CARATTERIZZAZIONE RILASSOMETRICA DI VINI ED ACETI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CARATTERIZZAZIONE RILASSOMETRICA DI VINI ED ACETI"

Transcript

1 Università degli Studi di Torino Facoltà di Scienze M.F.N Corso di Laurea Magistrale in Chimica Clinica, Forense e dello Sport TESI DI LAUREA CARATTERIZZAZIONE RILASSOMETRICA DI VINI ED ACETI Candidato: Serena CARELLI (matricola ) Relatore: Prof. Silvio AIME Co- Relatore: Dott. Simona BARONI Controrelatore: Dott. Francesca REINERI Anno accademico

2 CAPITOLO SECONDO NMR E RILASSOMETRIA: PRINCIPI, METODI E TECNICHE SPERIMENTALI Introduzione La risonanza magnetica nucleare ( NMR ) è un metodo spettroscopico usato per osservare la riorientazione degli spin nucleari in un campo magnetico applicato. La spettroscopia NMR ad Alta Risoluzione si è guadagnata un ruolo importante tra i metodi per la caratterizzazione degli alimenti, in virtù della sua abilità pressoché unica nell identificazione ( e quantificazione ) di tutti i più diffusi composti a basso e medio peso molecolare; l utilizzo invece della tecnica NMR a Bassa Risoluzione, pur mancando dell informazione sul chemical shift, permette l acquisizione di un segnale di singolo assorbimento da parte di tutti gli 1 H presenti nel campione. Questo approccio si è dimostrato particolarmente vantaggioso nell investigazione di sistemi a fasi differenti ( solido/ liquido, acqua/ grassi ), dove comunque i tempi di rilassamento del solvente, ottenuti su un range esteso di campi magnetici, recano anche informazioni sulle molecole di soluto disciolte, fondamentali per la caratterizzazione del campione in esame. I nuclei che, per le loro proprietà magnetiche, vengono più comunemente usati nella spettroscopia NMR sono 1 H, 13 C, 19 F, 23 Na e 31 P. 32

3 Il fenomeno della Risonanza Magnetica Nucleare Il nucleo dell atomo ruota attorno al proprio asse ( movimento di spin ) e quindi possiede un momento angolare; essendo carico, possiede anche un momento magnetico N. Ponendo l atomo all interno di un campo magnetico ( B 0 ), l energia d interazione fra il campo esterno e il momento magnetico del nucleo dipenderà dalla loro orientazione relativa ( Figura 2.1 ). Da un punto di vista classico, l azione di B 0 su N è quella di una coppia di forze che tende ad orientarlo parallelamente al campo magnetico. Poichè N ruota su se stesso, la direzione della coppia varia continuamente ed il risultato è che N ruota intorno a B 0 descrivendo un cono di precessione con una frequenza angolare, detta frequenza di Larmor ( L ). B Orbita di precessione ppprecessprecession Dipolo magnetico Figura 2.1: N ruota intorno a B 0 descrivendo un cono di precessione alla frequenza di Larmor. Tale frequenza è caratteristica per ogni nucleo e proporzionale a B 0 : L = B 0 [rad s -1 ] ( = rapporto giromagnetico del nucleo ) Per effetto della quantizzazione i livelli energetici degli atomi sono discreti e, quindi, il numero di orientazioni che un nucleo può assumere è limitato e dipende dal numero quantico di spin nucleare I. La differenza di energia, relativa alle diverse orientazioni, dipende dall intensità del campo magnetico applicato ed è dello stesso ordine di grandezza dell energia delle onde radio. In realtà, ogni nucleo risente di un campo magnetico effettivo diverso dal campo applicato e risuona ad una frequenza caratteristica. Tale campo magnetico effettivo viene descritto 33

4 come B = B 0 (1-), dove è la costante di schermo, dipendente dalla densità e dalla distribuzione elettronica attorno al nucleo; la densità elettronica dipende a sua volta dalla struttura del composto. Il fenomeno del rilassamento Consideriamo il semplice atomo di 1 H per descrivere il fenomeno del rilassamento. All interno del campo B 0 lo spin nucleare dell atomo di idrogeno ( I = 1/ 2 ) può assumere due orientazioni rispetto al campo stesso: spin parallelo, favorito energeticamente, e spin antiparallelo. La separazione energetica tra i due livelli è pari a h B 0. La maggior parte degli spin protonici si dispone parallelamente al campo magnetico esterno generando una magnetizzazione netta ( M 0 ) lungo la direzione di B 0 ( Figura 2.2 ). B0 M0 Figura 2.2: La maggior parte degli spin protonici si dispone parallelamente al campo magnetico esterno generando una magnetizzazione netta ( M 0 ) lungo la direzione di B 0. La differenza di popolazione tra i due livelli dipende dalla loro differenza di energia e dalla temperatura secondo la legge di Boltzmann: N N l u E exp kt N l = numero di spin ad energia minore N u = numero di spin ad energia maggiore k = costante di Boltzmann T = temperatura Inviando un impulso di onde radio, con frequenza uguale a quella di Larmor dei protoni, gli spin entrano in risonanza con la radiazione e quelli energeticamente più poveri assorbono energia, disponendosi in posizione antiparallela. Il numero di spin che invertono la loro orientazione dipende dalla durata dell impulso. Se questa è tale per cui il numero di spin paralleli diventa uguale al numero di spin antiparalleli, la magnetizzazione lungo l asse del campo ( asse z ) diventa nulla ed il vettore di magnetizzazione giace sul piano 34

5 perpendicolare ( piano xy o piano del rilevatore ): si è ottenuta una rotazione del vettore di 90. Se l impulso provoca un inversione del rapporto delle popolazioni si ottiene una rotazione di 180. Al termine dell impulso i protoni ritornano al loro stato iniziale ( rilassamento ) emettendo energia e generando il segnale misurato dagli strumenti NMR. L analisi del segnale e della sua evoluzione nel tempo fornisce informazioni sulla concentrazione protonica e sull intorno molecolare. Il rilassamento, infatti, può avvenire solo attraverso la cessione dell energia assorbita dallo spin nucleare al suo intorno molecolare, che viene definito reticolo; affinché questo trasferimento di energia si possa realizzare è necessario che lo spin nucleare si possa accoppiare con campi magnetici fluttuanti, generati nell intorno molecolare dello spin. Il rilassamento dello spin nucleare è efficace soltanto quando la frequenza di fluttuazione dei campi magnetici del reticolo è pari alla sua frequenza di Larmor. Tempi di rilassamento Si possono definire due tempi di rilassamento per le due componenti, longitudinale e trasversale, del vettore di magnetizzazione. Il primo è il tempo di rilassamento spin- reticolo o longitudinale ( T 1 ) che è il tempo necessario affinché, dopo un impulso a 90, la componente longitudinale ( M z ) della magnetizzazione, allineata lungo la direzione del campo magnetico esterno, ritorni allo stato di equilibrio ( M 0 ): M Z t M 0 t 1 exp T1 Mz M0 Figura 2.3: Variazione della magnetizzazione longitudinale in funzione del tempo. t 35

6 Misurando T 1 in vivo si è osservato che la velocità di rilassamento dei protoni dell acqua libera è diversa da quella dell acqua immobilizzata in sistemi macromolecolari, ad esempio proteine o membrane. Le molecole libere infatti si muovono con velocità più elevate rispetto alla frequenza di Larmor dello spin nucleare ed il fenomeno del rilassamento risulta poco efficace. Il rallentamento del moto, conseguente all interazione dell acqua con un sistema macromolecolare, fa sì che la fluttuazione dei campi che inducono il rilassamento sia più vicina a quella di precessione dei protoni dell acqua, che perciò rilassano più velocemente. Il secondo è il tempo di rilassamento spin- spin o trasversale ( T 2 ) che è il tempo necessario affinché la componente trasversale della magnetizzazione, cioè quella che si trova nel piano xy perpendicolare alla direzione del campo magnetico esterno, torni al valore di equilibrio: My M0 M y t M 0 t exp T2 Figura 2.4: Variazione della magnetizzazione trasversale in funzione del tempo. t Durante questo processo non vi è trasferimento di energia dallo spin al reticolo, ma uno sfasamento degli spin nucleari, generato da uno scambio simultaneo di due spin tra i due livelli energetici; il T 2 quindi rappresenta il tempo necessario affinché due nuclei adiacenti si scambino l orientazione. L energia complessiva del sistema rimane in questo modo costante. E importante sottolineare che i due processi di rilassamento avvengono simultaneamente e che tutti i meccanismi che sono efficaci nel determinare il tempo di rilassamento longitudinale concorrono anche a quello trasversale. Esistono però alcuni meccanismi, ed in particolare tutti quelli relativi ai moti dotati di una componente statica allineata lungo 36

7 l asse del campo magnetico esterno, che influenzano solo il T 2 che così può assumere valori minori o uguali a T 1. t FT Figura 2.5: Processo di rilassamento. Il rivelatore, che è posto sul piano xy, registra un segnale dipendente dal tempo detto FID ( Free Induction Decay ), che verrà poi convertito in un segnale dipendente dalla frequenza attraverso una trasformata di Fourier ( FT ). L evoluzione temporale della componente della magnetizzazione sull asse y è descritta nella Figura 2.5. Processi di rilassamento nella spettroscopia NMR in soluzione Tutte le interazioni cui è soggetto un sistema di spin in soluzione fluttuano nel tempo a causa del moto rotazionale e traslazionale delle particelle: in condizioni isotropiche tuttavia la maggior parte di queste interazioni viene mediata a zero e solo alcune di esse, l interazione con il campo magnetico esterno e l accoppiamento indiretto con altri spin, influenzano l energia del sistema e quindi la frequenza delle transizioni NMR. Tutte le interazioni magnetiche generano sul nucleo un campo magnetico locale che si somma a quello statico esterno e che varia casualmente nel tempo: se queste fluttuazioni avvengono alla frequenza corrispondente alla transizione tra due stati del sistema di spin, il nucleo in esame può scambiare energia e può avvenire una transizione. Ciascuna delle interazioni che hanno queste caratteristiche costituisce dunque un potenziale meccanismo di rilassamento che, dopo una perturbazione, può contribuire a riportare all equilibrio la magnetizzazione. Si può introdurre una funzione che è indice della persistenza dell interazione di uno spin con i campi magnetici locali a cui è sottoposto; essa è denominata funzione di correlazione, F( L, C ), ed è così definita perché mette in relazione la velocità di rilassamento con il quadrato dell energia dell interazione ed è funzione della frequenza di precessione di Larmor e del tempo di correlazione C : T -1 i = F( L, C ) E 2 37

8 Si può dimostrare che la funzione di correlazione ha un andamento di tipo esponenziale ( secondo exp(-t/ C ) ) e che la sua Trasformata di Fourier ( FT ) è rappresentata da una curva lorentziana centrata sullo zero, che definisce l intensità dei campi magnetici locali fluttuanti ad una certa frequenza ( Figura 2.6 ). J() = funzione di densità spettrale -1 C = Fast Motion Limit f(t) FT J() log J() t < 1/ c log Figura 2.6: Ottenimento della funzione di densità spettrale. Il rapporto 1/ C è definito Fast Motion Limit ( FML ) ed indica la frequenza limite alla quale il reticolo può far rilassare il sistema di spin. Se la frequenza di Larmor del nucleo in esame è minore del FML, i moti statistici del reticolo modulano il rilassamento del sistema. Se, invece, la frequenza di Larmor è maggiore del FML, il nucleo non rilassa perché non vede la fluttuazione del sistema. I fenomeni che possono generare un B L fluttuante che può costituire un meccanismo di rilassamento sono i seguenti: interazione dipolare nucleare con altri spin nucleari presenti all interno della molecola o in altre molecole ( d.d. intra ed intermolecolare ); interazione dipolare paramagnetica con spin elettronici spaiati presenti all interno della molecola e in altre specie ( d.d. paramagnetica intra ed intermolecolare ); anisotropia del tensore di schermo ( chemical shielding anisotropy, c.s.a. ); interazione spin rotazionale dovuta all accoppiamento tra momento magnetico nucleare e momento angolare di rotazione della molecola ( s.r. ); interazioni con il gradiente di campo elettrico cui è soggetto il nucleo se questo ha spin >1/2 ( meccanismo quadrupolare, q. ); interazioni scalari dovute ad un accoppiamento indiretto con una specie che ha vita breve; comprendono sia i meccanismi paramagnetici scalari che meccanismi nucleari scalari ( scalar coupling, s.c. ). 38

9 Le costanti di velocità di rilassamento longitudinale o trasversale ( R 1 e R 2 ) misurate sperimentalmente sono la risultante del contributo di tutti i possibili meccanismi di rilassamento: R i = R i ( d.d. ) + R i ( para ) + R i ( c.s.a. ) + R i ( s.r. ) + R i (q. ) + R i ( s.c. ) i = 1, 2 Tra questi verranno di seguito descritti i più importanti. Rilassamento longitudinale dipolo- dipolo Dato un sistema costituito da due nuclei diversi I ed S entrambi con spin 1/ 2 appartenenti alla stessa molecola, i rispettivi dipoli magnetici interagiranno: l andamento nel tempo della magnetizzazione di I z, dopo una perturbazione della magnetizzazione di equilibrio I 0, può essere descritto utilizzando l analisi di Solomon. In sistemi omonucleari, l espressione della velocità R 1 contiene tutti i contributi degli spin interagenti con I che sono stati perturbati durante l esperimento di rilassamento ( contributi di cross- relaxation ). Ovviamente in un sistema reale uno spin non è soggetto ad un unica interazione dipolare; una semplificazione comunemente accettata consiste nel considerare tutte le interazioni come indipendenti e caratterizzate da un unico C, cioè che la velocità di rilassamento R 1 sia la somma dei contributi dovuti a ciascuna interazione. L efficacia del rilassamento longitudinale dipolare intramolecolare dipende quindi: dalla natura del partner del rilassamento attraverso il rapporto giromagnetico dalla distanza tra i due nuclei; dalle densità spettrali. I protoni, con il loro elevato sono la fonte di rilassamento dipolare più comunemente diffusa ed efficace per la maggior parte degli isotopi a spin 1/ 2 nelle molecole. Un elettrone spaiato è anch esso un agente di rilassamento estremamente efficace, come si può evincere dal successivo paragrafo inerente questo meccanismo di rilassamento. Per le interazioni dipolari intramolecolari, il moto che causa le fluttuazioni del campo è il moto rotazionale. E facile prevedere che molecole piccole in soluzioni a bassa viscosità si riorientino velocemente e quindi abbiano corti C ( ~ s ) e T 1 lunghi; al contrario macromolecole o molecole in soluzioni più viscose avranno C più lunghi ( ~ s ) e T 1 più corti. 39

10 Rilassamento per anisotropia del tensore di schermo Il nucleo posto nel campo magnetico esterno costante omogeneo B 0 è soggetto all interazione di Zeeman e ad un campo locale generato dai suoi elettroni che schermano il nucleo stesso dal campo esterno. La distribuzione elettronica però, a meno che il nucleo sia in un sito molecolare ad alta simmetria ( tetraedrica, ottaedrica o cubica ), non è isotropa e dipende dall orientazione della molecola rispetto a B 0. La rotazione della molecola in soluzione produce due effetti: il più importante è una variazione dell energia della transizione NMR, che è funzione dell intorno chimico del nucleo; il secondo è una fluttuazione del campo magnetico locale sperimentato dal nucleo stesso che permette al nucleo di rilassare. La dipendenza di questo meccanismo di rilassamento dal quadrato del campo B 0 consente di aumentarne l efficacia operando ad alti campi, e permette di renderlo dominante rispetto ad altri contributi. La anisotropia del fattore di schermo può essere considerata un indice della direzionalità della densità elettronica attorno ad un atomo: la disomogeneità della distribuzione elettronica porta infatti ad un rilevante contributo del rilassamento via c.s.a., decisamente elevato per i nuclei dei metalli di transizione. Rilassamento per accoppiamento scalare Il contributo di questo meccanismo diventa rilevante solo in particolari condizioni, in quanto la costante di accoppiamento scalare è un paio di ordini di grandezza inferiore rispetto a quella dipolare; quindi in generale il contributo è conseguentemente più piccolo ed è osservabile quando altri meccanismi sono inefficienti. L efficacia del meccanismo s.c. dipende dal verificarsi contemporaneo di condizioni che riguardano sia la differenza delle frequenze di Larmor dei due nuclei, sia il tempo di correlazione, sia la costante di accoppiamento. Rilassamento paramagnetico La presenza di ioni paramagnetici in una soluzione determina notevoli effetti sulla velocità di rilassamento dei nuclei del solvente. Infatti il meccanismo di rilassamento paramagnetico, quando è presente, dà un contributo dominante al meccanismo di rilassamento del nucleo in esame. L'aggiunta di un soluto paramagnetico causa un incremento delle velocità di rilassamento longitudinale e trasversale dei nuclei del solvente. 40

Esperimenti FT-NMR a impulsi

Esperimenti FT-NMR a impulsi Vettore magnetizzazione netta M 0 per un nucleo immerso in un campo magnetico B 0, per indurre la transizione l impulso RF è applicato lungo la direzione dell asse x. Il campo magnetico alternante applicato

Dettagli

Risonanza magnetica nucleare

Risonanza magnetica nucleare Risonanza magnetica nucleare Università di Firenze Corso di Tecnologie Biomediche Lezione del 31 ottobre 2003 Leonardo Bocchi Principi fisici Premessa Modello classico Visualizzazione semplificata Equazione

Dettagli

Risonanza Magnetica Nucleare

Risonanza Magnetica Nucleare Risonanza Magnetica Nucleare Il fenomeno della risonanza magnetica nucleare è legato ad una proprietà p di alcuni nuclei quale lo spin. Lo spin è una proprietà fondamentale come la carica e la massa. Protoni,

Dettagli

1. PRINCIPI GENERALI IL METODO A IMPULSI

1. PRINCIPI GENERALI IL METODO A IMPULSI 1. PRINCIPI GENERALI IL METODO A IMPULSI LA RADIAZIONE EM CAMPO ELETTRICO OSCILLANTE CAMPO MAGNETICO OSCILLANTE Radiofrequenze n = 40-1000 MHz (In pratica: 300 1000 MHz) Lo Spin Nucleare I I = 0, 1/2,

Dettagli

RMN elementi di base

RMN elementi di base RMN elementi di base Carpi 3 aprile 2009 Marco Serafini m.serafini@ausl.mo.it Campo magnetico Campo magnetico terrestre valore medio: 0.05 mt (0.5 Gauss) Magneti permanenti intensità: 5-300 mt (50-3000)

Dettagli

NMR Stato Solido. Non distruttivo. Studio di materiali. Polimeri insolubili, membrane cellulari, materiali ceramici, legno, ossa

NMR Stato Solido. Non distruttivo. Studio di materiali. Polimeri insolubili, membrane cellulari, materiali ceramici, legno, ossa NMR Stato Solido Non distruttivo Solidi cristallini, amorfi, polveri Studio di materiali Polimeri insolubili, membrane cellulari, materiali ceramici, legno, ossa Non richiede preparazione del campione,

Dettagli

INTRODUZIONE ALLA RISONANZA MAGNETICA NUCLEARE

INTRODUZIONE ALLA RISONANZA MAGNETICA NUCLEARE INTRODUZIONE ALLA RISONANZA MAGNETICA NUCLEARE PARTE 1 Corso di Tecniche Chimico fisiche in ambito sanitario dr.ssa Isabella Nicotera Le frequenze NMR si trovano nella regione delle radiofrequenze dello

Dettagli

Risonanza Magnetico Nucleare

Risonanza Magnetico Nucleare Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Risonanza Magnetico Nucleare 21/3/2005 RMN ovvero NMR Spettroscopia RMN permette di - acquisire immagini 2D e 3D di parti del corpo umano ottima risoluzione

Dettagli

RISONANZA MAGNETICA NUCLEARE (N.M.R.) o IMAGING A RISONANZA MAGNETICA (M.R.I.)

RISONANZA MAGNETICA NUCLEARE (N.M.R.) o IMAGING A RISONANZA MAGNETICA (M.R.I.) RISONANZA MAGNETICA NUCLEARE (N.M.R.) o IMAGING A RISONANZA MAGNETICA (M.R.I.) e una tecnica non invasiva impiega radiazioni a bassa frequenza (non ionizzanti!) ν 10-100 MHz (radiofrequenze) sfrutta la

Dettagli

La Risonanza Magnetica Funzionale

La Risonanza Magnetica Funzionale La Risonanza Magnetica Funzionale Facoltà di Farmacia Corso di Laurea in Chimica e Tecnologie Farmaceutiche Attività a scelta dello studente AA 2004-2005 Cosimo Del Gratta Dipartimento di Scienze Cliniche

Dettagli

FENOMENI CHE CAUSANO ALLARGAMENTO DI RIGA NEGLI SPETTRI NMR. Nuclei con momento di quadrupolo; Sostanze paramagnetiche; Processi di scambio.

FENOMENI CHE CAUSANO ALLARGAMENTO DI RIGA NEGLI SPETTRI NMR. Nuclei con momento di quadrupolo; Sostanze paramagnetiche; Processi di scambio. FENOMENI HE USNO LLRGMENTO DI RIG NEGLI SPETTRI NMR Nuclei con momento di quadrupolo; Sostanze paramagnetiche; Processi di scambio. Sostanze paramagnetiche Le sostanze paramagnetiche sono caratterizzate

Dettagli

Risonanza Magnetica Nucleare NMR

Risonanza Magnetica Nucleare NMR Risonanza Magnetica Nucleare NMR Numeri quantici di spin di alcuni nuclei Gli isotopi più abbondanti di C e O non hanno spin Element 1 H 2 H 12 C 13 C 14 N 16 O 17 O 19 F N.ro quantico di Spin 1/2 1 0

Dettagli

FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI

FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI DOWNLOAD Il pdf di questa lezione (ele2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 26/11/2012 DIPOLO ELETTRICO La configurazione costituita

Dettagli

Imaging Anatomico Mediante Risonanza Magnetica (MRI)

Imaging Anatomico Mediante Risonanza Magnetica (MRI) Imaging Anatomico Mediante Risonanza Magnetica (MRI) Renzo Campanella Dipartimento di Fisica Università di Perugia Sezione di Roma I Risonanza Magnetica Nucleare (NMR) Condizione: numero di spin (nucleare)

Dettagli

Si osserva il comportamento dei protoni La proteina è in soluzione

Si osserva il comportamento dei protoni La proteina è in soluzione Risonanza magnetica nucleare Si osserva il comportamento dei protoni La proteina è in soluzione Risonanza magnetica nucleare Si osserva il comportamento dei protoni La proteina è in soluzione Si assegnano

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

Spettroscopia di Risonanza Magnetica Nucleare (NMR)

Spettroscopia di Risonanza Magnetica Nucleare (NMR) È basata sulle interazioni tra la componente magnetica di una radiazione elettromagnetica, dell ordine delle radiofrequenze, con i nuclei delle molecole poste in un forte campo magnetico. 1 L isotopo più

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 7. Il modello a shell

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 7. Il modello a shell Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 7 Il modello a shell Modello a shell Le informazioni ottenute sul potenziale di interazione nucleone-nucleone vengono usate concretamente

Dettagli

La Funzione di Patterson A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

La Funzione di Patterson A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano La Funzione di Patterson Sviluppo in serie di Fourier svolto con i quadrati dei moduli dei fattori

Dettagli

Risonanza magnetica nucleare Principi e applicazioni

Risonanza magnetica nucleare Principi e applicazioni Valentina Domenici, Carlo Alberto Veracini Risonanza magnetica nucleare Principi e applicazioni Edizioni ETS www.edizioniets.com Copyright 2011 EDIZIONI ETS Piazza Carrara, 16-19, I-56126 Pisa info@edizioniets.com

Dettagli

SPETTROSCOPIA UV-VIS LEZIONE 9

SPETTROSCOPIA UV-VIS LEZIONE 9 SPETTROSCOPIA UV-VIS LEZIONE 9 RADIAZIONE ELETTROMAGNETICA La radiazione elettromagnetica è la propagazione nello spazio e nel tempo dell energia elettromagnetica tramite onde e corpuscoli. natura ondulatoria:

Dettagli

NMR e Fenomeni Dinamici

NMR e Fenomeni Dinamici NMR e Fenomeni Dinamici L NMR è molto utile per lo studio di fenomeni dinamici come equilibri, scambi intere intramolecolari,, studi conformazionali,, isomerizzazioni configurazionali etc. Alla base dell

Dettagli

laboratorio di fisica moderna magnetismo e nanostrutture

laboratorio di fisica moderna magnetismo e nanostrutture laboratorio di fisica moderna magnetismo e nanostrutture il comportamento magnetico dei materiali La materia contiene elettroni, che hanno la caratteristica di possedere un momento magnetico: ogni elettrone

Dettagli

ATOMO POLIELETTRONICO. Numero quantico di spin m s

ATOMO POLIELETTRONICO. Numero quantico di spin m s ATOMO POLIELETTRONICO La teoria fisico-matematica che ha risolto esattamente il problema dell atomo di idrogeno non è in grado di descrivere con uguale precisione l atomo polielettronico. Problema: interazioni

Dettagli

Lezione n. 28. EPR Esempi ed applicazioni in campo biochimico e medico. 02/03/2008 Antonino Polimeno 1

Lezione n. 28. EPR Esempi ed applicazioni in campo biochimico e medico. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 28 EPR Esempi ed applicazioni in campo biochimico e medico 02/03/2008 Antonino Polimeno 1 Risonanza paramagnetica elettronica (1) - La Risonanza

Dettagli

Risonanza magnetica di spin: ESR (o EPR) nucleare: RMN/NMR

Risonanza magnetica di spin: ESR (o EPR) nucleare: RMN/NMR Risonanza magnetica di spin: ESR (o EPR) nucleare: RMN/NMR 1944-prima osservazione della ESR 1938-prima osservazione della NMR Tecniche spettroscopiche oggi standard Applicazioni di caratterizzazione e

Dettagli

Risonanza magnetica nucleare

Risonanza magnetica nucleare Risonanza magnetica nucleare Università di Firenze Corso di Tecnologie Biomediche I/II Lezione del 26 novembre 2003 Leonardo Bocchi Sequenze di eccitazione Riepilogo RM Consideriamo degli atomi di idrogeno

Dettagli

Il legame dativo o coordinativo: lo stesso atomo fornisce i due elettroni di legame.

Il legame dativo o coordinativo: lo stesso atomo fornisce i due elettroni di legame. Il legame dativo o coordinativo: lo stesso atomo fornisce i due elettroni di legame. Non necessariamente i due elettroni che concorrono alla formazione del legame devono provenire da entrambi gli atomi

Dettagli

LABORATORIO DI CHIMICA INORGANICA Barbara Milani tel

LABORATORIO DI CHIMICA INORGANICA Barbara Milani tel LABORATORIO DI CHIMICA INORGANICA Barbara Milani milaniba@units.it tel. 040 5583956 Ricevimento: venerdì dalle 15.00 alle 17.00 oppure previo appuntamento Libri di testo: gli stessi proposti dal Prof.

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI Orbitali atomici e loro rappresentazione Le funzioni d onda Ψ n che derivano dalla risoluzione dell equazione d onda e descrivono il moto degli elettroni nell atomo si dicono orbitali

Dettagli

Dalla struttura fine delle transizioni atomiche allo spin dell elettrone

Dalla struttura fine delle transizioni atomiche allo spin dell elettrone Dalla struttura fine delle transizioni atomiche allo spin dell elettrone Evidenze sperimentali Struttura fine delle transizioni atomiche (doppietto( del sodio) Esperimento di Stern-Gerlach Effetto Zeeman

Dettagli

Effetto Zeeman anomalo

Effetto Zeeman anomalo Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli

Dettagli

Particelle Subatomiche

Particelle Subatomiche GLI ATOMI Particelle Subatomiche ELEMENTI I diversi atomi sono caratterizzati da un diverso numero di protoni e neutroni; il numero di elettroni è sempre uguale al numero dei protoni (negli atomi neutri)

Dettagli

RMN elementi di base e sequenze

RMN elementi di base e sequenze RMN elementi di base e sequenze Impianti RM Nuovo Ospedale Civile S.Agostino Estense 19 Giugno e 23 Settembre 2014 - Pavullo Marco Serafini m.serafini@ausl.mo.it Campo magnetico Campo magnetico terrestre

Dettagli

RMN elementi di base e sequenze

RMN elementi di base e sequenze RMN elementi di base e sequenze Marco Serafini m.serafini@ausl.mo.it Campo magnetico Campo magnetico terrestre valore medio: 0.05 mt (0.5 Gauss) Magneti permanenti intensità: 5-300 mt (50-3000) Gauss)

Dettagli

Comune ordine di riempimento degli orbitali di un atomo

Comune ordine di riempimento degli orbitali di un atomo Comune ordine di riempimento degli orbitali di un atomo Le energie relative sono diverse per differenti elementi ma si possono notare le seguenti caratteristiche: (1) La maggior differenza di energia si

Dettagli

7) TECNICHE PER L ALTA RISOLUZIONE NEI SOLIDI

7) TECNICHE PER L ALTA RISOLUZIONE NEI SOLIDI 7) TECNICHE PER L ALTA RISLUZINE NEI SLIDI Spettri in alta risoluzione si ottengono con operazioni di media sulle componenti spaziale (r) o spinoriale (I) dei termini della Hamiltoniana che presentano

Dettagli

NUCLEI NMR ATTIVI E SPIN

NUCLEI NMR ATTIVI E SPIN NUCLEI NMR ATTIVI E SPIN I diversi nuclei risuonano a campi magnetici (e frequenze) molto diversi La frequenza caratteristica a cui risuonano i nuclei dello standard è Ξ Per un nucleo specifico, le variazioni

Dettagli

L effetto del sostituente (induttivo e coniugativo) modifica:

L effetto del sostituente (induttivo e coniugativo) modifica: L effetto del sostituente (induttivo e coniugativo) modifica: 1 la densità elettronica del centro di reazione influenza la REATTIVITA Se da un atomo di ad un altro cambia la distribuzione degli elettroni

Dettagli

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti).

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti). 4. ORBITALI ATOMICI Energia degli orbitali atomici Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti). Il diagramma energetico dell'atomo di idrogeno: i livelli (individuati da n)

Dettagli

TECNICHE SPETTROSCOPICHE

TECNICHE SPETTROSCOPICHE TECNICHE SPETTROSCOPICHE L interazione delle radiazioni elettromagnetiche con la materia e essenzialmente un fenomeno quantico, che dipende sia dalle proprieta della radiazione sia dalla natura della materia

Dettagli

Struttura Elettronica degli Atomi Meccanica quantistica

Struttura Elettronica degli Atomi Meccanica quantistica Prof. A. Martinelli Struttura Elettronica degli Atomi Meccanica quantistica Dipartimento di Farmacia 1 Il comportamento ondulatorio della materia 2 1 Il comportamento ondulatorio della materia La diffrazione

Dettagli

Identificazione di un composto organico:

Identificazione di un composto organico: Identificazione di un composto organico: Laboratorio di Chimica Organica II? O O NO 2 Identificazione di un composto organico: Laboratorio di Chimica Organica II? Analisi elementare: formula bruta (C x

Dettagli

Proprietà elettriche della materia

Proprietà elettriche della materia Proprietà elettriche della materia Conduttori Materiali in cui le cariche elettriche scorrono con facilità. In un metallo gli elettroni più esterni di ciascun atomo formano una specie di gas all interno

Dettagli

Aspetti salienti. 1.Problema di sensibilità 2.Accoppiamenti diretti 1 J e 2 J C(H) 3.Disaccoppiamento 4.Chemical shift

Aspetti salienti. 1.Problema di sensibilità 2.Accoppiamenti diretti 1 J e 2 J C(H) 3.Disaccoppiamento 4.Chemical shift 13 C NMR Aspetti salienti 1.Problema di sensibilità 2.Accoppiamenti diretti 1 J e 2 J C(H) 3.Disaccoppiamento 4.Chemical shift 1. PROBLEMA DELLA SENSIBILITA 12 C non è NMR-attivo: I = 0 13 C possiede spin,

Dettagli

Misura del momento magnetico dell elettrone

Misura del momento magnetico dell elettrone FACOLTÀ Università degli Studi di Roma Tre DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Fisica Misura del momento magnetico dell elettrone Candidato: Andrea Sciandra Matricola 4480 Relatore:

Dettagli

CORSO DI LAUREA IN OTTICA E OPTOMETRIA

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI LAUREA IN OTTICA E OPTOMETRIA Anno Accademico 007-008 CORSO di FISCA ED APPLICAZIONE DEI LASERS Questionario del Primo appello della Sessione Estiva NOME: COGNOME: MATRICOLA: VOTO: /30 COSTANTI

Dettagli

ATOMI MONOELETTRONICI

ATOMI MONOELETTRONICI ATOMI MONOELETTRONICI L equazione di Schrödinger per gli atomi contenenti un solo elettrone (atomo di idrogeno, ioni He +, Li 2+ ) può essere risolta in maniera esatta e le soluzioni ottenute permettono

Dettagli

RM: PRINCIPI FISICI E IMAGING MORFOLOGICO

RM: PRINCIPI FISICI E IMAGING MORFOLOGICO RM: PRINCIPI FISICI E IMAGING MORFOLOGICO TERNI 2/4/2008 Dr. Massimo Principi Dipartimento di Diagnostica per Immagini Azienda Ospedaliera S. Maria - Terni LE VARIE FASI DI ESECUZIONE DI UN ESAME RM I.

Dettagli

14. Transizioni di Fase_a.a. 2009/2010 TRANSIZIONI DI FASE

14. Transizioni di Fase_a.a. 2009/2010 TRANSIZIONI DI FASE TRANSIZIONI DI FASE Fase: qualsiasi parte di un sistema omogenea, di composizione chimica costante e in un determinato stato fisico. Una fase può avere le stesse variabili intensive (P, T etc) ma ha diverse

Dettagli

FORZE INTERMOLECOLARI

FORZE INTERMOLECOLARI FORZE INTERMOLECOLARI Le forze intermolecolari sono forze di attrazione che si stabiliscono tra le molecole che costituiscono una sostanza Determinano la tendenza delle molecole ad avvicinarsi. Per ogni

Dettagli

Cenni sulla struttura della materia

Cenni sulla struttura della materia Cenni sulla struttura della materia Tutta la materia è costituita da uno o più costituenti fondamentali detti elementi Esistono 102 elementi, di cui 92 si trovano in natura (i rimanenti sono creati in

Dettagli

Spettrometria di Risonanza Magnetica Nucleare

Spettrometria di Risonanza Magnetica Nucleare Spettrometria di Risonanza Magnetica Nucleare Tipo di spettroscopia Intervallo di lunghezza d onda Intervallo di numeri d onda (cm -1 ) Tipo di transizione quantica Emissione raggi γ 0.005-1.4Å - nucleare

Dettagli

Descrizione vettoriale dell esperimento di risonanza magnetica

Descrizione vettoriale dell esperimento di risonanza magnetica Descriione vettoriale dell esperimento di risonana magnetica oto di un momento magnetico in campo magnetico. Un momento magnetico (associato ad un momento angolare) in un campo magnetico è soggetto ad

Dettagli

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La luce La LUCE è una forma di energia detta radiazione elettromagnetica che si propaga nello spazio

Dettagli

Rottura di ergodicità in sistemi anisotropi

Rottura di ergodicità in sistemi anisotropi Università Cattolica del Sacro Cuore Sede di Brescia Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Fisica TESI DI LAUREA SPECIALISTICA Rottura di ergodicità in sistemi anisotropi

Dettagli

Cosa e la risonanza magnetica nucleare (NMR)?

Cosa e la risonanza magnetica nucleare (NMR)? Cosa e la risonanza magnetica nucleare (NMR)? E un fenomeno fisico che coinvolge i nuclei atomici e fornisce informazioni alle scale nucleare atomica molecolare - macroscopica. A seconda di come viene

Dettagli

COME SI GENERA IL SEGNALE DI RISONANZA MAGNETICA. Dott. TSRM Luigi Imperiale Dipartimento di Scienze Radiologiche Ospedali Riuniti di Ancona

COME SI GENERA IL SEGNALE DI RISONANZA MAGNETICA. Dott. TSRM Luigi Imperiale Dipartimento di Scienze Radiologiche Ospedali Riuniti di Ancona COME SI GENERA IL SEGNALE DI RISONANZA MAGNETICA Dott. TSRM Luigi Imperiale Dipartimento di Scienze Radiologiche Ospedali Riuniti di Ancona In natura esistono cariche elettriche isolate positive (protoni)

Dettagli

MISURA DELLA SUSCETTIVITA MAGNETICA. Elettroni e particelle nucleari sono dotati di spin. Si orientano in un campo magnetico.

MISURA DELLA SUSCETTIVITA MAGNETICA. Elettroni e particelle nucleari sono dotati di spin. Si orientano in un campo magnetico. MISURA DELLA SUSCETTIVITA MAGNETICA Elettroni e particelle nucleari sono dotati di spin. Si orientano in un campo magnetico. EFFETTO DIAMAGNETICO (elettroni accoppiati) Quando una qualunque sostanza è

Dettagli

RM - riepilogo. Ricostruzione di immagini - Ricostruzione immagini in RM

RM - riepilogo. Ricostruzione di immagini - Ricostruzione immagini in RM Leonardo Bocchi Ricostruzione immagini in RM Retroproiezione - metodo di Fourier RM - riepilogo Consideriamo degli atomi di idrogeno Applichiamo un campo magnetico statico B 0 Si genera un vettore di magnetizzazione

Dettagli

UNIVERSITA DEGLI STUDI DI PARMA

UNIVERSITA DEGLI STUDI DI PARMA UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI FARMACIA Corso di laurea specialistica in Chimica e Tecnologia Farmaceutiche TESI SPERIMENTALE APPROCCI SINTETICI A SUBSTRATI ARRICCHITI IN 13 C E D COME POTENZIALI

Dettagli

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

+ ε (deschermo) ε (schermo) α β α. B o

+ ε (deschermo) ε (schermo) α β α. B o Il fenomeno dell accoppiamento di spin Nuclei non equivalenti possono interagire attraverso i loro momenti di spin Ai fini della indagine strutturale di molecole incognite è necessario sario non solo considerare

Dettagli

L atomo di Bohr. Argomenti. Al tempo di Bohr. Spettri atomici 19/03/2010

L atomo di Bohr. Argomenti. Al tempo di Bohr. Spettri atomici 19/03/2010 Argomenti Spettri atomici Modelli atomici Effetto Zeeman Equazione di Schrödinger L atomo di Bohr Numeri quantici Atomi con più elettroni Al tempo di Bohr Lo spettroscopio è uno strumento utilizzato per

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI I numeri quantici Le funzioni d onda Ψ n, soluzioni dell equazione d onda, sono caratterizzate da certe combinazioni di numeri quantici: n, l, m l, m s n = numero quantico principale,

Dettagli

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare

APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi. CAPITOLO 1 NMR Risonanza Magnetica Nucleare APPUNTI DI RISONANZA MAGNETICA NUCLEARE Dr. Claudio Santi CAPITOLO 1 NMR Risonanza Magnetica Nucleare INTRODUZIONE Nel 1946 due ricercatori, F. Block ed E.M.Purcell, hanno indipendentemente osservato per

Dettagli

Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo.

Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo. Indice Elettrostatica nel vuoto. Campo elettrico e potenziale 1 1. Azioni elettriche 1 2. Carica elettrica e legge di Coulomb 5 3. Campo elettrico 8 4. Campo elettrostatico generato da sistemi di cariche

Dettagli

I materiali metallici sono perfetti?

I materiali metallici sono perfetti? I materiali metallici sono perfetti? Difetti nei solidi cristallini (a) difetti di punto (b) difetti di linea o 1-D (c) difetti di superficie o 2-D (a) Difetti di punto (1) vacanze(posizioni reticolari

Dettagli

Parametri da cui dipendono le costanti di accoppiamento

Parametri da cui dipendono le costanti di accoppiamento Parametri da cui dipendono le costanti di accoppiamento 2 J: può essere negativa o positiva 2 J 12-15 z se Csp 3 ; 2-4 z se Csp 2 Metodi Fisici in Chimica Organica - NMR 3 J: è di solito positiva a) angolo

Dettagli

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica

Dettagli

SPETTROSCOPIA DI RISONANZA MAGNETICA NUCLEARE. Studio dell Equilibrio Cheto-Enolico 2,4- pentadione 3-metil-2,4-pentadione

SPETTROSCOPIA DI RISONANZA MAGNETICA NUCLEARE. Studio dell Equilibrio Cheto-Enolico 2,4- pentadione 3-metil-2,4-pentadione SPETTRSCPIA DI RISNANZA MAGNETICA NUCLEARE Studio dell Equilibrio Cheto-Enolico 2,4- pentadione 3-metil-2,4-pentadione 1 La risonanza magnetica nucleare è una tecnica spettroscopica che permette lo studio

Dettagli

Tutte le tecniche spettroscopiche si basano sulla interazione tra radiazione elettromagnetica e materia.

Tutte le tecniche spettroscopiche si basano sulla interazione tra radiazione elettromagnetica e materia. G. Digilio - principi_v10 versione 6.0 LA SPETTROSCOPIA Tutte le tecniche spettroscopiche si basano sulla interazione tra radiazione elettromagnetica e materia. La Spettroscopia di risonanza magnetica

Dettagli

NMR - 2D INTENSITA VS FREQUENZA INTENSITA VS FREQUENZA1 VS FREQUENZA2

NMR - 2D INTENSITA VS FREQUENZA INTENSITA VS FREQUENZA1 VS FREQUENZA2 NMR - 2D NMR - 2D INTENSITA VS FREQUENZA INTENSITA VS FREQUENZA1 VS FREQUENZA2 NMR - 2D Spettri shift correlati: chemical shift su entrambi gli assi Spettri J correlati: J su un asse TIPO DI ACCOPPIAMENTO:

Dettagli

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton Democrito IV secolo A.C. ATOMO Lavoisier Proust Legge della conservazione della massa Legge delle proporzioni definite Dalton (808) Teoria atomica Gay-Lussac volumi di gas reagiscono secondo rapporti interi

Dettagli

FISICA delle APPARECCHIATURE per RADIOTERAPIA

FISICA delle APPARECCHIATURE per RADIOTERAPIA Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE

Dettagli

Atomo. Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale)

Atomo. Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale) Atomo Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale) 1 Modello di Rutherford: limiti Secondo il modello planetario di Rutherford gli elettroni orbitano

Dettagli

ESERCIZI W X Y Z. Numero di massa Neutroni nel nucleo Soluzione

ESERCIZI W X Y Z. Numero di massa Neutroni nel nucleo Soluzione ESERCIZI 1) La massa di un elettrone, rispetto a quella di un protone, è: a. uguale b. 1850 volte più piccola c. 100 volte più piccola d. 18,5 volte più piccola 2) I raggi catodici sono: a. radiazioni

Dettagli

LA PRODUZIONE DEI RAGGI X

LA PRODUZIONE DEI RAGGI X UNIVERSITA POLITECNICA DELLE MARCHE Facoltà di Medicina e Chirurgia Corso di Laurea in Tecniche di Radiologia Medica, per Immagini e Radioterapia LA PRODUZIONE DEI RAGGI X A.A. 2015-2016 Tecniche di Radiodiagnostica

Dettagli

FONDAMENTI DI CHIMICA

FONDAMENTI DI CHIMICA FONDAMENTI DI CHIMICA LA CHIMICA E UNA BRANCA DELLA SCIENZA CHE STUDIA LA COMPOSIZIONE DELLA MATERIA E DELLE SOSTANZE, LE LORO PROPRIETA E LE LORO TRASFORMAZIONI IN ALTRE SOSTANZE ED ELEMENTI E/O IN ENERGIA

Dettagli

Testi Consigliati. I. Bertini, C. Luchinat, F. Mani CHIMICA, Zanichelli. Qualsiasi altro testo che tratti gli argomenti elencati nel programma

Testi Consigliati. I. Bertini, C. Luchinat, F. Mani CHIMICA, Zanichelli. Qualsiasi altro testo che tratti gli argomenti elencati nel programma Chimica Generale ed Inorganica Testi Consigliati I. Bertini, C. Luchinat, F. Mani CHIMICA, Zanichelli Chimica Organica Hart-Craine Introduzione alla Chimica Organica Zanichelli. Qualsiasi altro testo che

Dettagli

Corso di Macromolecole LO STATO VETROSO

Corso di Macromolecole LO STATO VETROSO LO STATO VETROSO er studiare lo stato fisico del sistema ed introdurre quindi la discussione sullo stato vetroso si può descrivere come esso varia al variare della temperatura. Ø partendo dal cristallo

Dettagli

Struttura dell atomo atomo particelle sub-atomiche - protoni positiva - neutroni } nucleoni - elettroni negativa elemento

Struttura dell atomo atomo particelle sub-atomiche - protoni positiva - neutroni } nucleoni - elettroni negativa elemento Struttura dell atomo L atomo è la più piccola parte dell elemento che conserva le proprietà dell elemento Negli atomi ci sono tre diverse particelle sub-atomiche: - protoni (con carica positiva unitaria)

Dettagli

Una girobussola per Marte Relazione

Una girobussola per Marte Relazione Una girobussola per Marte Relazione Introduzione La girobussola è un dispositivo in grado di fornire l'indicazione dell assetto longitudinale e laterale di un veicolo di esplorazione come ad esempio un

Dettagli

Modi di Trasmissione del Calore

Modi di Trasmissione del Calore Modi di Trasmissione del Calore Trasmissione del Calore - 1 La Trasmissione del calore, fra corpi diversi, o all interno di uno stesso corpo, può avvenire secondo 3 diverse modalità: - Conduzione - Convezione

Dettagli

Transizioni liquido-solido: Aspetti cinetici

Transizioni liquido-solido: Aspetti cinetici Transizioni liquido-solido: Aspetti cinetici Prof.G.Marletta Chimica Fisica dei Materiali II e Laboratorio Laurea Magistrale in Chimica dei Materiali Università di Catania A.A. 2011/2012 1- Caratteri generali

Dettagli

Violazione della Parità

Violazione della Parità Violazione della Parità Raffaele Pontrandolfi Corso di Astrosica e Particelle Elementari Motivazione Per spiegare l asimmetria nell universo tra particelle e antiparticelle bisogna trovare dei processi

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

E. SCHRODINGER ( )

E. SCHRODINGER ( ) E. SCHRODINGER (1887-1961) Elettrone = onda le cui caratteristiche possono essere descritte con un equazione simile a quella delle onde stazionarie le cui soluzioni, dette funzioni d onda ψ, rappresentano

Dettagli

Lezione 5. L equilibrio dei corpi. Lavoro ed energia.

Lezione 5. L equilibrio dei corpi. Lavoro ed energia. Lezione 5 L equilibrio dei corpi. Lavoro ed energia. Statica E la parte della Meccanica che studia l equilibrio dei corpi. Dai principi della dinamica sappiamo che se su un corpo agiscono delle forze allora

Dettagli

Lezioni di Meccanica Quantistica

Lezioni di Meccanica Quantistica Luigi E. Picasso Lezioni di Meccanica Quantistica seconda edizione Edizioni ETS www.edizioniets.com Copyright 2015 EDIZIONI ETS Piazza Carrara, 16-19, I-56126 Pisa info@edizioniets.com www.edizioniets.com

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

1.La forma delle molecole 2.La teoria VSEPR 3.Molecole polari e apolari 4.Le forze intermolecolari 5.Legami a confronto

1.La forma delle molecole 2.La teoria VSEPR 3.Molecole polari e apolari 4.Le forze intermolecolari 5.Legami a confronto 1.La forma delle molecole 2.La teoria VSEPR 3.Molecole polari e apolari 4.Le forze intermolecolari 5.Legami a confronto 1 1. La forma delle molecole Molte proprietà delle sostanze dipendono dalla forma

Dettagli

γ= rapporto magnetogirico

γ= rapporto magnetogirico Proprietà magnetiche dei nuclei I nuclei (massa + carica) sono in rotazione (spin) Metodi Fisici in Chimica Organica - NMR z µ p y x Alla rotazione (spin) è associato un momento angolare, p p = h I( I

Dettagli

CHIMICA: studio della struttura e delle trasformazioni della materia

CHIMICA: studio della struttura e delle trasformazioni della materia CHIMICA: studio della struttura e delle trasformazioni della materia 1 Materia (materali) Sostanze (omogenee) Processo fisico Miscele Elementi (atomi) Reazioni chimiche Composti (molecole) Miscele omogenee

Dettagli

ESPERIMENTI 1D NMR CON SEQUENZE COMPLESSE

ESPERIMENTI 1D NMR CON SEQUENZE COMPLESSE ESPERIMENTI 1D NMR CON SEQUENZE COMPLESSE 13 C NMR VEDREMO ALCUNE SEQUENZE COMPLESSE 1. J-MOD J-MODULATED SPIN ECHO 2. APT ATTACHED PROTON TEST (SPECTRUM EDITING) 3. SPT SELECTIVE POLARIZATION TRANSFER

Dettagli

IL LEGAME A IDROGENO

IL LEGAME A IDROGENO IL LEGAME A IDROGENO Il legame idrogeno è un particolare tipo di interazione fra molecole che si forma ogni volta che un atomo di idrogeno, legato ad un atomo fortemente elettronegativo (cioè capace di

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. L atomo di Bohr 3. Il modello atomico

Dettagli

INTRODUZIONE AI METODI OTTICI

INTRODUZIONE AI METODI OTTICI INTRODUZIONE AI METODI OTTICI Con l espressione Metodi Ottici s intende l insieme delle tecniche analitiche nelle quali interviene una radiazione elettromagnetica. Per avere una sufficiente comprensione

Dettagli