In linguaggio analitico parlare di tre tagli equivale ad individuare le equazioni di tre rette che intersecano il triangolo in questione.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "In linguaggio analitico parlare di tre tagli equivale ad individuare le equazioni di tre rette che intersecano il triangolo in questione."

Transcript

1 Tre tagli... sette parti Dividere u triagolo dato o tre tagli rettiliei i sette parti di ui quattro siao triagoli (e le rimaeti tre, petagoi). Ua delle parti triagolari è limitata dai tre tagli, iasua delle altre tre parti triagolari è ilusa da u erto lato del triagolo dato e da due tagli. Segliere i tre tagli i modo e le quattro parti triagolari risultio ogrueti. Quale frazioe dell'area del triagolo dato è l'area di ua delle parti triagolari i questa suddivisioe? Il problema osiste priipalmete ell idividuare il modo i ui eseguire i tre tagli. Vediamo se alue osiderazioi di ordie del tutto geerale i possoo idirizzare sulle modalità o ui ompiere questa operazioe. I liguaggio aalitio parlare di tre tagli equivale ad idividuare le equazioi di tre rette e iterseao il triagolo i questioe. Ora, i prima approssimazioe queste rette possoo essere disposte i qualsiasi modo quidi abbiamo le segueti equazioi: y m +. y m + y m + I parametri da idividuare soo periò sei e orrispodoo all isieme dei oeffieti agolari {m i } e delle iterette o l asse delle ordiate { i }. Come di regola ( Codizioe di Rouè Capelli ) abbiamo bisogo di sei equazioi affiè il problema sia risolubile. Tre odizioi derivao dall impostare la ogrueza dei 4 triagoli, i altre parole, poedo e la gradezza A (m i ; j ) rappreseti l area del triagolo i fuzioe dei 6 parametri, l uguagliaza a due a due porta alle equazioi : A (m i ; j ) A (m i ; j ). A (m i ; j ) A (m i ; j ) A (m i ; j ) A 4 (m i ; j ) Maao aora tre equazioi. Se leggiamo o attezioe il testo del problema possiamo però riavarle dalle odizioi di base o, ome si suole iamarle, dalle odizioi al otoro. I partiolare leggiamo el testo del quesito iasua delle altre tre parti triagolari è ilusa da u erto lato del triagolo dato e da due tagli.

2 Questo sigifia ovviamete e i 4 triagoli, geerati dall itersezioe delle tre rette, dovedo essere uguali e avedo, per ipotesi, i lati iliati ome i lati del triagolo dato soo i defiitiva simili o il triagolo grade. r á â r r Da quato asserito e dall esame della figura sopra si può oludere e le rette e rappresetao i tagli soo iliate ome i lati del triagolo dato e ao quidi oeffiieti agolari uguali od opposti alla tagete trigoometria degli agoli formati dai lati del triagolo o u sistema artesiao di riferimeto. Il sistema ora è risolubile ed è possibile sriverlo ella seguete maiera: m tag(0) 0 m tag( á). m -tag( â) A ( ; ; ) A ( ; ; ) A ( ; ; ) A ( ; ; ) A ( ; ; ) A 4 ( ; ; ) Quato sopra i permette di asserire e la soluzioe è uivoa e e la posizioe riiesta del taglio si ottiee faedo traslare le tre rette parallelamete a iasu lato seza ruotarle. A questo puto o rimae altro e trovare i valori umerii aratteristii del problema. Le strade da seguire soo due :

3 A) osiderazioi di ordie geometrio B) risoluzioe delle equazioi del sistema. Comiiamo ad esamiare la soluzioe più rigorosa esposta al puto B). y tg (á) r y tg (á) 4 á â r y 6 y -tg (â) + tg (â) r y tg (â) + Sriviamo le equazioi delle rette e formao i lati del triagolo e delle rette parallele e rappresetao i tre tagli dopodié, risolvedo gli opportui sistemi, idividuiamo le asisse { i } dei 6 puti e delimitao la base dei quattro triagoli disegati dai tagli. β ) + ) α ) β 4 α ) β ) 6 α ) Basta adesso imporre l uguagliaza ( a due a due ) delle basi dei quattro triagoli ed otterremo l isieme delle iogite rimaste { i }. X X X X X X 4 X X X X 4 X X 6 Naturalmete valgoo ae ombiazioi lieari delle equazioi sopra, per omodità risolviamo la :

4 X X 4 ( X X 6 ) o semplii aloli otteiamo: Risolvedo l equazioe X X X X 4 Troviamo la relazioe: + Sostituedo la relazioe trovata preedetemete riaviamo i valori di e i fuzioe del lato. ) tg ( α ) β Rimae solo da trovare l ultimo parametro, impoiamo l uguagliaza : Eseguedo semplii aloli otteiamo: X X 4 X X 6 + Ma disede da semplii osiderazioi trigoometrie l idetità: + Sostituedo questa relazioe ell equazioe preedete si arriva a srivere: Ora abbiamo tutti i valori e i permettoo di idividuare le dimesioi di uo qualsiasi dei 4 triagoli miori, i partiolare osideriamo quello evideziato ella figura sotto. La base sarà data dalla differeza delle asisse :

5 Base Χ Χ6 y Metre l altezza sarà pari alla metà del parametro : X 6 X Altezza I defiitiva l area di uo qualsiasi dei 4 triagoli evideziati sarà : Area 0 Per ui l area di uo qualsiasi dei 4 triagoli formati dal taglio è pari a / della superfiie del triagolo grade. CONSIDERAZIONI GEOMETRICHE Dall esame della figura a lato e da semplii appliazioi delle proprietà dei triagoli simili si può oludere e il triagolo dato è ostituito da triagoli uguali. Ioltre i petagoi risultati dal taglio soo ogrueti e formati dallo stesso umero di triagoli ( per la preisioe 7 ). Notiamo poi u altra osa iteressate. Ogi taglio divide il triagolo i due parti e stao el rapporto di due quadrati : A A sup if 9 6 ( ) ( 4)

11 Simulazione di prova d Esame di Stato

11 Simulazione di prova d Esame di Stato Simulazioe di prova d Esame di Stato Problema Risolvi uo dei due problemi e 5 dei quesiti i cui si articola il questioario I u sistema di riferimeto cartesiao ortogoale è assegata la seguete famiglia di

Dettagli

Equazioni Differenziali

Equazioni Differenziali Equazioi Differeziali Nota itroduttiva: Lo scopo di queste dispese o è trattare la teoria riguardo alle equazioi differeziali, ma solo dare u metodo risolutivo pratico utilizzabile egli esercizi che richiedoo

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Esercizi Determinare il dominio di de nizione delle seguenti funzioni: a.

Esercizi Determinare il dominio di de nizione delle seguenti funzioni: a. Esercizi -. Determiare il domiio di deizioe delle segueti fuzioi a. () = log jj p (jj ) b. () = µ 5 c. d. e. f. g. h. i. j. () =log jj () = 4p j j! Ã () =arcsi () = log 3 + () =log(jj ) p jj () =log(jcos

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioi di Riera Operativa Corso di Laurea i Iformatia Uiversità di Salero - Problema del trasporto Prof. Cerulli Dott.ssa Getili Dott. Carrabs Problema del Flusso a osto Miimo FORMULAZIONE mi ( i, j) A

Dettagli

Prova scritta del 9/1/2003

Prova scritta del 9/1/2003 Prova scritta del 9//00 Soluzioe degli esercizi N. Le quattro serie proposte soo a termii positivi. Per studiare la covergeza delle serie a termii positivi è possibile utilizzare uo dei segueti criteri

Dettagli

Unità Didattica N 33 L algebra dei vettori

Unità Didattica N 33 L algebra dei vettori Uità Didattica N 33 Uità Didattica N 33 0) La ozioe di vettore 02) Immagie geometrica di u vettore umerico 03) Somma algebrica di vettori 04) Prodotto di u umero reale per u vettore 05) Prodotto scalare

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

le dimensioni dell aiuola, con le limitazioni 0 x λ λ

le dimensioni dell aiuola, con le limitazioni 0 x λ λ PROBLEMA a) idicate co e co che e esprime l area è: le dimesioi dell aiuola, co le limitazioi 0 A( )., la fuzioe Per la ricerca del massimo si studia il sego della derivata prima Si ha: 0 / / A' ( ). Si

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria aalitica: rette e piai Coordiate polari Cambiameti di riferimeto el piao Cambiameti di riferimeto i geerale Isometrie Simmetrie Isometrie el piao Isometrie ello spazio 2 2006 Politecico di Torio

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI Esperimetazioi di Fisica 1 Prova scritta del 1 febbraio 2016 SOLUZIONI Esp-1 Prova di Esame Primo appello - Page 2 of 7 10/09/2015 1. (12 Puti) Quesito. La variabile casuale cotiua x ha ua distribuzioe

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS)

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS) Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 8 Problema - soluzioe a cura di E. Castagola e L. Tomasi, co l uso della calcolatrice grafica TI-Nspire CX (o CAS) Soluzioe ) Co riferimeto

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo.

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo. AM110 - ESERCITAZIONI V - VI 16-18 OTTOBRE 2012 Esercizio svolto 1. Dimostrare che ogi isieme fiito ha u massimo ed u miimo. Sia A = {a 1,..., a } R. Dimostriamo che A ha u massimo si procede i maiera

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2005 CORSO DI ORDINAMENTO Sessione ordinaria Tema di MATEMATICA - 23 giugno 2005

ESAME DI STATO DI LICEO SCIENTIFICO 2005 CORSO DI ORDINAMENTO Sessione ordinaria Tema di MATEMATICA - 23 giugno 2005 ESAME DI STATO DI LICEO SCIENTIFICO 005 CORSO DI ORDINAMENTO Sessioe ordiaria Tema di MATEMATICA - 3 giugo 005 Svolgimeto a cura del prof. Luigi Tomasi (luigi.tomasi@libero.it) RISPOSTE AI QUESITI DEL

Dettagli

Esercizi sull estremo superiore ed inferiore

Esercizi sull estremo superiore ed inferiore AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sull estremo superiore ed iferiore Esercizio svolto. Dire se i segueti isiemi soo limitati iferiormete o superiormete ed, i caso affermativo, trovare l estremo

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti L.Lecci\Compito D\Veerdì geaio 00 1 Oggetto: compito i Classe D/PNI Liceo Scietifico Statale G. Stampacchia Tricase Tempo di lavoro 10 miuti Argometi: Geometria della circofereza- Operazioi co i radicali

Dettagli

APPENDICE 1 Richiami di algebra lineare

APPENDICE 1 Richiami di algebra lineare APPENDICE Richiami di algebra lieare vettore: isieme ordiato di elemeti (umeri reali, umeri complessi, variabili, fuzioi,...) B = b b M b 2 { } = b, co i =, L, i il vettore sopra defiito è detto ache vettore

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 08 Problema Soluzioe a cura di L. Tomasi Soluzioe Puto Co riferimeto all esempio semplice del mauale d uso della macchia che colora

Dettagli

Maturità scientifica Sessione ordinaria 1986/1987

Maturità scientifica Sessione ordinaria 1986/1987 Maturità scietifica Sessioe ordiaria 986/987 I u sistea di assi cartesiai ortogoali è assegata la faiglia di liee di equazioe a a. Si idividuio i tale faiglia la retta r e le due parabole C e C che co

Dettagli

CLASSIFICAZIONE DELLE STRUTTURE PIANE

CLASSIFICAZIONE DELLE STRUTTURE PIANE CLASSIFICAZIONE DELLE STRUTTURE PIANE ANALISI CINEMATICA ANALISI STATICA ESEMPI riera della esisteza di atti di moto rigido della struttura a presidere dalle ause he lo geerao riera della possibilità di

Dettagli

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ Soluzioe a cura di: lessadra iglio, Liceo lassico Vittorio lfieri, Torio Giuliaa ru, Liceo Scietifico Isaac Newto, hivasso (TO) laudia hau, IRRE Val d osta toella uppari, Liceo Scietifico Galileo Ferraris,

Dettagli

Soluzione del Problema di Natale.

Soluzione del Problema di Natale. Soluzioe del Problema di Natale. Idicheremo, per comodità, ua particella Mxyzptl co M(d, = (m + ; m 1,..., m, dove m+ è il puto di che rappreseta il suo ucleo mxyzptl +, e gli m i rappresetao le sue subparticelle

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

SOLUZIONI COMPITO del 10/01/2014 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

SOLUZIONI COMPITO del 10/01/2014 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A SOLUZIONI COMPITO del //4 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio Poedo z = x + iy, otteiamo iz + z = ix y + x xy y, da cui si ricava e iz +z = 3 e xy y = 3 xy y = log 3 Pertato, avremo

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

Diottri sferici e lenti

Diottri sferici e lenti Diottri sferici e leti Deis Bastieri Dipartimeto di Fisica & Astroomia G. Galilei Uiversità di Padova 6 dicembre 013 1 Il diottro sferico I due mezzi che costituiscoo il diottro siao ora separati da ua

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Miistero dell Istruzioe, dell Uiversità e della Ricerca Istituto d Istruzioe Secodaria Superiore di II^ Grado LICEO ARTISTICO A. FRATTINI Via Valverde, 2-21100 Varese tel: 0332820670 fax: 0332820470 e-mail:

Dettagli

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8.

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8. Corso di Laurea i Igegeria Biomedia ANALISI MATEMATICA Prova sritta del giugo 7 Fila. Esporre il proedimeto di risoluzioe degli eserizi i maiera ompleta e leggibile.. Puti 8) Detemiare modulo e argometo

Dettagli

Soluzione della prova scritta di ANALISI MATEMATICA di GENNAIO. Soluzione: Risolviamo prima l omogenea associata, cioè: y + y = 0

Soluzione della prova scritta di ANALISI MATEMATICA di GENNAIO. Soluzione: Risolviamo prima l omogenea associata, cioè: y + y = 0 Compito A Soluzioe della prova scritta di ANALISI MATEMATICA di GENNAIO. Trovare l itegrale geerale di y + y si x. Soluzioe: Risolviamo prima l omogeea associata, cioè: y + y Per far ciò, scriviamo e risolviamo

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Selezioe e statistiche di ordie Problemi di statistiche d ordie Estrarre da gradi quatità di dati u piccolo isieme di idicatori che e rappresetio caratteristiche statisticamete

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

v = ( v 1,..., v n ).

v = ( v 1,..., v n ). Lezioe del 21 ovembre. Sistemi lieari 1. Spaio vettoriale R Sia u itero positivo. ssatoمح Cosideriamo lلاiisieme R delle ple ordiate di umeri reali u (u 1, u 2,..., u ), u i R. Al posto di pla ordiata

Dettagli

138. MOLTIPLICARE I NUMERI CON LA GEOMETRIA Luca Lussardi Technische Universität Dortmund, Vogelpothsweg , Dortmund (Germania)

138. MOLTIPLICARE I NUMERI CON LA GEOMETRIA Luca Lussardi Technische Universität Dortmund, Vogelpothsweg , Dortmund (Germania) 138. MOLTIPLICARE I NUMERI CON LA GEOMETRIA Luca Lussardi Techische Uiversität Dortmud, Vogelpothsweg 87 44227, Dortmud (Germaia) No c è certo da stupirsi se oggi troviamo relazioi tra operazioi matematiche

Dettagli

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE Sia V uo spazio vettoriale sul campo K. Siao v, v,..., v vettori dati apparteeti a V e siao, ioltre, assegati scalari k, k,..., k apparteeti a K. Si defiisce

Dettagli

REGRESSIONE LINEARE E POLINOMIALE

REGRESSIONE LINEARE E POLINOMIALE REGRESSIONE LINEARE E POLINOMIALE Nota ua tabella di dati relativi alle osservazioi di due gradezze X e Y, è aturale formulare ipotesi su quale possa essere ua ragioevole fuzioe che rappreseti o che approssimi

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

f la cui derivata è sen x e il cui grafico passa per il punto ( ; 2)

f la cui derivata è sen x e il cui grafico passa per il punto ( ; 2) ESAME DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 009 CORSO DI ORDINAMENTO Questioario Quesito Si trovi la fuzioe ( ) f la cui derivata è se e il cui grafico passa per il puto ( ; ) Ua primitiva della

Dettagli

Esercitazione 3 Sistemi lineari

Esercitazione 3 Sistemi lineari Esercitazioe 3 Sistemi lieari a.a. 2018-19 Esercizio 1 (M) Scrivere ua M-fuctio che calcola l iversa di ua matrice triagolare iferiore L di ordie mediate ua tecica compatta, memorizzadola ella matrice

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO

A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO 1. I sistemi di equazioi di primo grado U problema può coivolgere più icogite, ma soprattutto può coivolgere più codizioi riferite ad esse, che

Dettagli

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A =.........

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

min z wz sub F(z) = y (3.1)

min z wz sub F(z) = y (3.1) 37 LA FUNZIONE DI COSTO 3.1 Miimizzazioe dei costi Riprediamo il problema della massimizzazioe dei profitti del capitolo precedete e suppoiamo ora che l'impresa coosca il livello di output che deve produrre;

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006 Matematica - Igegeria Gestioale - Prova scritta del 5 geaio 6. Per ogua delle segueti serie si idichi se la serie coverge assolutamete ( AC ), coverge ma o coverge assolutamete ( C ) oppure o coverge (

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

Problema 1 PROBLEMA 1. Sia f la funzione definita da f ( x) = 1 + x e. dove n è un intero positivo e x R

Problema 1 PROBLEMA 1. Sia f la funzione definita da f ( x) = 1 + x e. dove n è un intero positivo e x R Problema PROBLEMA Sia f la fuzioe defiita da f ( ) + + +... + e!! dove è u itero positivo e R. Si verifichi che la derivata di f è: f '( ) e!. Si dica se la fuzioe f ammette massimi e miimi (assoluti e

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Seconda prova in itinere di Istituzioni di Probabilità

Seconda prova in itinere di Istituzioni di Probabilità Secoda prova i itiere di Istituzioi di Probabilità 18 Dicembre 1 Problema 1. Su uo spazio di probabilità Ω, A, P sia defiito u moto browiao reale B t t. Fissato e due -uple di umeri reali r i,...,, σ i,...,

Dettagli

n 2 n n dove a n è il coefficiente di

n 2 n n dove a n è il coefficiente di ESAME DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria CORSO DI ORDINAMENTO Questioario Quesito Sia p ( x ) u poliomio di grado. Si dimostri che la sua derivata -esima è p ( x )! a dove a è il coefficiete

Dettagli

(A + B) ij = A ij + B ij, i = 1,..., m, j = 1,..., n.

(A + B) ij = A ij + B ij, i = 1,..., m, j = 1,..., n. Algebra lieare Matematica CI) 263 Somma di matrici Siao m ed due iteri positivi fissati Date due matrici A, B di tipo m, sommado a ciascu elemeto di A il corrispodete elemeto di B, si ottiee ua uova matrice

Dettagli

Corso di ordinamento Liceo della Comunicazione- Sessione ordinaria - a.s

Corso di ordinamento Liceo della Comunicazione- Sessione ordinaria - a.s Corso di ordiameto Liceo della Comuicazioe- Sessioe ordiaria - as 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO LICEO DELLA COMUNICAZIONE Tema di: MATEMATICA a s 9- Corso di ordiameto Liceo

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

Metodi numerici PROCESSI ITERATIVI PER VALORI SCALARI. Ivan Zivko. Metodi numerici. Docente: Ivan Zivko 1

Metodi numerici PROCESSI ITERATIVI PER VALORI SCALARI. Ivan Zivko. Metodi numerici. Docente: Ivan Zivko 1 Iva Zivko PROCESSI ITERATIVI PER VALORI SCALARI Docete: Iva Zivko Processi umerici: puti ulli Immagiiamo ua fuzioe y f ( ), a., b Spesso è utile saper determiare tutti i suoi puti ulli, cioè tutti i puti

Dettagli

Trasformata Z, linearizzazione

Trasformata Z, linearizzazione Trasformata Z, liearizzazioe La soluzioe della diamica mediate trasformate Liearizzazioi Cei sulla trasformata Z Esempio: problema 1 Esempio: problema 2: Esempio: problema 3: Cotrollo come problema di

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008 Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u

Dettagli

CAPITOLO 3. Quicksort

CAPITOLO 3. Quicksort CAPITOLO 3 Quicksort I questa lezioe presetiamo l algoritmo di ordiameto Quicksort(vedi []). L algoritmo Quicksort riceve i iput u array A e idici p r ed ordia l array A[p,, r] el modo seguete. L array

Dettagli

1. Suddivisione di triangoli

1. Suddivisione di triangoli 1. Suddivisioe di triagoli 1.1 Il problema proposto da Silvao Rossetto La costruzioe descritta dalla figura seguete divide il triagolo C, rettagolo i, i due parti equiestese: r t s C g P g 1 K M 1 1) Precisare

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

QUESITO 1. Indicata con x la distanza della base superiore del cilindro dal vertice del cono si ha:

QUESITO 1. Indicata con x la distanza della base superiore del cilindro dal vertice del cono si ha: www.matefilia.it Scuole italiae all estero (Caledario australe) 005 QUESITO Prova che fra tutti i cilidri iscritti i u coo circolare retto ha volume massimo quello la cui altezza è la terza parte di quella

Dettagli

Equazioni goniometriche

Equazioni goniometriche 7 A Problema a Osserviamo iazitutto che cos ÖˇÜà cos Si uò quidi riscrivere l equazioe data come si à cos Questa equazioe o ammette come soluzioi i valori di er cui è cos à, cioè o ammette come soluzioi

Dettagli

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore.

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore. Le equazioi differeziali lieari di ordie > a coefficieti costati. No preseta difficoltà cocettuali il passaggio dalle equazioi lieari a coefficieti costati del secodo ordie a quelle di ordie maggiore.

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli