~m^~~ o ' (1) SULLA RISOLUZIONE DEL PROBLEMA DI NEUMANN IN UN CASO PARTICOLARE INTERESSANTE LA TEORIA DEL MOVIMENTO DEI GHIACCIAI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "~m^~~ o ' (1) SULLA RISOLUZIONE DEL PROBLEMA DI NEUMANN IN UN CASO PARTICOLARE INTERESSANTE LA TEORIA DEL MOVIMENTO DEI GHIACCIAI"

Transcript

1 MARIA TERESA VACCA SULLA RISOLUZIONE DEL PROBLEMA DI NEUMANN IN UN CASO PARTICOLARE INTERESSANTE LA TEORIA DEL MOVIMENTO DEI GHIACCIAI SUNTO - Con riferimento ai risultati di una recente nota del Prof. AGOSTINELLI sulla determinazione del profilo della sezione retta di un ghiacciaio si calcola la velocità in ogni punto interno alla sezione del canale nel caso in cui il profilo sia un arco di circonferenza, riconducendo il problema di NEUMANN relativo ad un segmento circolare al problema di DIRICHLET per il cerchio Studiando il moto di un ghiacciaio in un canale cilindrico di sezione qualsiasi, la cui superficie libera sia piana ed abbia la stessa inclinazione a del canale, il professor AGOSTINELLI ( 1 ) ha recentemente stabilito l'equazione differenziale del profilo della sezione retta del ghiacciaio. Tale equazione, riferita ad una coppia di assi cartesiani ortogonali con l'origine in un punto della superficie libera, l'asse x orizzontale ed appartenente alla superficie libera e l'asse y orientato verso l'interno del ghiacciaio, assume la forma (1) ~m^~~ o ' ( 1 ) C. AGOSTINELLI, SU un nuovo procedimento atto a determinare il profilo della sezione retta di un ghiacciaio, «Bollettino della Unione Matematica Italiana», serie III, A. XIII, n. 2, pp

2 134 dove v(y) è il coefficiente di attrito fra ghiaccio e parete del canale, variabile con la profondità y, C 0 è una costante arbitraria, y = -~ed inoltre ^% (2) y 0 = p0, essendo p la densità del ghiaccio, g l'accelerazione di gravità, Po la pressione atmosferica. Il profilo della sezione retta risulta un arco di circonferenza avente raggio R ed equazione X2 + (?y + }[W--Df=E 2 se, come è stato dimostrato nel lavoro precedentemente citato, si assume (3) 0o=WiZ 2 -^ E e (4) T+iLUi-i. y Wl /K 2 L 2 x ' dove vo è il valore di v per y=0 ed I è la semilarghezza del canale sulla superficie libera. L'unica componente non nulla della velocità del ghiaccio, quella secondo l'asse del canale, in ogni punto interno alla sezione è data allora da (5) «= P - ^ V con U(x,y) funzione armonica e con k 0 coefficiente costante di viscosità del ghiaccio. Sulla superficie libera si ha la condizione fj., essendo fi il

3 135 mentre sulla parete del canale deve essere dv v dn ~~ fi p ' - dove n è la normale al contorno orientata verso l'interno dell'area e p è la pressione idrostatica dovuta alla gravità, cioè (6) p=p 0 + ggco8a y. Il calcolo della velocità si effettua quindi attraverso la determinazione della funzione U, armonica e regolare nel campo cr della sezione retta, ossia risolvendo un problema di NEUMANN poiché risultano assegnati i valori della derivata normale al contorno. Infatti dalla (4) e dalla (6) si ottiene v vélo,, \ - V = 7^ -7 T (Vo+'QO cos a y) e per la (2) - v= y o?7ogff COSa = v opo * quindi dalla (5) si deduce che dv _du dy _.. v 0 p 0 K 0iJ dn dn oy dn //, y da cui dw dn /.,?/ Posto ^ = a.2 + ( 2/ + j/j52_ L 2 )* R 2

4 136 ed essendo allora F(x } y) = 0 l'equazione del profilo, si ha dy n -* dy dn J grad * y x n mod gradi' 7 con mod grad F =2}/x* + (y+fr* - L*)* = 2R, e quindi % _ V 4- P^2 2 per cui risulta W <2w i2^^ r ' >(?/ +VJS 2 -!/) Mediante la rappresentazione conforme del campo cr sopra un cerchio di raggio unitario si riconduce infine il problema di NEUMANN per il campo cr a quello di DÌRICHLET per il cerchio Indicati con A, B i punti estremi della linea libera sull'asse x, con s la lunghezza dell'arco di profilo contata a partire dall'estremo B e con M il punto dell'arco appartenente all'asse y, rappresentiamo conformemente sopra un cerchio di raggio unitario il campo or della sezione retta del ghiacciaio, costituito dal segmento circolare AOBMA, limitato dalla cordai/? e dall'arco BMA. Nel piano z = x + iy si ponga z -\- L = r ± e** 1, z L=z r 2 e^, da cui segue 1 8 ^ = log ^ - ^ - ^ ) - Poniamo ancora (8) t= + ii] = log^~ + Ì7i

5 137 deducendo quindi dalla relazione precedente = log, 97=^(^-¾. Sopra la corda AB si ha # 2 ~~^i ~ ^ c^ ^ = ^> e» detto # 0 > l'angolo che forma con l'asse ri.il raggio passante per il punto 5,v sopra l'arco BMA è # 2 #i = ^ + #o? 7t 71 Zi c i è *7 ^ # 0 > perciò- la (8) dà la rappresentazione conforme del segmento di cerchio <x del piano z = x + iy, sopra la striscia del piano = ^ + 177, com- 71 presa fra le rette 17 = 0 ed r) = #0 Z Ponendo ora * f n (9) ws=u+ iv = - -j- i ZI o invèrsamente C = logk- «0 f-* si ottiene la rappresentazione conforme della striscia del piano == +it), compresa fra le parallele all'asse, di equazione 71 77=0, e 77 = #o> su^ cerchio del piano w =u-\-iv, col centro nell'origine e di raggio unitario. La rappresentazione conforme del campo cr, considerato del piano z = x -f iy, sopra il cerchio a 2 -f t; 2 = 1 del piano w u -f i^ è in definitiva data dalla formula (10) w n I B+L 1+L. \.-L T-* e* 1 _il-( log +*+*) w. \ z-l I e 2 +¾

6 Dalla (9) si deduce da cui ponendo 71 e -5--^0 138 & * = % (11) co =. 1 + W 1 w e tenuto conto della (8) si ricava cioè Si ha allora \ l0s z-=l +t *) * = ico. z+l,. /. ^ \ 1 # 0 e -* = e 2 co 2 n ed infine z + L -HI*- 1 -* 0 ) z-l (12),_. " 2 n = e 03 1 #,, 2 7T, ^ 2 1 >»» + e 2 n 2 co - e r«(f-+*») I-i (}-+*,) Sulla circonferenza AOBMA del piano w= u + iv, possiamo porre w= e i(p ottenendo quindi in luogo della (11) CO=lGtg% e dalla (12) in 1» 0 \. 1 i? 0 + * /3 e U a) ctgf 2 - ei(t"^)

7 139 cioè -*( +.*.) *' * «*gp - (13) Si ricavano allora le formule ctgl) 1 " 2 --! Y / \I_1 2 n ctg * +2 sen# 0 ctgf 2cos# 0 (ctgp 8 "*" + 1 \I-2- / \l-^2.-. ctg ->2sen^0 ctg 2 * +1 che esprimono le coordinate di un punto variabile sul contorno AOBMA del segmento di cerchio per mezzo delfàngolo fi vàriabile da 0 a 2ir. Per 0 ^ 9?^7r il punto descrive l'arco BMA, per 7T ^ <p ^ 2TT il punto descrive la corda AB Sostituendo nella condizione (7) al posto di y il valore ri TI fornito dalla seconda delle (13) si ha il valore di - - sopra l'arco dn BMA, espresso in funzione di <p. Poiché L = R cos & n si ricava y + VR* L 2 = R sen# 0 #n,, -. 1 #o ct g r 2 "+i + 2lct g r 2 - * 9. *0, v 1 *0 (ctg f) 1 " 2 " + 2 sem^o (ctgl) 8 " " + 1

8 140 e quindi djj_ dn 2fc 0 #cos 2 # 0 (ctg \---( j 2 " " sen# 0 "(cfcg ) 1 " 2; +l +2( ct.gf) 3 ""] "(ctg f) 1 "'* + 2 sentf 0 (ctg f)*~" +l' / M-2^2 / \ì_*» (ctg ) - +2send 0 (ctg ) V P sen^0 sen hi)"*- # (et,!)' " =--F(<p), per 0 < 9; < 7T, ^ dw = 0 per n<<p<27zf. Indicando con V la funzione armonica associata alla funzione U, legata cioè ad essa dalle condizioni di CAUCHY du dv du dv dx ~ dy ' dy ~ dx ' ed osservando che sul contorno del campo cr è otteniamo (U) dx dy dx dy ds dn dn ds ' dv du dy du dx du ds dy dn dx dn ~ dn Sul contorno AOBMA del campo o- devono dunque essere verificate le condizioni Poiché si ha ds =-Ì\ dv_ ds <rr ds = 0, per + y n dx =-/1 + </2 &: p- do dy dcp T 0 < cp < n per n < cp < 2TT.

9 141 e dalla (1), per la (3) e per la (4), si deduce essendo inoltre B n + f*== y+]/&-&' risulta e quindi segue che Inoltre si ha che ^ K dy, ds = ~ ~- dcp oc dcp ^ dv= F(cp) - ^ dcp=sg(cp) dcp, I dy J dn J dn AOBMA AOB BMA BMA e siccome l'integrale della derivata normale -- esteso a tutto dn il contorno della sezione è nullo ( 2 ), si deduce che n f du' n. x f du ds, A / -^ ds = 0, cioè -5. -jt- «a? = 0, J dn J\ dn dcp 7 ' Ì?M ^ 0 ed ancora per la (14) 7T f dv ds - n. /"' _,, x J2 d#, A Jws}**- 0 ' ossia 0 0 Si trova perciò che sarà j ^),.-^ ^- (15) jg(<p)ùp = I valori della funzione F sul contorno sono dati allora da G{cp)=! g(<p)d<p- + eóbt 0 ( 2 ) Vedere la nota (*) del lavoro precedentemente citato.

10 142 e ponendo la costante uguale a zero risulta per 0 < cp < n ed in virtù della (15) la funzione G(<p) si annulla per cp = 0 e per <p ir. Si può quindi assumere G (<p) = 0 per n < <p < 2n. Il nostro problema è così ridotto a determinare la funzione V armonica e regolare entro il cerchio di raggio unitario, essendo assegnati i valori al contorno v y=q{cp)=ì g(<p)d<p, per 0<9?<TT, o F= 0, per n<cp < 2n r è ridotto cioè al problema di DIRICHLET per il cerchio. Applicando la formula di POISSON si ottiene allora ossia 0 2n.J l + Q 2 -~2 6 cos((p' <p) V o ' dove p 2 = u 2 4- v 2 ed u e v si possono esprimere in'funzione di x e di y mediante la (10). Infine la funzione U è fornita dalla formula P(x,y) PQ(.X 0,VO)

4^C - Esercitazione recupero n 8

4^C - Esercitazione recupero n 8 4^C - Esercitazione recupero n 8 1 La circonferenza g passa per B 0, 4 ed è tangente in O 0,0 alla retta di coefficiente angolare m= 4 La parabola l passa per A 4,0 ed è tangente in O a g a Determina le

Dettagli

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 7 Problema 1 Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria 001-00 In un piano, riferito a un sistema di assi cartesiani

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

LE COORDINATE CARTESIANE

LE COORDINATE CARTESIANE CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

4^C - Esercitazione recupero n 5

4^C - Esercitazione recupero n 5 4^ - sercitazione recupero n 5 1. onsidera la seguente relazione tra le variabili reali, y: dove a è un parametro reale positivo. 1 1 y = 1 a, a. sprimi y in funzione di e studia la funzione così ottenuta,

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine.

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine. LA RETTA La retta è un insieme illimitato di punti che non ha inizio, né fine. Proprietà: Per due punti del piano passa una ed una sola retta. Nel precedente modulo abbiamo visto che ad ogni punto del

Dettagli

SOLUZIONI COMPITO A. 3. Imponendo la condizione iniziale y(0) = 1 e, si ricava C = 0, quindi la soluzione cercata sarà. y(x) + 1 = exp(e x x2 2 1)

SOLUZIONI COMPITO A. 3. Imponendo la condizione iniziale y(0) = 1 e, si ricava C = 0, quindi la soluzione cercata sarà. y(x) + 1 = exp(e x x2 2 1) SOLUZIONI COMPITO A Esercizio Utilizzando lo sviluppo di Mc Laurin al terzo ordine per il sin t, con t = x 4/, e quello al primo ordine per il log( + t), con t = x, otteniamo e quindi il ite proposto diviene

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Svolgimento degli esercizi sulla circonferenza

Svolgimento degli esercizi sulla circonferenza Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57

Dettagli

9. Nel triangolo ABC, rettangolo in A, gli angoli acuti di vertici B e C misurano rispettivamente b e

9. Nel triangolo ABC, rettangolo in A, gli angoli acuti di vertici B e C misurano rispettivamente b e 4^ - MTEMTI compito n - 07-8 Un settore circolare ha perimetro m ed area 9 m alcola la misura del raggio e dell'angolo al centro (in radianti ed in gradi) partire dal triangolo equilatero (in nero), di

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

DISCUSSIONE DI PROBLEMI GEOMETRICI RISOLTI PER VIA TRIGONOMETRICA

DISCUSSIONE DI PROBLEMI GEOMETRICI RISOLTI PER VIA TRIGONOMETRICA DISCUSSIONE DI PROLEMI GEOMETRICI RISOLTI PER VI TRIGONOMETRIC Problema n 1 Detto il punto medio del segmento C = 4r, nello stesso semipiano disegnare la semicirconferenza di diametro ed il triangolo isoscele

Dettagli

Questionario. Quesito 1. Esame di Stato - Liceo Scientifico. Soluzione. Definito il numero. dimostrare che risulta: ed esprimere. in termini di ed = 1

Questionario. Quesito 1. Esame di Stato - Liceo Scientifico. Soluzione. Definito il numero. dimostrare che risulta: ed esprimere. in termini di ed = 1 Esame di Stato - Liceo Scientifico Quesito 1 Questionario Definito il numero come: dimostrare che risulta: ed esprimere in termini di ed = = 1 (1.1.1) Chiamiamo (1.1.2) = = (1.1.3) ovvero. = = (1.1.4)

Dettagli

4^C - Esercitazione recupero n 6

4^C - Esercitazione recupero n 6 4^C - Esercitazione recupero n 6 1 Sono assegnate le parabole p' e p'' di equazioni rispettivamente: y=x e x= y y a Forniscine la rappresentazione grafica dopo aver determinato, tra l'altro, i loro punti

Dettagli

Par_CircoRiassunto2.notebook. February 27, Conoscenza e comprensione pag. 20 LA PARABOLA

Par_CircoRiassunto2.notebook. February 27, Conoscenza e comprensione pag. 20 LA PARABOLA LA PARABOLA Conoscenza e comprensione pag. 20 (SCHEDA RIASSUNTIA) 1) Definisci la parabola come luogo di punti e dai una descrizione delle caratteristiche geometriche di questa curva R. pag. 75: Parabola

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

4^C - Esercitazione recupero n 1

4^C - Esercitazione recupero n 1 4^C - Esercitazione recupero n 1 1. Il triangolo O è rettangolo in O ed ha l'altezza relativa all'ipotenusa di lunghezza h. a. Ponendo O=x, esprimi per mezzo di h e di x il perimetro del triangolo. Prescindendo

Dettagli

Appunti integrativi per il Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016

Appunti integrativi per il Corso di Metodi Matematici per l Ingegneria A.A. 2015/2016 Appunti integrativi per il Corso di Metodi Matematici per l Ingegneria A.A. 5/6 Marco Bramanti Politecnico di Milano October 8, 5 Applicazioni della prima formula integrale di Cauchy al problema di Dirichlet

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

Carlo Sintini, Problemi di maturità, 1950 Luglio, matematicamente.it Luglio 1950, primo problema

Carlo Sintini, Problemi di maturità, 1950 Luglio, matematicamente.it Luglio 1950, primo problema Luglio 1950, primo problema Risolvere un trapezio isoscele convesso avente le diagonali perpendicolari ai lati obliqui, sapendo che la somma dei quadrati delle misure dei suoi lati è m e la lunghezza di

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Terzo appello 8 Settembre 4 Compito B Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es.:

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

Esame di Stato di Liceo Scientifico P.N.I. a.s Sessione Ordinaria 23 giugno 2005 Q1 Q2 Q3 Questionario

Esame di Stato di Liceo Scientifico P.N.I. a.s Sessione Ordinaria 23 giugno 2005 Q1 Q2 Q3 Questionario 1 Esame di Stato di Liceo Scientifico P.N.I. a.s. 004-00 Sessione Ordinaria 3 giugno 00 Q1 Q Q3 Questionario Q1- Si dimostri che il lato del decagono regolare inscritto in un cerchio è la sezione aurea

Dettagli

( a 2 ) 2 + ( b 2 ) 2 c>0, infatti:

( a 2 ) 2 + ( b 2 ) 2 c>0, infatti: CIRCONFERENZA Definizione Luogo geometrico dei punti del piano equidistanti da un punto fisso C, detto centro. Fissato nel piano un sistema di riferimento cartesiano, la circonferenza di centro C (α,β)

Dettagli

GEOMETRIA ANALITICA Prof. Erasmo Modica

GEOMETRIA ANALITICA Prof. Erasmo Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. 1 Dom Es. 1 Es. Es. 3 Es. 4 Totale Analisi e Geometria 1 Primo appello 16 febbraio 016 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola:

Dettagli

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

la funzione assume valore per qualsiasi valore di x, quindi il suo dominio è R.

la funzione assume valore per qualsiasi valore di x, quindi il suo dominio è R. Data la funzione f (x)=a x 3 +b, trova per quali valori di a e di b il grafico di f (x) passa per i punti (; 1) e ( ; 4). Rappresenta f (x), indicandone il dominio e il codominio. Troca i punti di intersezione

Dettagli

Le coniche retta generatrice

Le coniche retta generatrice Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Tommaso Boggio Sulla funzione potenziale di un doppio strato in un campo sferico o circolare. Bollettino dell Unione Matematica Italiana, Serie 3, Vol. 9 (1954), n.3,

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

LA RETTA NEL PIANO CARTESIANO

LA RETTA NEL PIANO CARTESIANO LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2005

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2005 PROVE SRITTE DI ANALISI MATEMATIA II (V.O.), ANNO 25 Prova scritta del 6/4/25 Si consideri la serie di potenze n=1 2n 2n 1 (2n + 1)!. Dopo aver determinato il suo insieme E di convergenza, si trovi una

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite 1. U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite 1. U.D. N 08 I sistemi di primo grado a due incognite Unità Didattica N 08 I sistemi di primo grado a due incognite 1 U.D. N 08 I sistemi di primo grado a due incognite 01) Coordinate cartesiane 0) I sistemi di primo grado a due incognite 03) Metodo di sostituzione

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Esercizi sulle superfici - aprile 2009

Esercizi sulle superfici - aprile 2009 Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:

Dettagli

2 di quello dela circonferenza data. Scrivere le

2 di quello dela circonferenza data. Scrivere le PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A

Dettagli

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema Settembre 199, primo problema In una data circonferenza di centro O, la corda AB è il lato del quadrato inscritto. Condotta nel punto B la semiretta tangente alla circonferenza che giace, rispetto alla

Dettagli

ESERCIZI DI GEOMETRIA ANALITICA

ESERCIZI DI GEOMETRIA ANALITICA ESERCIZI DI GEOMETRIA ANALITICA 0.1. EQUAZIONE DELLA CIRCONFERENZA 0.1. EQUAZIONE DELLA CIRCONFERENZA Exercise 0.1.1. Si scriva l'equazione della circonferenza che passa per i punti O 0; 0) e A 7; 0)

Dettagli

1 Definizioni e proprietà

1 Definizioni e proprietà Definizioni e proprietà Retta e circonferenza Angoli al centro ed angoli alla circonferenza Equazione della circonferenza nel piano cartesiano 5 Posizioni relative ed asse radicale di due circonfferenze

Dettagli

1 Introduzione alla geometria analitica

1 Introduzione alla geometria analitica 1.1 Il piano cartesiano 1 Introduzione alla geometria analitica Se R è l'insieme di tutti i numeri reali (rappresentabile su una retta), allora R R = R rappresenta il piano euclideo; infatti ciascun punto

Dettagli

Coordinate Cartesiane

Coordinate Cartesiane - - Coordinate Cartesiane Su di una retta r consideriamo un punto, detto origine, un verso positivo indicato con una freccia ed un segmento unitario U. In questo caso la retta r dicesi asse delle ascisse

Dettagli

Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico.

Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico. Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico. Introduzione In matematica la derivata di una funzione è uno dei cardini dellanalisi matematica

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (04/0/00) Università di Verona - Laurea in Biotecnologie - A.A. 009/0 Matematica e Statistica Prova d Esame di MATEMATICA (04/0/00) Università di Verona - Laurea in

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

ESERCIZI FISICA I Lezione

ESERCIZI FISICA I Lezione ESERCIZI FISICA I Lezione 02 2017-03-21 Tutor: Alessandro Ursi alessandro.ursi@iaps.inaf.it ESERCIZIO 1 Una palla è lasciata cadere da un'altezza h = 5 m. Dopo aver toccato terra, rimbalza fino ad un'altezza

Dettagli

Goniometria Domande, Risposte & Esercizi

Goniometria Domande, Risposte & Esercizi Goniometria Domande, Risposte & Esercizi Angoli e Archi. Dare la definizione di grado sessagesimale (DMS). Il grado sessagesimale si definisce come la 36ª parte di un angolo giro. Esso viene indicato con

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti CENNI DI CINEMATICA.1 GENERALITÀ La cinematica studia il moto dei corpi in relazione allo spazio ed al tempo indipendentemente dalle cause che lo producono. Un corpo si muove quando la sua posizione relativa

Dettagli

Appunti di Geometria Analitica. Il sistema di coordinate cartesiane ortogonali nel piano

Appunti di Geometria Analitica. Il sistema di coordinate cartesiane ortogonali nel piano Appunti di Geometria Analitica In questi brevi appunti, richiameremo alcune nozioni di geometria analitica studiate negli anni precedenti: in particolare, rivedremo il concetto di coordinate cartesiane

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

BO CA x 3 BO : OA PC : CA PC OA 2. 3 x 3 1 MD MO PC Applichiamo il teorema di Pitagora al triangolo MDP. (2) y 7x 22x 19

BO CA x 3 BO : OA PC : CA PC OA 2. 3 x 3 1 MD MO PC Applichiamo il teorema di Pitagora al triangolo MDP. (2) y 7x 22x 19 Settembre 1951, primo problema Il triangolo rettangolo AOB ha i cateti OA, OB di lunghezza e 3 rispettivamente. Determinare sull ipotenusa AB un punto P in modo che sia k la somma della sua distanza dal

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (06/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (06/0/03) Università di Verona - Laurea in Biotecnologie

Dettagli

GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1

GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1 GEOMETRIA ANALITICA : FORMULARIO + x 1 Punto medio d'un segmento, y + y 1 Distanza tra due punti ( - x 1 ) + (y - y 1 ) Condizione di appartenenza di un punto P (x p ;y p ) ad una curva di equazione f(x,y)

Dettagli

PNI 2005 QUESITO 1

PNI 2005 QUESITO 1 www.matefilia.it PNI 2005 QUESITO 1 Consideriamo il lato AB del decagono regolare inscritto nella circonferenza e indichiamo con AC la bisettrice dell angolo alla base A. Essendo l angolo in O di 36 (360

Dettagli

Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione Esercizi geometria analitica nel piano Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1. Scrivere le equazioni parametriche delle rette r e s di equazioni cartesiane r : 2x y + = 0

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. Dom 2 Es. Es. 2 Es. Es. 4 Totale Analisi e Geometria Secondo appello 06 luglio 206 Compito B Docente: Numero Alfabetico: Cognome: Nome: Matricola: Prima parte. L insieme (, 0] ammette minimo. F 2.

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che

Dettagli

b 2 4c. Stabiliamo se le seguenti equazioni rappresentano delle circonferenze e, in caso affermativo, determiniamone centro e raggio.

b 2 4c. Stabiliamo se le seguenti equazioni rappresentano delle circonferenze e, in caso affermativo, determiniamone centro e raggio. LA CIRCONFERENZA Rivedi la teoria L'equazione della circonferenza e le sue caratteristiche La circonferenza eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato centro;

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Dinamica del corpo rigido Antonio Pierro Definizione di corpo rigido Moto di un corpo rigido Densità Momento angolare Momento d'inerzia Per consigli, suggerimenti, eventuali errori o altro potete scrivere

Dettagli

Esercizi riepilogativi sulle coniche verso l esame di stato

Esercizi riepilogativi sulle coniche verso l esame di stato Esercizi riepilogativi sulle coniche verso l esame di stato n. 9 pag. 55 Sono date le curve α e β definite dalle seguenti relazioni: α : xy x y + 4 = 0 β : luogo dei punti P (k + ; 1 + k ), k R a) Dopo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Corso Sperimentale P.N.I. Tema di MATEMATICA - 17 giugno 2004

ESAME DI STATO DI LICEO SCIENTIFICO Corso Sperimentale P.N.I. Tema di MATEMATICA - 17 giugno 2004 ESAME DI STATO DI LICEO SCIENTIFICO 00-004 Corso Sperimentale PNI Tema di MATEMATICA - 7 giugno 004 Svolgimento a cura della profssa Sandra Bernecoli e del prof Luigi Tomasi (luigitomasi@liberoit) RISOLUZIONE

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Carlo Sintini, Problemi di maturità, 1949 Luglio, matematicamente.it Luglio 1949, primo problema

Carlo Sintini, Problemi di maturità, 1949 Luglio, matematicamente.it Luglio 1949, primo problema Luglio 1949, primo problema Nel trapezio rettangolo convesso ABCD gli angoli di vertici A e D sono retti e l angolo ACB formato dalla diagonale AC e dal lato CB è di 0. Determinare gli angoli del trapezio

Dettagli

CORREZIONE FORMATIVA 2 ( RETTA IN FORMA PARAMETRICA E FASCI)

CORREZIONE FORMATIVA 2 ( RETTA IN FORMA PARAMETRICA E FASCI) CORREZIONE FORMATIVA 2 ( RETTA IN FORMA PARAMETRICA E FASCI) D1 E' dato il fascio 2x+4y +k(8x+5y 6)=0 trovare le coordinate del centro... Risposta. Le rette base del fascio sono r1 : 2x+4y-=0 r2 : 8x+5y-6=0

Dettagli

Il sistema di riferimento cartesiano

Il sistema di riferimento cartesiano 1 Il sistema di riferimento cartesiano Un sistema di riferimento cartesiano si compone di due semirette orientate, tra loro perpendicolari, dette assi cartesiani. L asse delle ascisse (o delle x), è quello

Dettagli

4^C - Esercitazione recupero n 4

4^C - Esercitazione recupero n 4 4^C - Esercitazione recupero n 4 1 Un filo metallico di lunghezza l viene utilizzato per deitare il perimetro di un'aiuola rettangolare a Qual è l'aiuola di area massima che è possibile deitare? b Lo stesso

Dettagli

UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 06 Luglio 2011

UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 06 Luglio 2011 UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 6 Luglio Gli studenti che devono sostenere l esame da 9 CFU risolvano i quesiti numero 3-4-5-6-7-8-9 Gli studenti che devono sostenere l

Dettagli

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013 Istituto Superiore XXV aprile Pontedera - Prof Francesco Daddi Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 7/0/03 Esercizio Si consideri la funzione e x+ se x < f(x) = 0 se x = x x x se

Dettagli

ALCUNI RICHIAMI GENERALI

ALCUNI RICHIAMI GENERALI ALCUNI RICHIAMI GENERALI 0.1 SUL CONCETTO DI VETTORE La direzione Data una linea retta, è possibile muoversi su questa in due versi opposti: si possono distinguere assegnando a ciascuno di essi un segno

Dettagli

Geometria analitica del piano pag 25 Adolfo Scimone. Equazione della retta perpendicolare ad una retta data passante per un punto

Geometria analitica del piano pag 25 Adolfo Scimone. Equazione della retta perpendicolare ad una retta data passante per un punto Geometria analitica del piano pag 5 Adolfo Scimone Equazione della retta perpendicolare ad una retta data passante per un punto Consideriamo una retta r di equazione r: ax by sia P ( x y), un punto del

Dettagli

Determinare l altezza del triangolo relativa al lato AB e tracciare la circonferenza k avente centro in C e tangente al lato AB.

Determinare l altezza del triangolo relativa al lato AB e tracciare la circonferenza k avente centro in C e tangente al lato AB. www.matefilia.it PNI 006 SESSIONE STRAORDINARIA - PROBLEMA 1 È dato il triangolo ABC in cui: AB = 5, AC = 5 5, tg A =. Determinare l altezza del triangolo relativa al lato AB e tracciare la circonferenza

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Generalità sulle equazioni differenziali ordinarie del primo ordine Si chiama equazione differenziale ordinaria[ ] del primo ordine un equazione nella quale compare y = y e la sua

Dettagli

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it SESSIONE SUPPLETIVA 8 - QUESTIONARIO QUESITO A = (; ) e B = (; ) ; y = 4 sen(x) con x Rappresentiamo la regione R ed un rettangolo inscritto in R avente un lato contenuto nel segmento

Dettagli

Appunti di matematica per le Scienze Sociali Parte 2

Appunti di matematica per le Scienze Sociali Parte 2 Appunti di matematica per le Scienze Sociali Parte 2 1 Funzioni Definizione di funzione. Dati due insiemi non vuoti A e B si chiama funzione di A in B una qualsiasi legge che associa ad ogni elemento x

Dettagli

LA PARABOLA E LE SUE APPLICAZIONI Problema 1 Determinare l'equazione della parabola di vertice V( 2;0) e passante per P(0;4).

LA PARABOLA E LE SUE APPLICAZIONI Problema 1 Determinare l'equazione della parabola di vertice V( 2;0) e passante per P(0;4). LA PARABOLA E LE SUE APPLICAZIONI Prolema 1 Determinare l'equazione della paraola di vertice V( 2;0) e passante per P(0;4). y = ax 2 + x + c 1)l'appartenenza del punto P alla paraola, 2)l'appartenenza

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it ORDINAMENTO 7 - SESSIONE SUPPLETIVA QUESITO 1 Si calcoli il ite della funzione x cosx x sen x, quando x tende a. x cosx x x sen x = [F. I. ] x x cosx x (1 sen x x ) x cosx 1 sen x x =

Dettagli

GEOMETRIA ANALITICA ESERCIZI CON SOLUZIONI

GEOMETRIA ANALITICA ESERCIZI CON SOLUZIONI utore: Enrico Manfucci - 0/0/0 GEOMETRI NLITIC ESERCIZI CON SOLUZIONI. Posizionare nel piano cartesiano e calcolare la distanza delle seguenti coppie di punti: a. (, ) e (, ) I due punti hanno la stessa

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Tino Zeuli Sul moto di una particella elettrizzata, di energia relativistica,in un campo elettromagnetico che si propaga per onde piane. Bollettino dell Unione Matematica

Dettagli

PIANO. AB= ( x B x A ) 2 +( y B y A ) 2 AB= (2 2) 2 +(3 6) 2 =3 AB= 3 6 =3 AB= (5 0) 2 +(7 7) 2 =5. x A. +x B 2 M ( 2 ) y M = =3 2 2 =9 2

PIANO. AB= ( x B x A ) 2 +( y B y A ) 2 AB= (2 2) 2 +(3 6) 2 =3 AB= 3 6 =3 AB= (5 0) 2 +(7 7) 2 =5. x A. +x B 2 M ( 2 ) y M = =3 2 2 =9 2 PIANO 1. Calcolare la distanza tra i punti delle seguenti coppie: Distanza tra due punti A( x A, y A ) e B( x B, y B ) AB= ( x B x A ) 2 +( y B y A ) 2 a. A(1, 2) B(2, 1) AB= (1 2) 2 +(2 1) 2 = 1+1= 2

Dettagli

METODI NUMERICI. Metodo delle differenze finite

METODI NUMERICI. Metodo delle differenze finite METOI NUMERICI Lo sviluppo dei moderni calcolatori ha consentito di mettere a disposizione della scienza e della tecnica formidabili strumenti che hanno permesso di risolvere numerosi problemi la cui soluzione

Dettagli

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta di ANALISI MATEMATICA II - 17 gennaio 2000) vecchio ordinamento COGNOME

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta di ANALISI MATEMATICA II - 17 gennaio 2000) vecchio ordinamento COGNOME CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Prof. A. Avantaggiati (prova scritta di ANALISI MATEMATICA II - 17 gennaio 2000) vecchio ordinamento COGNOME... NOME... Data l'equazione differenziale y 000 +2y

Dettagli

Svolgimento prova di esame anno 2004

Svolgimento prova di esame anno 2004 Svolgimento prova di esame anno 2004 Calcolo delle coordinate cartesiane (x,y) dei punti del rilievo rispetto a sistema di riferimento locale avente origine nella stazione 100 In prima analisi occorre

Dettagli