Distribuzione Weibull
|
|
|
- Orazio Carrara
- 10 anni fa
- Visualizzazioni
Transcript
1 Disribuzione Weibull f() Disribuzione di Weibull Una variabile T ha disribuzione di Weibull di parameri α> β> se la sua densià di probabilià è scria nella forma: f ( ) exp da cui deriva una funzione di probabilià cumulaa inegrabile in forma chiusa con < + F( ) exp La disribuzione di Weibull è molo usaa in ambio ingegnerisico per la sua flessibilià: - per β = è, una esponenziale il negaiva -per β =, è simile ad una log-normale - per 3.5 < β < 4, è simile ad una gaussiana Il percenile si rova inverendo la formula di F(): ln( p ) p
2 Disribuzione di Weibull Variazione della forma di pdf e cdf al variare di β PDF (α = s cos) CDF f() = = = 4 F() = = = 4 β è deo paramero di forma Da noare che F( ) 63.% Disribuzione di Weibull Variazione della forma di pdf e cdf al variare di α PDF (β = cos) CDF f() = 5 = = F() = 5 = = α è deo paramero di scala
3 Disribuzione di Weibull E inolre in grado di descrivere la via dei componeni durane le loro diverse eà : -per β <, il asso di guaso è decrescene -per β =, il asso di guaso è cosane f ( ) f ( ) -per β >, il asso di guaso è crescene h( ) R( ) Variazione della forma della funzione asso di guaso h() al variare di β, (α = s cos) F( ) 8 6 = =.5 = h() = Disribuzione di Weibull La disribuzione di Weibull è caraerizzaa anche dal cosiddeo effeo scala: Se si ha un sisema cosiuio da n componeni idenici in serie, la cui affidabilià è descria da una Weibull di parameri α e β, allora l affidabilià dell inero sisema è descria ancora da una Weibull, di parameri β e α o = α/n /β Infai, R R R3 Rn exp R o R R R 3 R n R o exp n exp o 3
4 Disribuzione di Weibull Disribuzione di Weibull a 3 parameri Così come per l esponenziale negaiva, esise la versione definia per valori di La cui funzione di probabilià cumulaa è espressa da: F ( ) exp con < + Disribuzione di Weibull rao da es.. e. del libro Si consideri della molle sospensione per auo, la cui via a faica pulsane è descria da una legge di Weibull con α=3 cicli e β =. Si calcolino:. I percenili, 5 e 9%. La percenuale di pezzi che si rompe prima di 3. Il asso di guaso a e a 3 cicli 4. Se un auo monasse quese sesse molle su ui e due gli assi, a quale numero di cicli corrisponderebbe la probabilià di cedimeno del % per il sisema complessivo? 4
5 Disribuzione di Weibull rao da es.. e. del libro Si consideri della molle sospensione per auo, la cui via a faica pulsane è descria da una legge di Weibull con α=3 cicli e β =. Si calcolino:. Il percenile 5% ln( p ) p % 5% 9% ln(.) ln(.5) ln(.9) La percenuale di pezzi che si rompe prima di F() exp.5.5% 3 Disribuzione di Weibull rao da es.. e. del libro Si consideri della molle sospensione per auo, la cui via a faica pulsane è descria da una legge di Weibull con α=3 cicli e β =. Si calcolino: 3. Il asso di guaso a e a 3 cicli h h() 4.44E h(3) 3 3 guasi/ciclo 6.66E.6 3 guasi/ciclo (essendo β >, il asso di guaso cresce) 5
6 Disribuzione di Weibull rao da es.. e. del libro Si consideri della molle sospensione per auo, la cui via a faica pulsane è descria da una legge di Weibull con α=3 cicli e β =. Si calcolino: 4. Se un auo monasse quese sesse molle su ui e due gli assi, a quale numero di cicli corrisponderebbe la probabilià di cedimeno del % per il sisema complessivo? Considerando inservibile il sisema quando uno solo dei suoi componeni va fuori uso I vari componeni possono essere ricondoi ad un unico sisema in serie 3 3 o 5 4 n 4 cicli Occorre quindi calcolare il percenile % per il sisema complessivo p ln( p) o % 5 ln(.) cicli 6
METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio
METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi
ESEMPI DI ESERCIZI SU IRPEF ED IRES
ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor
Università di Napoli Parthenope Facoltà di Ingegneria
Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel
Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia
Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui
AFFIDABILITA DEI SISTEMI
AFFIDABILITA DEI SISTEMI STOCASTICI (complessi) Esercizio: Si assuma che i collegamenti tra una centrale elettrica e una città siano costituite da tre linee collegate in serie i cui tempi di funzionamento
Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006
- 4 Teoria della Finanza Aziendale rof. Aruro Capasso A.A. 5-6 Il valore delle A. azioni ordinarie - Argomeni Rendimeni richiesi rezzi delle azioni e ES Cash Flows e valore economico d impresa - 3 Domande
Struttura dei tassi per scadenza
Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:
CENNI DI METODI STATISTICI
Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento
L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere
DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo
Funzioni e loro invertibilità
Funzioni e loro invertibilità Una proposta didattica di Ettore Limoli Definizione di funzione Sono dati due insiemi non vuoti A (dominio) e B (codominio) Diremo che y=f(x) è una funzione, definita in A
Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08
Teoria delle leggi finanziarie Inensià di ineresse L inensià di ineresse relaiva al periodo da x ad y è definia come adimensionale I( xy, ) 1 ixy (, ) γ ( xy, ) = = C y x ( dimensione di empo -1 ) L inensià
Programmazione della produzione a lungo termine e gestione delle scorte
Programmazione della produzione a lungo ermine e gesione delle score Coneso. Il problema della gesione delle score consise nel pianificare e conrollare i processi di approvvigionameno dei magazzini di
LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:
LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:
VALORE EFFICACE DEL VOLTAGGIO
Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra
Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità
Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.
La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management
La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001
CAPACITÀ DI PROCESSO (PROCESS CAPABILITY)
CICLO DI LEZIONI per Progetto e Gestione della Qualità Facoltà di Ingegneria CAPACITÀ DI PROCESSO (PROCESS CAPABILITY) Carlo Noè Università Carlo Cattaneo e-mail: [email protected] 1 CAPACITÀ DI PROCESSO Il
MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)
MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae
Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue
Esercizi del Corso di Statistica Parte I - Variabili Aleatorie Continue 1. Costruire la variabile uniforme U sull intervallo [a, b], con a IR e b IR. 2. Sia X una variabile aleatoria tale che: 0 x < 1
V AK. Fig.1 Caratteristica del Diodo
1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura
6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:
FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +
2 Argomenti introduttivi e generali
1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti
DISTRIBUZIONI DI PROBABILITÀ
Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI
Anno 3. Funzioni: dominio, codominio e campo di esistenza
Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse
Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo
Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1
x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i
NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:
Esercizi di Matematica Finanziaria
Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)
TECNICHE DI SIMULAZIONE
TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione
REGIMI FINANZIARI USUALI: Interessi semplici Interessi composti Interessi anticipati. Giulio Diale
REGIMI FINANZIARI USUALI: Ineressi seplici Ineressi coposi Ineressi anicipai Giulio Diale INTERESSI SEMPLICI I C L ineresse è proporzionale al capiale e alla duraa dell ipiego I = C i Denoinazioni di i:
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema
Lezione 11. Inflazione, produzione e crescita della moneta
Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun
Corso di Analisi Matematica. Polinomi e serie di Taylor
a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli
Affidabilità nel tempo tasso di guasto. h( t) =! dt N dt N ( ) ( ) = =! N N
Affidabilità nel tempo tasso di guasto 1 N=numero componenti N s (t)=numero componenti sopravvissuti al tempo t N f (t)=numero componenti rotti al tempo t N ( ) ( ) s t N f t R( t) = = 1! N N dr( t) 1
DI IDROLOGIA TECNICA PARTE III
FACOLTA DI INGEGNERIA Laurea Specialistica in Ingegneria Civile N.O. Giuseppe T. Aronica CORSO DI IDROLOGIA TECNICA PARTE III Idrologia delle piene Lezione XII: I metodi diretti per la valutazione delle
Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004
Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 200 Esercizio 1 Tre apparecchiature M 1, M 2 e M 3 in un anno si guastano, in maniera indipendente, con probabilità
Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009
Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/
La Funzione Caratteristica di una Variabile Aleatoria
La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione
FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI
CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo
A. Quantità edificatorie e densità territoriale...1
Cara di Urbanisica I Pro.ssa Arch. Fabiola Fraini Cara di Urbanisica I --- a.a. 2003/2004 PROGETTO PER UN AMBITO URBANO NEL QUARTIERE DI CENTOCELLE Laboraorio progeuale annuale INDICAZIONI RIGUARDO LE
Operazioni finanziarie. Operazioni finanziarie
Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli
PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?
PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6
Corso di Automazione Industriale 1. Capitolo 4
Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione
Lezione n.12. Gerarchia di memoria
Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.
COMPORTAMENTO SISMICO DELLE STRUTTURE
COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura
Perché il logaritmo è così importante?
Esempio 1. Perché il logaritmo è così importante? (concentrazione di ioni di idrogeno in una soluzione, il ph) Un sistema solido o liquido, costituito da due o più componenti, (sale disciolto nell'acqua),
FUNZIONE REALE DI UNA VARIABILE
FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A
ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica
1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio
Corrispondenze e funzioni
Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei
Le funzioni reali di variabile reale
Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un
LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche
LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,
MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).
MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica
Si analizza la lavorazione attuale per ricavare dati sulla durata utensile. A questo scopo si utilizza la legge di Taylor:
Esercizio D2.1 Torniura cilindrica eserna Un ornio parallelo è arezzao con uensili in carburo e viene uilizzao per la sgrossaura di barre in C40 da Φ 32 a Φ 28. Con un rapporo di velocià corrispondene
Esame di Stato 2015 - Tema di Matematica
Esame di Stato 5 - Tema di Matematica PROBLEMA Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per ogni minuto
Ripasso sulla temperatura, i gas perfetti e il calore
Ripasso sulla temperatura, i gas perfetti e il calore Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia La temperatura Fenomeni non interpretabili con le leggi della meccanica Dilatazione
COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004
COMPIO DI SEGNALI E SISEMI 8 Dicembre 4 Esercizio Si consideri il modello di stato a tempo discreto descritto dalle seguenti equazioni: x(k + = Ax(k + Bu(k = x(k + u(k, v(k = Cx(k = [ ] x(k, k Z + i Si
La scelta in condizioni di incertezza
La scelta in condizioni di incertezza 1 Stati di natura e utilità attesa. L approccio delle preferenza per gli stati Il problema posto dall incertezza riformulato (state-preference approach). L individuo
3. Quale affermazione è falsa?
1. Quale affermazione è falsa? Se la funzione f) è continua e monotona crescente su R e se f) = 1 e f4) =, allora ha un unico zero nell intervallo, 4) f) non si annulla mai in R f ) > nell intervallo,
Il condensatore. Carica del condensatore: tempo caratteristico
Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie
velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)
V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo
FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.
01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)
I): informazione perfetta: lavoratori e imprese conoscono P e W:
Il Monearismo Il mercao del lavoro secondo i monearisi Conrai a breve ermine si aggiusano velocemene I): informazione perfea: lavoraori e imprese conoscono e W: W i prezzi : da a = 2 W - domanda: da a
Trasformata di Fourier (1/7)
1 rasormaa di Fourier (1/7 + De: Un segnale x( è impulsivo se x ( d < + F : + j X( x( e π d F{ x( }, < < + F -1 + jπ 1 : x( X( e d F { X( }, < < + X( è una rappresenazione di x( nel dominio della requenza
1 Applicazioni Lineari tra Spazi Vettoriali
1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!
Codifiche a lunghezza variabile
Sistemi Multimediali Codifiche a lunghezza variabile Marco Gribaudo [email protected], [email protected] Assegnazione del codice Come visto in precedenza, per poter memorizzare o trasmettere un
La volatilità delle attività finanziarie
4.30 4.5 4.0 4.5 4.0 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.5 3.0 3.5 3.0 3.05 3.00.95.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00.95.90.85.80.75.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00
Capitolo 5. Funzioni. Grafici.
Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato
MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A
MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)
Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:
RISPOSTA NEL DOMINIO DEL TEMPO
RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia
Esponenziali e logaritmi
Istituto d Istruzione Superiore A Tilgher Ercolano (Na) Prof Amendola Alfonso Premessa Esponenziali e logaritmi Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento,
PROGETTO EM.MA PRESIDIO
PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i
Anno 5 4. Funzioni reali: il dominio
Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado
Gestione ed analisi di base dati nell epidemiologia. delle malattie infettive
Università degli Studi di Torino - Facoltà di Medicina Veterinaria Laboratorio di epidemiologia delle malattie infettive Scuola Specializzazione in Sanità Animale, Allevamento e Produzioni Zootecniche
31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando
FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria
(anno accademico 2008-09)
Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato
Programmazione Annuale LICEO ECONOMICO
Programmazione Annuale LICEO ECONOMICO Classe 3 STRUTTURA DELLA PROGRAMMAZIONE ANNUALE I QUADRIMESTRE - MODULO N. 1 STRUMENTI E MODELLI CAPITALIZZAZIONE SEMPLICE Sottomodulo 1 : STRUMENTI E MODELLI: FUNZIONI,
Matematica generale CTF
Equazioni differenziali 9 dicembre 2015 Si chiamano equazioni differenziali quelle equazioni le cui incognite non sono variabili reali ma funzioni di una o più variabili. Le equazioni differenziali possono
G3. Asintoti e continuità
G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei
FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)
1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:
La teoria dell offerta
La teoria dell offerta Tecnologia e costi di produzione In questa lezione approfondiamo l analisi del comportamento delle imprese e quindi delle determinanti dell offerta. In particolare: è possibile individuare
La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1
La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa
IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti
IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti ATTENZIONE Quest opera è stata scritta con l intenzione di essere un comodo strumento di ripasso, essa non dà informazioni
AFFIDABILITA DEI SISTEMI STOCASTICI (semplici)
AFFIDABILITA DEI SISTEMI STOCASTICI (semplici) Un sistema (o uno qualsiasi dei suoi componenti) può essere soggetto a stress casuali. Es: un fusibile in un circuito; una trave di acciaio sotto carico;
I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione
Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora
Analisi statistica delle funzioni di produzione
Analisi statistica delle funzioni di produzione Matteo Pelagatti marzo 28 Indice La funzione di produzione di Cobb-Douglas 2 2 Analisi empirica della funzione di produzione aggregata 3 Sommario Con la
Limiti e continuità delle funzioni reali a variabile reale
Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti
7.2 Indagine di Customer Satisfaction
7.2 Indagine di Customer Satisfaction Il campione L indagine è stata condotta su un campione a più stadi di 795 clienti TIEMME SpA (errore di campionamento +/ 2%) rappresentativo della popolazione obiettivo,
LA CRESCITA DELLE POPOLAZIONI ANIMALI
LA CRESCITA DELLE POPOLAZIONI ANIMALI Riccardo Scipioni Generalmente, con il termine crescita di una popolazione si intende l aumento, nel tempo, del numero di individui appartenenti ad una stessa popolazione.
Università di Parma Facoltà di Ingegneria. Polo Tecnologico Nettuno
Università di Parma Facoltà di Ingegneria Polo Tecnologico Nettuno Guida ai servizi FINALITÀ...2 COORDINATORE...3 SEGRETERIA DIDATTICA E CEDI...4 TUTORI...5 DATI UTILI...6 Finalità L obiettivo di questa
Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA
Termodinamica TERMODINAMICA Cosa è la termodinamica? La termodinamica studia la conversione del calore in lavoro meccanico Prof Crosetto Silvio 2 Prof Crosetto Silvio Il motore dell automobile trasforma
