VELOCITA' CRITICHE FLESSIONALI
|
|
|
- Mariana Battaglia
- 9 anni fa
- Visualizzazioni
Transcript
1 VELOCITA' CRITICHE FLESSIONALI Si consideri un albero privo di massa recante in posizione intermedia un corpo puntiforme di massa "M". Se la massa viene spostata dalla sua posizione di equilibrio in direzione trasversale all'asse dell'albero, il sistema, una volta lascaiato libero di evolvere, inizierà ad oscillare con una pulsazione caratteristica ω n (pulsazione propria del sistema) che può essere stimata assimilando l'albero ad un oscillatore armonico ad 1 g.d.l.: M L ω n := k M dove: k = rigidezza trasversale dell'albero, corrispondente per definizione alla forza applicata in coprispondenza della massa in direzione trasversale, necessaria per produrre uno spostamento unitario del suo punto di applicazione; dalla teoria delle travi: δ F F:= k δ k := 48 E J L 3 Se l'albero viene portato in rotazione con velocità angolare ω, in presenza di una eccentricità "e" della massa (inevitabile nella pratica costruttiva), si produrrà una forza centrifuga pari a: F c := Me ω Tale forza, può essere scomposta su due piani ortogonali (X-Z ed Y-Z), dando luogo a due forze periodiche sfasate tra loro di 90 :
2 F x := Me ω F y := Me ω sin( ω t) Ciascuna delle due forze può essere considerata come una forzante agente sul sistema in grado di produrre, in assenza di smorzamento, un moto periodico della massa sul suo piano di applicazione. Facendo riferimento, ad esempio, al piano X-Z, il moto della massa viene descritto dalla seguente classica equazione di equilibrio dinamico, tipica dell'oscillatore armonico ad 1 g.d.l. (si è ipotizzato, per semplicità, che lo smorzamento sia trascurabile): d M x + kx := Me ω d t dove x(t) è lo spostamento in direzione X della massa in funzione del tempo. Se si ipotizza che il moto della massa consista in una oscillazione armonica di pulsazione pari a quella della forzante si può porre: ( ) xt ( ) := A cos ω t da cui: d xt () dt := ω A Sostituendo si ottiene: M ω A ( ) + ka cos ω t := M ω e da cui: ( k M ω ) A := M ω e Da tale relazione è possibile ottenere l'espressione dell'ampiezza di oscillazione: A := em ω k M ω dividendo numeratore e denominatore per M e ricordando che ω=(k/m) 1/, si ottiene infine: ( ) := e A ω ω ω n ω L'andamento dell'ampiezza di oscillazione in funzione della velocità di rotazione dell'albero è mostrato nella Figura in forma normalizzata.
3 0 10 A/e ω ω n Si nota come l'ampiezza tenda a divergere per ω->ω n. Questo non può sorprendere, dato che un oscillatore armonico non smorzato mostra un'ampiezza di oscillazione infinita in risonanza. Si nota anche che per ω<ω n A è >0, il che indica uno spostamento dell'albero nello stessa direzione della eccentricità. Per ω>ω n, A diviene invece negativo, indicando che l'albero si deflette in direzione opposta a quella dell'eccentricità. Infine, per ω infinitamente grande, A tende ad assumere il valore -e, per cui la massa viene riportata sull'asse effettivo di rotazione (ricentramento).. OSSERVAZIONE 1 La velocità di rotazione ω n, è detta "velocità critica flessionale". Quando l'albero gira, si producono inevitabilmente delle forze periodiche in seguito ad irregolarità di forma (es.: eccentricità) od ad altre cause (es.: irregolarità periodiche nel moto del fluido in una turbina o in un compressore). Le più importanti di tali forze periodiche (quelle caratterizzate da una maggiore ampiezza) sono generalmente quelle che hanno periodo pari a quello di rotazione dell'albero (vale a dire le perturbazioni che si verificano una volta al giro). Avendo tali forze pulsazione pari a quella ω dell'albero, per ω=ω n esse si trovano in risonanza con la pulsazione flessionale naturale dell'albero OSSERVAZIONE In prossimità della risonanza si producono nell'albero rilevanti spostamenti e, di conseguenza, rilevanti tensioni e deformazioni. Un funzionamento prolungato a velocità di rotazione prossime ad ω n risulta quindi generalmente non compatibile con i limiti di integrità e funzionalità dell'albero stesso. Questo non significa, tuttavia, che ω n costituisca un limite superiore alla velocità di rotazione dell'albero. Infatti, non si deve dimenticare che la soluzione ottenuta rappresenta la condizione di regime,
4 che si verifica una volta esaurito il transitorio iniziale. Se l'albero viene portato in rotazione a velocità ω n le sue oscillazioni non divengono istantaneamente molto grandi, ma tendono semplicemente a crescere progressivamente, raggiungendo un livello inaccettabile solo dopo un certo tempo di permanenza al tale velocità. E' pertanto possibile "attraversare" la risonanza per raggiungere velocità di funzionamento maggiori di ω n, purchè tale attraversamento avvenga in maniera sufficientemente rapida. In effetti molte macchine rotanti, ad esempio le turbine a gas ed a vapore operano stabilmente al di sopra della loro velocità critica (funzionamento "sopracritico"). OSSERVAZIONE 3 L'analisi condotta per il piano X-Z può essere ripetuta per il piano Y-Z ottenendo complessivamente le seguenti due leggi del moto: ( ) xt ( ) := A cos ω t ( ) yt ( ) := A sin ω t Dalla loro combinazione, è immediato rendersi conto che la traiettoria effettiva della massa M consiste in un moto circolare di raggio A attorno all'asse effettivo di rotazione. Tale moto è "sincrono" ed in fase con la rotazione dell'albero attorno al suo asse, per cui il moto effettivo di quest'ultimo può essere rappresentato come segue: si immagini in primo luogo di deformare l'albero imprimendo alla massa uno spostamento A nel piano E, in cui giace l'eccentricità. si immagini adesso di imprimere al piano E una rotazione con velocità angolare ω attorno all'asse effettivo di rotazione dell'albero (quello passante per i cuscinetti) E' immediato rendersi conto che, in questo tipo di moto, la deformazione e la tensione agenti in un punto fissato dell'albero si mantengono costanti nel tempo mentre l'albero ruota ad ω=costante.
5
6
7 n
8
Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8)
Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Federico Cluni 3 marzo 205 Fattore di amplificazione in termini di velocità e accelerazione Nel caso l oscillatore elementare sia
Applicazioni delle leggi della meccanica: moto armnico
Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di
OSCILLATORE ARMONICO SEMPLICE
OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato
Equazioni di Eulero del corpo rigido.
Equazioni di Eulero del corpo rigido. In questa nota vogliamo scrivere e studiare le equazioni del moto di un corpo rigido libero, sottoposto alla sola forza di gravità. Ci occuperemo in particolare delle
Fisica per scienze ed ingegneria
Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,
Capitolo 12. Moto oscillatorio
Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre
e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.
8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza
Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com
Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,
Oscillatore semplice: risposta ad eccitazioni arbitrarie. In molte applicazioni pratiche l eccitazione dinamica non è né armonica nè periodica.
Oscillatore semplice: risposta ad eccitazioni arbitrarie In molte applicazioni pratiche l eccitazione dinamica non è né armonica nè periodica. È necessario dunque sviluppare una procedura generale per
Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile
Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,
CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola
CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,
Risposta temporale: esempi
...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:
OSCILLAZIONI TORSIONALI
OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella
Dinamica del punto materiale
Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica
4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];
1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta
Richiami sulle oscillazioni smorzate
Richiami sulle oscillazioni smorzate Il moto armonico è il moto descritto da un oscillatore armonico, cioè un sistema meccanico che, quando perturbato dalla sua posizione di equilibrio, è soggetto ad una
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO VERIFICA DI RIGIDEZZA DI ALBERO
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO 25-6 VERIFICA DI RIGIDEZZA DI ALBERO E' dato l'albero riportato in Figura, recante all'estermità
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )
1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta
Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani
Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il
POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I Appello, 10 luglio 2013
POLITECNICO DI MILNO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 0-3 I ppello, 0 luglio 03 Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori
DINAMICA E STATICA RELATIVA
DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.
Esercizio (tratto dal problema 7.36 del Mazzoldi 2)
Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante
IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE
www.aliceappunti.altervista.org IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE Nel moto circolare uniforme, il moto è generato da una accelerazione centripeta, diretta verso
Dinamica del punto materiale: problemi con gli oscillatori.
Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad
Esercizio 1 Meccanica del Punto
Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa
Sistemi vibranti ad 1 gdl
Università degli Studi di Bergamo Dipartimento di Ingegneria Sistemi vibranti ad 1 gdl - vibrazioni forzate - rev. 1. Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ
OSCILLAZIONI SMORZATE E FORZATE
OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione
Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3)
Lezione 3: Sistemi a più gradi di libertà: sistemi continui 3) Federico Cluni maggio 5 Oscillazioni forzate Si è visto che, nel caso di oscillazioni libere, il moto della trave è dato dalla funzione vx,
In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. d dt
Moti piani su traiettorie qualsiasi In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. n ˆ P ˆ t traiettoria La velocità in ogni punto della
Meccanica del punto materiale
Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro
MOTO CIRCOLARE VARIO
MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO
Cinematica del punto materiale
Cinematica del punto materiale Punto materiale Velocità e accelerazione Moto rettilineo uniforme Moto naturalmente accelerato Moto parabolico Moto armonico Antonio Pierro Per consigli, suggerimenti, eventuali
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio
Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.
Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio
Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.
CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]
Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.
Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale
Meccanica Applicata alle Macchine
Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali
Teorema dell energia cinetica
Teorema dell energia cinetica L. P. 23 Marzo 2010 Il teorema dell energia cinetica Il teorema dell energia cinetica è una relazione molto importante in Meccanica. L enunceremo nel caso semplice di un punto
VIBRAZIONI MECCANICHE. Sistemi vibranti ad un grado di libertà Oscillazioni forzate - Applicazioni
VIBRAZIONI MECCANICHE Sistemi vibranti ad un grado di libertà Oscillazioni forzate - Applicazioni Fondazioni Consideriamo le forze che le macchine, F(t) F cos t durante il loro normale funzionamento, trasmettono
ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi
S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto
SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad
Il moto armonico. Comincio a studiare il moto di quando il corpo passa per il punto in figura 2 :
Il moto armonico 1. Definizione di moto armonico Un punto P si muove di moto circolare uniforme lungo la circonferenza Γ in figura, con velocità angolare. Considero uno dei diametri della circonferenza
Rotazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali
Rotazioni ALTAIR http://metropolis.sci.univr.it Argomenti Propietá di base della rotazione Argomenti Argomenti Propietá di base della rotazione Leggi base del moto Inerzia, molle, smorzatori, leve ed ingranaggi
5.4 Larghezza naturale di una riga
5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,
08. Analisi armonica. Controlli Automatici
8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching
Quesiti dell Indirizzo Tecnologico
Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella
Moto armonico. A.Solano - Fisica - CTF
Moto armonico Moti periodici Moto armonico semplice: descrizione cinematica e dinamica Energia nel moto armonico semplice Il pendolo Oscillazioni smorzate Oscillazioni forzate e risonanza Moto periodico
Risoluzione problema 1
UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta
Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g.
Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Abstract (Descrivere brevemente lo scopo dell esperienza) In questa esperienza vengono studiate le proprieta del
Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1
Formulazione dell equazione del moto Prof. Adolfo Santini - Dinamica delle Strutture 1 Sistema a un grado di libertà In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati
Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia
Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere
Lezione VII Calcolo del volano. Forze alterne d inerzia
Lezione VII Forze alterne d inerzia Dalla relazione ( cos cos ) = = ω α + λ α con m a pari alla massa totale del pistone, prima definita, più la massa m 1 che rappresenta quella parte della biella che,
Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali
Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è
Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.
Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:
Lezione VI Cinematica e dinamica del manovellismo. Cinematica e dinamica di un manovellismo ordinario centrato
Cinematica e dinamica di un manovellismo ordinario centrato C x β l α r Definizioni lunghezza della biella raggio di manovella corsa dello stantuffo r posizione dello stantuffo rispetto al PMS α spostamento
b) DIAGRAMMA DELLE FORZE
DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro
Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema
Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da
Problema (tratto dal 7.42 del Mazzoldi 2)
Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata
1.3 Sistemi non lineari ad 1 grado di libertà. 1.4 Sistemi non lineari a 2 gradi di libertà 1.5 Sistemi multicorpo. 1.6 La dinamica del corpo rigido
V Indice XIII XVII 1 1 12 13 19 21 23 25 26 27 27 34 43 52 54 57 62 64 67 67 69 73 75 79 82 Prefazione Introduzione Cap. 1 Sistemi multi-corpo a 1-n gradi di libertà 1.1 Coordinate cartesiane, gradi di
M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.
Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M
Alcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità.
lcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità. osservazione diretta mostra che il comportamento delle travi
Costruzioni in zona sismica
Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate
Tutorato di Fisica 1 - AA 2014/15
Tutorato di Fisica 1 - AA 014/15 Emanuele Fabbiani 19 febbraio 015 1 Oscillazioni 1.1 Esercizio 1 (TE 31-Gen-01, Ing. IND) Durante un terremoto le oscillazioni orizzontali del pavimento di una stanza provocano
8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente
1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie
Cinematica in due o più dimensioni
Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In
La fisica di Feynmann Meccanica
La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio
Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia
Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro
Capitolo 7 FENOMENI GIROSCOPICI ELEMENTARI
INTRODUZIONE Capitolo 7 FENOMENI GIROSCOPICI ELEMENTARI In questo capitolo vengono presentati alcuni fenomeni che si manifestano nei rotori a struttura giroscopica ed alcune applicazioni basate su tali
Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale
Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Lezione del Corso di Esercitazioni di Laboratorio di Meccanica, Roma, 5 Maggio, 2014 Roberto Bonciani 1, Diparto di Fisica dell
Errata Corrige. Quesiti di Fisica Generale
1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010
ESERCIZIO 1 (Punti 9)
UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data
Lez. 9 Moto armonico
Lez. 9 Moto armonico Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli [email protected] +39-081-676137 2 1 Un
Attuatori. Gli attuatori costituiscono gli elementi che controllano e permettono il movimento delle parti
Attuatori Gli attuatori costituiscono gli elementi che controllano e permettono il movimento delle parti meccaniche di una macchina automatica. Sono una componente della parte operativa di una macchina
MOMENTI DI INERZIA PER CORPI CONTINUI
MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI
Principio di inerzia
Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual
FORMULARIO DI FISICA 3 MOTO OSCILLATORIO
FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo
Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere
Facoltà di Farmacia - Anno Accademico 2014-2015 A 08 Aprile 2015 Esercitazione in itinere Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio
Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità
Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In
CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO
LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA
Controlli Automatici L-A - Esercitazione
Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli
Macchina a regime periodico
Macchina a regime periodico rev. 1.2 J m J v τ, η t r φ motore l m F x, ẋ, ẍ (P.M.E.) p m p a Figura 1: Schema dell impianto di pompaggio Della pompa volumetrica a stantuffo a singolo effetto rappresentata
TEOREMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco)
Capitolo 5 TEOEMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco) 5.1 Teorema di Betti Siano S 1 = {b 1, p 1, û 1 } ed S 2 = {b 2, p 2, û 2 } due differenti sistemi di sollecitazioni agenti sul medesimo
MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2
MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA.2011-2012 prova del 01-02-2013 Problema N.1 Il sistema meccanico illustrato in figura giace nel piano verticale. L asta AB con baricentro G 2 è incernierata
Studio delle oscillazioni di un pendolo fisico
Studio delle oscillazioni di un pendolo fisico Materiale occorrente: pendolo con collare (barra metallica), supporto per il pendolo, orologio, righello. Richiami di teoria Un pendolo fisico è costituito
Oscillazioni smorzate, forzate RISONANZA
Oscillazioni smorzate, forzate RISONANZA 1 Consideriamo un punto materiale P di massa m vincolato ad una guida rettilinea liscia e fissa e soggetto alle seguenti forze: Una forza elastica, esercitata da
Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti
CENNI DI CINEMATICA.1 GENERALITÀ La cinematica studia il moto dei corpi in relazione allo spazio ed al tempo indipendentemente dalle cause che lo producono. Un corpo si muove quando la sua posizione relativa
Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo.
Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. C Si consideri il veicolo rappresentato in figura per il quale valgono le seguenti
CAMPI MAGNETICI ROTANTI
CAMPI MAGNETICI ROTANTI Una fra le più importanti proprietà delle correnti trifasi é quella di generare, se circolanti in un appropriato avvolgimento, un campo magnetico rotante. Si intende con " campo
Costruzioni in zona sismica
Costruzioni in zona sismica Lezione 8 Sistemi a più gradi di liberà: Oscillazioni libere in assenza di smorzamento N equazioni differenziali omogenee accoppiate tramite la matrice delle masse, la matrice
R R condizione di rotolamento. per puro rotolamento
Condizione di puro rotolamento (corpi a sezione circolare): Moto di roto-traslazione in cui il punto di contatto ha velocita (istantanea) nulla Condizione che esclude la possibilita di strisciamento v
1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo;
Prova scritta di Elettromagnetismo e Ottica (CCS Fisica), 21 gennaio 2013 Nel piano x = 0 giace una lastra conduttrice collegata a terra. Nei punti di coordinate (a, a, 0) e (a, a, 0) si trovano due cariche,
M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle
6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva
Indice. 2 Moto in una dimensione 2.1 Spostamento e velocità Accelerazione Moto uniformemente accelerato 37 2.
Indice Prefazione XI 1 Misura e vettori 1.1 Le origini della fisica 2 1.2 Unità di misura 3 1.3 Conversione di unità di misura 6 1.4 Dimensioni delle grandezze fisiche 7 1.5 Cifre significative e ordini
