,,. h f ( ) = ( + ) ln( + ), h = 0,,. Con l aiuto del computer, realizza una sessione di lavoro in cui, dopo aver ricevuto il valore del parametro, si trovino le coordinate degli eventuali punti di massimo e di minimo relativi, per ognuna delle seguenti funzioni. f ( ) = ( ) + f ( ) = f ( ) = ( ) e + Come nelle esercitazioni precedenti, determina l equazione egli asintoti delle seguenti funzioni. + f ( ) = f ( ) = 6 f ( ) = + ( ) + + Copyright 0 Zanichelli editore S.p.A., Bologna
5 Per ognuna delle seguenti funzioni, costruisci una sessione di lavoro al computer che, dopo aver ricevuto il valore della grandezza indicata, trovi, se esistono, quelli delle grandezze richieste e dia la possibilità di ottenere un grafico per verifica. 7 9 Data f() = ( a) ln(a ) e assegnata l ascissa M del punto di massimo M del grafico di f, determina il valore di a, l ordinata di M e l intersezione A con l asse. Prova con M = e. [a =, y M = 0,679, A(; 0)] Data g() = + a e assegnata l ascissa T del punto T, dove la tangente al grafico di g è parallela alla retta y =, determina il valore di a, l ordinata di T e l equazione della tangente. Prova con T =. [a =,0, y T =,0, y =,00 + 0,0] a Data f ( ) = e assegnato il coefficiente m della retta y = m, parallela alla tangente del grafico di f + nel punto T, di ascissa, determina il valore di a, l ordinata di T e l equazione della tangente. Prova con m =. [a = 9, yt =, y =,60,0] Copyright 0 Zanichelli editore S.p.A., Bologna
Laboratorio di matematica le rette e le parabole con excel
Laboratorio di matematica le rette e le parabole con excel esercitazione guidata Problema. Costruiamo con Excel un foglio per trovare le intersezioni fra una parabola e una retta, dati i coefficienti delle
LABORATORIO DI MATEMATICA FUNZIONI ESPONENZIALI E LOGARITMICHE
LABORATORIO DI MATEMATICA FUNZIONI ESPONENZIALI E LOGARITMICHE Le equazioni esponenziali ESERCITAZIONE GUIDATA Data l equazione esponenziale, contenente i parametri reali a e b, - a = b$ -, con Ecel costruiamo
LABORATORIO DI MATEMATICA IL PIANO CARTESIANO E LA RETTA
LABORATORIO DI MATEMATICA IL PIANO CARTESIANO E LA RETTA ESERCITAZIONE GUIDATA Con l aiuto di Derive determiniamo l equazione della retta p passante per il punto P(- ; ) e perpendicolare alla retta r,
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione
risoluzione della prova
Verso la seconda prova di matematica 7 Risoluzione della prova verso la seconda prova di matematica 7 risoluzione della prova Problemi 7 a Determiniamo l equazione della parabola di vertice V`; j e passante
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in
SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO
ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica
10 - Applicazioni del calcolo differenziale
Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte
Secondo parziale di Matematica per l Economia (esempio)
Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta
LABORATORIO DI MATEMATICA I SISTEMI LINEARI
LABORATORIO DI MATEMATICA I SISTEMI LINEARI I sistemi lineari con Derive IL COMANDO Risolvi_Sistema RESTITUISCE la soluzione del sistema, dopo che abbiamo indicato a Derive il numero delle equazioni, le
Programmazione per Obiettivi Minimi. Matematica Primo anno
Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.
Appunti di Excel per risolvere alcuni problemi di matematica (I parte) a.a
Appunti di Excel per risolvere alcuni problemi di matematica (I parte) a.a. 2001-2002 Daniela Favaretto* [email protected] Stefania Funari* [email protected] *Dipartimento di Matematica Applicata Università
LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI
Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa
Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2
Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, [email protected] Esercizi 8: Studio di funzioni Studio
ESERCIZI SULLO STUDIO DI FUNZIONI
ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.
5. Massimi, minimi e flessi
1 5. Massimi, minimi e flessi Funzioni crescenti e decrescenti A questo punto dovremmo avere imparato come si calcolano le derivate di una funzione razionale fratta, ma dobbiamo capire in che modo queste
ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI
ANNO SCOLASTICO 009-0 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI PROBLEMA Si consideri la funzione: ln( + e) se e < < 0 f ( ) = ( + b) e + a se
, per cui le due curve f( x)
DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione
Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.
Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:
LABORATORIO DI MATEMATICA LE DISTRIBUZIONI DI PROBABILITÀ
LABORATORIO DI MATEMATICA LE DISTRIBUZIONI DI PROBABILITÀ Operatori di Excel per le distribuzioni di probabilità L operatore DISTRIB.NORM(x; n; v; VERO) DISTRIB.NORM(x; n; v; FALSO) determina i valori
Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica
DISCIPLINA: MATEMATICA Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima tecnico della grafica calcolo numerico
Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.
Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti
Protocollo dei saperi imprescindibili Ordine di scuola: professionale
Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure
log log, inversa: log.
Università degli Studi di Siena Correzione Prova scritta di Matematica Generale (A.A. 14-15) 20 gennaio 2015 Compito ) : ; :, è multiplo di ed è pari; : a volte a volte, ad esempio la coppia ha prodotto
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
Studio di una funzione razionale fratta
Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =
Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.
Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è
1 Nozioni utili sul piano cartesiano
Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva
ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione
Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica
Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi
PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI
www.matefilia.it PRIMA SIMULAZIONE - 0 DICEMBRE 05 - QUESITI Q Lanciando una coppia di dadi cinque volte qual è la probabilità che si ottenga un punteggio totale maggiore di sette almeno due volte? Calcoliamo
Soluzioni dei problemi della maturità scientifica A.S. 2007/2008
Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto
Anno 5 Regole di derivazione
Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate
Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA
Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati
Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.
LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.
G5. Studio di funzione - Esercizi
G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 0-05 Classe A clac B E F G H lisl Docenti: Gerace, Ricci, Battuello, Fecchio, Ferrero Disciplina: MATEMATICA Tutti gli studenti
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva
ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani
(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).
G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 006 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano, riferito
Analisi Matematica I Primo Appello ( ) - Fila 1
Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)
PROGRAMMA DI MATEMATICA APPLICATA
PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra
Piano cartesiano e Retta
Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L
Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2
0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la
Chi non risolve esercizi non impara la matematica.
6 studio di funzione. esercizi Chi non risolve esercizi non impara la matematica. Traccia, se possibile, il grafico di una funzione che soddisfi le seguenti proprietà: a. è definita in R \ {, } b. ha come
Le coniche: circonferenza, parabola, ellisse e iperbole.
Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 Del triangolo ABC si
CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN
CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali
Laboratorio di informatica
Laboratorio di informatica GEOMETRIA DELLO SPAZIO Introduzione a Geogebra 3D La versione 5 di Geogebra prevede anche la possibilità di lavorare in ambiente 3D. Basta aprire Visualizza - Grafici 3D: sullo
PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010
PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).
ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio
ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO
Mutue posizioni della parabola con gli assi cartesiani
Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
Creare una tabella di pivot
Creare una tabella di pivot Importiamo in un foglio di Excel una tabella di dati, di grandi dimensioni, per esempio dal sito www.istat.it/it quella relativa al Consumo di energia per i comuni capoluogo
CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica [email protected] DEFINIZIONI Definizione. Dicesi parabola il luogo
FUNZIONI ALGEBRICHE PARTICOLARI
FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI
SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:
CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}
Esercitazione n 2. Costruzione di grafici
Esercitazione n 2 Costruzione di grafici I grafici I grafici sono rappresentazione di dati numerici e/o di funzioni. Devono facilitare all utente la visualizzazione e la comprensione dei numeri e del fenomeno
1.4 Geometria analitica
1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
PROGRAMMAZIONE DIDATTICA ANNUALE
PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2015 / 2016 Dipartimento (1) : MATEMATICA Coordinatore (1) : TRIMBOLI SILVIA Classe: 5H Indirizzo: Servizi Socio-Sanitari Serale Ore di insegnamento settimanale:
Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1)
ttività di recupero conoscenze di ase) araola Oiettivi Saper riconoscere la funzione che esprime la conica. Saper tracciare il grafico di una paraola. Saper determinare gli elementi caratterizzanti una
PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?
PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6
Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.
Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la
Problemi con discussione grafica
Problemi con discussione grafica Un problema con discussione grafica consiste nel determinare le intersezioni tra un fascio di rette (proprio o improprio) e una particolare funzione che viene assegnata
Disequazioni di secondo grado
Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione
Appunti ed esercizi sulle coniche
1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O
Quadro riassuntivo di geometria analitica
Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione straordinaria
ESME DI STTO DI LICEO SCIENTIFICO CORSO DI ORDINMENTO 006 Sessione straordinaria Il candidato risolva uno dei due problemi e dei 0 quesiti in cui si articola il questionario. PROBLEM È dato il triangolo
Equazione della circonferenza
Equazione della circonferenza Scrivi la circonferenza Γ di centro C(-,4) e raggio r=3. L equazione di Γ è: y 4 3 cioè y 4 9 sviluppiamo (ricordando che a b a ab b ): 4 4 y 8y 16 9 mettiamo tutto a primo
Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI
Programma di Matematica A.S. 2013/14 Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Insiemi e sottoinsiemi - Le operazioni fondamentali con gli insiemi - Prodotto cartesiano I NUMERI NATURALI
Condizione di allineamento di tre punti
LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.
Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema
Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che
RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1
RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,
LA PARABOLA E LA SUA EQUAZIONE
LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da
quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:
) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica
Primi passi con Geogebra
Primi passi con Geogebra La finestra di GeoGebra - versione 4 A. Aprire l applicazione GeoGebra 1. Sul desktop, fare doppio click sull icona di Geogebra B. Dopo l avvio di GeoGebra La finestra che normalmente
CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO
DOCENTE: Laura Marchetto CLASSE terza SEZIONE H A.S. 14/ 15 RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni di primo e di secondo grado Sistemi di disequazioni di primo grado Equazione
Funzioni... senza limiti
Funzioni... senza limiti Versione del 18 aprile 2007 Propongo, in questa nota, una serie di esempi di grafici di funzioni tracciati per via elementare, senza l uso del calcolo differenziale. Una trattazione
GEOMETRIA ANALITICA: LE CONICHE
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale
Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio
Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data
DERIVATE E LORO APPLICAZIONE
DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a
3 Esercitazione PON Oggi Informatica Excel Prof. M. Simone - Anno Scolastico 2011 / 2012
3 Esercitazione guidata: Funzioni condizionali e creazione di un grafico Funzioni Condizionali Una funzione condizionale è una funzione il cui risultato dipende dal verificarsi o meno di una o più condizioni.
Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?
Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza
FUNZIONI REALI DI UNA VARIABILE REALE
FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione
