Lo spettro 13 C NMR. La spettroscopia
|
|
|
- Sofia De Angelis
- 8 anni fa
- Visualizzazioni
Transcript
1 Lo spettro 13 C NMR La spettroscopia 13 C NMR presenta un problema connesso a due fattori: 1. Il rapporto giromagnetico basso [γ(c) = JT -1 ; γ(h) = JT -1 ] determina una piccola differenza di popolazione tra i due livelli α e β, con conseguente bassa intensità del segnale 2. La concentrazione del 13 C è bassa (1.1% di abbondanza isotopica) Come conseguenza di questi due fattori si ha una bassa sensibilità strumentale, che determina un basso valore del rapporto segnale/rumore (S/N). La soluzione a questo problema è dato dalla tecnica strumentale FT/NMR, che permette di accumulare n volte lo spettro (n = 2, 4, 8, 16, 32, 64, 128, 256, etc.). Siccome il rumore è un segnale casuale, positivo o negativo, la somma di n spettri determina l'abbassamento del rumore di fondo, con conseguente aumento del rapporto segnale/rumore [S/N = n 1/2 ] Da un punto di vista concettuale lo spettro 13 C non differisce da quello 1 H. Esistono tuttavia importanti differenze. Numero di segnali Come nello spettro 1 H NMR il numero di segnali è determinato dal numero di protoni non equivalenti, così nello spettro 13 C NMR sono presenti tanti segnali quanti sono i carboni nonequivalenti. Per determinare l'equivalenza valgono le regole dettate per la spettroscopia 1 HNMR. Si avranno quindi carboni omotopici ed enantiotopici, equivalenti, e carboni diasterotopici e regioisomerici, non equivalenti. Chemical Shift A differenza dello spettro 1 H NMR, nello spettro 13 C NMR i segnali sono sparsi nell'intervallo ppm.
2 Intensità del segnale A differenza dello spettro 1 H NMR, nello spettro 13 C NMR l'intensità del segnale non è proporzionale al numero di C che l'hanno determinato, quindi l'integrale non fornisce nessun indizio. La non proporzionalità dipende dal fatto che la velocità di rilassamento (a cui è legata l'intensità del segnale) dipende dal tipo di ibridizzazione e dal grado di sostituzione del C. Carboni quaternari danno segnali generalmente di bassa intensità. Accoppiamento spin-spin Quanto detto per l'accoppiamento spin-spin per gli spettri 1 HNMR vale anche per gli spettri 13 CNMR. Un carbonio 13 C risente dei campi magnetici generati dai protoni ad esso legati e dai protoni legati a carboni vicinali. Teoricamente risente anche del campo magnetico generato da un 13 C vicinale, ma la probabilità che un 13 C abbia in posizione vicinale un altro 13 C è molto bassa. Su questa base, il segnale di un 13 C sarà splittato con una costante alta per accoppiamento con i protoni ad esso legato, e con una costante più bassa con i protoni legati ai 13 C vicinali. Così i carboni del CH 3 -CH 2 -OH forniscono uno un quartetto striplato (12 righe) per il CH 3 e un tripletto squadruplicato (12 righe) per il CH 2. Quando in una molecola sono presenti parecchi atomi di C, la complessità di questi segnali, che vanno a sovrapporsi tra loro, determina una grande difficoltà di interpretazione. 2
3 Per risolvere questo problema si ricorre ad una soluzione strumentale di permette di ottenere lo spettro disaccoppiato. E' possibile acquisire due tipi di spettri disaccoppiati: a) Off Resonance Decoupling: elimina tutti gli accoppiamenti, tranne quelli con gli idrogeni direttamente legati. Nel caso del CH 3 -CH 2 -OH i due carboni si presenterebbero uno come un quartetto, l'altro come un tripletto. Nell' esempio seguente si vede lo spettro off-resonance del: 2-isopropil-5-metilcicloesanolo b) Broad Band Decoupling: elimina tutti gli accoppiamenti. Nel caso del CH 3 -CH 2 -OH i due carboni si presenterebbero ciascuno come un singoletto. Questa è la tecnica più usata, per cui gli spettri 13 C NMR sono normalmente formati da una serie di singoletti, uno per ciascun atomo (o gruppo di atomi di C equivalenti). Come detto sopra, l' intensità non corrisponde al numero di atomi che hanno generato il segnale. 3
4 Che informazioni si traggono da uno spettro 13C NMR totalmente disaccoppiato? I chemical shift dipendono dal tipo di sostituenti che sono presenti in α, β, e γ. L'effetto dei sostituenti è additivo, per cui è possibile predire con un buon livello di confidenza il chemical shift di un carbonio facendo la sommatoria dei contributi determinati dai sostituenti presenti nelle varie posizioni (consultando apposite tabelle!) e confrontando il valore calcolato con il valore trovato. Con una tecnica strumentale chiamata DEPT (Distortionless Enhancement by Polarization Transfer) è possibile distinguere i vari tipi di carbonio (sp 3, sp 2, sp, quaternari). Generalmente viene utilizzata una sequenza di impulsi che permette di acquisire 3 diversi spettri che contengono segnali provenienti da CH e CH 3 ; i segnali dei CH 2 vengono visualizzati come negativi, mentre i C quaternari scompaiono dallo spettro. Esempio: la 2-butanoil-6-metossinaftalina presenta 15 righe (primo spettro). Utilizzando la tecnica DEPT si ottiene il secondo spettro, in cui sono visibili come picchi positivi i segnali dei CH 3 e CH, mentre in negativo si osservano i segnali dei CH 2. I picchi dei carboni quaternari scompaiono. E' immediato quindi fare le seguenti attribuzioni: δ 17 (metile della catena propilica), 19.5 (metilene), 40.5 (metilene), 58 (metile del gruppo metossi), 106, 120, 126, 128, 130, 132 (CH aromatici), 129, 134, 138, 160 (C quaternari aromatici), 200 (C carbonilico). Variando i parametri strumentali si ottiene il terzo spettro, in cui sono visibili solo i segnali dei CH. A δ 77.0 si osserva un segnale, presente in tutti gli spettri registrati usando deuterocloroformio come solvente. Questo segnale è dovuto al carbonio quaternario del CDCl 3, che accoppia con il deuterio. I parametri utilizzati per registrare lo spettro in Broad Band Decoupling annullanno gli accoppiamenti C/H, ma non quelli C/D!! Poichè il deuterio ha spin 1 (s = -1, 0, +1) l'interazione del campo magnetico esterno con il momento magnetico del deuterio stripla gli stati α e β del 4
5 carbonio, per cui sono possibili 3 transizioni di uguale probabilità. Si ottengono 3 righe di intensità 1:1:1. L'analisi dei chemical shift dello spettro 13 C NMR e il confronto con lo spettro DEPT permette quindi di conoscere quali carboni sono presenti nella molecola. 5
6 Consideriamo gli spettri più significativi dei prodotti sintetizzati in laboratorio: 1.Magneson Spettro e DEPT simulati. Nel DEPT CH e CH 3 in negativo 6
7 2. 2-metilcicloesanolo Spettro DEPT simulato. CH e CH 3 in negativo 3. 2-metilcicloesanone Spettro DEPT simulato. CH e CH 3 in negativo 7
8 4. Canfora Spettro DEPT simulato. CH e CH 3 in negativo 5. Canfene Spettro DEPT simulato. CH e CH 3 in negativo 8
9 6. Isoborneolo Spettro DEPT simulato. CH e CH 3 in negativo 9
10 7. 2-(Fenilmetilene)-6-metilcicloesanone 10
11 8. Dimetil 2-esilmalonato Spettro DEPT simulato. CH e CH 3 in negativo 9. Anidride dell'acido 4,5-dicarbossicicloesene 11
12 10. 3-Propil-5-acetossi-5-fenil-2(2H)furanone 12
13 11. Dimedone 13
14 14
Spettroscopia di Risonanza Magnetica Nucleare (NMR)
È basata sulle interazioni tra la componente magnetica di una radiazione elettromagnetica, dell ordine delle radiofrequenze, con i nuclei delle molecole poste in un forte campo magnetico. 1 L isotopo più
Aspetti salienti. 1.Problema di sensibilità 2.Accoppiamenti diretti 1 J e 2 J C(H) 3.Disaccoppiamento 4.Chemical shift
13 C NMR Aspetti salienti 1.Problema di sensibilità 2.Accoppiamenti diretti 1 J e 2 J C(H) 3.Disaccoppiamento 4.Chemical shift 1. PROBLEMA DELLA SENSIBILITA 12 C non è NMR-attivo: I = 0 13 C possiede spin,
Lo spettro 1 H NMR. 2. i protoni non sono simmetrici rispetto ad un piano di simmetria. Possono essere equivalenti o non-equivalenti.
Lo spettro 1 H NMR Protoni magneticamente equivalenti e non-equivalenti. Come si è detto nell'introduzione alla spettroscopia NMR, uno spettro al protone ( 1 H NMR) è costituito da tanti segnali quanti
NUCLEI NMR ATTIVI E SPIN
NUCLEI NMR ATTIVI E SPIN I diversi nuclei risuonano a campi magnetici (e frequenze) molto diversi La frequenza caratteristica a cui risuonano i nuclei dello standard è Ξ Per un nucleo specifico, le variazioni
1. INTRODUZIONE. CAPITOLO 7 NMR Spettroscopia 13 C-NMR
CAPITOLO 7 NMR Spettroscopia 13 C-NMR 1. INTRODUZIONE L isotopo più abbondante del carbonio è il C-12 che ha spin uguale a zero e non può pertanto dar luogo a risonanza magnetica nucleare. L isotopo C-13
L effetto del sostituente (induttivo e coniugativo) modifica:
L effetto del sostituente (induttivo e coniugativo) modifica: 1 la densità elettronica del centro di reazione influenza la REATTIVITA Se da un atomo di ad un altro cambia la distribuzione degli elettroni
+ ε (deschermo) ε (schermo) α β α. B o
Il fenomeno dell accoppiamento di spin Nuclei non equivalenti possono interagire attraverso i loro momenti di spin Ai fini della indagine strutturale di molecole incognite è necessario sario non solo considerare
Parametri da cui dipendono le costanti di accoppiamento
Parametri da cui dipendono le costanti di accoppiamento 2 J: può essere negativa o positiva 2 J 12-15 z se Csp 3 ; 2-4 z se Csp 2 Metodi Fisici in Chimica Organica - NMR 3 J: è di solito positiva a) angolo
Spettroscopia NMR Interazioni spin-spin
Spettroscopia NMR Interazioni spin-spin meno schermato più schermato H sch H sch H eff H eff Energia relativa Energia assorbita B 0 Accoppiamento tra nuclei Energia relativa Energia assorbita H A Accoppiamento
La molecola è: CH 3 CH 2 CH 2 CH 2 CH 3
ESERCIZI DI NMR La molecola è: CH 3 CH 2 CH 2 CH 2 CH 3 Lo spettro presenta solo segnali a campi molto alti relativi a H legati a C sp 3 di tipo alchilico e tutti primari o secondari. Di conseguenza si
ESPERIMENTI 1D NMR CON SEQUENZE COMPLESSE
ESPERIMENTI 1D NMR CON SEQUENZE COMPLESSE 13 C NMR VEDREMO ALCUNE SEQUENZE COMPLESSE 1. J-MOD J-MODULATED SPIN ECHO 2. APT ATTACHED PROTON TEST (SPECTRUM EDITING) 3. SPT SELECTIVE POLARIZATION TRANSFER
Spettroscopia 13 C NMR
L analisi degli spettri 13 C NMR non differisce molto da quella dell 1 H. La principale differenza risiede nella minore sensibilità osservata nella registrazione degli d spettri 13 C che pertanto richiedono
Informazioni che si possono ricavare da uno spettro protonico
Informazioni che si possono ricavare da uno spettro protonico Per interpretare uno spettro 1 H NMR bisogna: 1) Contare il numero di picchi che corrispondono agli idrogeni fisicamente diversi nella molecola.
Risonanza Magnetica Nucleare NMR
Risonanza Magnetica Nucleare NMR Numeri quantici di spin di alcuni nuclei Gli isotopi più abbondanti di C e O non hanno spin Element 1 H 2 H 12 C 13 C 14 N 16 O 17 O 19 F N.ro quantico di Spin 1/2 1 0
Chemical shifts di protoni (CH 3, CH 2 o CH) in posizione α rispetto ad un sostituente
Chemical shifts di protoni (C 3, C 2 o C) in posizione α rispetto ad un sostituente 32 (continua) 33 Chemical shifts dei protoni di benzeni monosostituiti 34 (contunua) 35 La conseguenza della NON dipendenza
Esercizio 2 Soluzione
Esercizio 2 Soluzione Poiché il testo non ci fornisce la formula molecolare del composto incognito, per prima cosa dobbiamo ricavarla a partire dai dati dell analisi elementare. Con questa tecnica otteniamo
NMR e Fenomeni Dinamici
NMR e Fenomeni Dinamici L NMR è molto utile per lo studio di fenomeni dinamici come equilibri, scambi intere intramolecolari,, studi conformazionali,, isomerizzazioni configurazionali etc. Alla base dell
SPETTROSCOPIA DI RISONANZA MAGNETICA NUCLEARE. Studio dell Equilibrio Cheto-Enolico 2,4- pentadione 3-metil-2,4-pentadione
SPETTRSCPIA DI RISNANZA MAGNETICA NUCLEARE Studio dell Equilibrio Cheto-Enolico 2,4- pentadione 3-metil-2,4-pentadione 1 La risonanza magnetica nucleare è una tecnica spettroscopica che permette lo studio
La spettroscopia NMR può dare una un grande numero di informazioni sulla struttura di molecola organiche. Esempio di uno spettro NMR
La spettroscopia di risonanza magnetica nucleare (NMR, dall inglese Nuclear Magnetic Resonance) sfrutta la differenza di energia che i vari stati di spin nucleari possono assumere in presenza di un campo
ACCOPPIAMENTO DI SPIN
ACCOPPIAMENTO DI SPIN ACCOPPIAMENTO INDIRETTO (SCALARE) Interazione magnetica fra nuclei Mediato dagli elettroni di legame Misurato dalla J (Hz) costante di accoppiamento Termine di contatto di Fermi Contatto
γ= rapporto magnetogirico
Proprietà magnetiche dei nuclei I nuclei (massa + carica) sono in rotazione (spin) Metodi Fisici in Chimica Organica - NMR z µ p y x Alla rotazione (spin) è associato un momento angolare, p p = h I( I
NMR bidimensionale (2D NMR)
NMR bidimensionale (2D NMR) Un normale spettro NMR (detto anche NMR monodimensionale o 1D NMR) è il grafico di una intensità in funzione di una frequenza (ν). Int. ν È possibile realizzare anche spettri
Determinazione NMR della tatticità di un polimero
Corso di Laurea Magistrale in Chimica Industriale.: 2013/2014 Spettroscopie pplicate Determinazione NMR della tatticità di un polimero Con il termine tatticità si indica la configurazione stereochimica
ESERCIZI NMR. 1. La realizzazione di un tomografia (imaging) NMR è più o meno pericolosa per la persona di una tomografia PET?
ESERCIZI NMR A SPUNTI DI RIFLESSIONE 1. La realizzazione di un tomografia (imaging) NMR è più o meno pericolosa per la persona di una tomografia PET? 2. Come si spiega il fatto che l adozione della tecnica
Spettroscopia 2D NMR. Uno spettro 1D NMR: intensità in funzione della frequenza. Uno spettro 2D NMR: intensità in funzione di due frequenze.
Spettroscopia 2D NMR Un normale spettro NMR (detto anche NMR monodimensionale o 1D NMR, figura in alto) è il grafico di una intensità in funzione di una frequenza (ν). È possibile realizzare anche spettri
Facoltà di Scienze M.F.N.
Facoltà di Scienze M.F.N. Laboratorio di Chimica rganica II Anno Accademico. Relazione Gruppo: Modello Modello: a cura di V. Lucchini, M. Selva 1 Generale. + Tutti i composti impiegati nelle sintesi descritte
FENOMENI CHE CAUSANO ALLARGAMENTO DI RIGA NEGLI SPETTRI NMR. Nuclei con momento di quadrupolo; Sostanze paramagnetiche; Processi di scambio.
FENOMENI HE USNO LLRGMENTO DI RIG NEGLI SPETTRI NMR Nuclei con momento di quadrupolo; Sostanze paramagnetiche; Processi di scambio. Sostanze paramagnetiche Le sostanze paramagnetiche sono caratterizzate
Risonanza magnetica di spin: ESR (o EPR) nucleare: RMN/NMR
Risonanza magnetica di spin: ESR (o EPR) nucleare: RMN/NMR 1944-prima osservazione della ESR 1938-prima osservazione della NMR Tecniche spettroscopiche oggi standard Applicazioni di caratterizzazione e
CHIMICA: studio della struttura e delle trasformazioni della materia
CHIMICA: studio della struttura e delle trasformazioni della materia 1 Materia (materali) Sostanze (omogenee) Processo fisico Miscele Elementi (atomi) Reazioni chimiche Composti (molecole) Miscele omogenee
ψ = Il carbonio (Z=6) - 2 elettroni equivalenti nello stato 2p - la funzione d onda globale deve essere antisimmetrica tripletto di spin, S=1
s 1s s 1s p + p o p - configurazione elettronica del C nello stato fondamentale di tripletto di spin [He] (s) (p) p + p o p - configurazione elettronica del C nello stato eccitato di singoletto di spin
Risonanza Magnetica Nucleare
Risonanza Magnetica Nucleare Il fenomeno della risonanza magnetica nucleare è legato ad una proprietà p di alcuni nuclei quale lo spin. Lo spin è una proprietà fondamentale come la carica e la massa. Protoni,
Diametro del nucleo: m. Diametro dell atomo: m
Diametro del nucleo: 10 15 m Diametro dell atomo: 10 9-10 10 m The nuclear atom Thomson (Premio Nobel per la Fisica nel 1907) scopre l elettrone nel 1897 Rutherford (Premio Nobel per la Chimica nel 1908)
Campione sciolto in un solvente (deuterato) e. posto in un tubo. di vetro a pareti sottili di diametro di 5 mm e lungo circa 20 cm
posto in un tubo Campione sciolto in un solvente (deuterato) e di vetro a pareti sottili di diametro di 5 mm e lungo circa 20 cm o spettrometro NMR è formato da alcuni mponenti fondamentali: un magnete,
SPETTROSCOPIA UV-VIS LEZIONE 9
SPETTROSCOPIA UV-VIS LEZIONE 9 RADIAZIONE ELETTROMAGNETICA La radiazione elettromagnetica è la propagazione nello spazio e nel tempo dell energia elettromagnetica tramite onde e corpuscoli. natura ondulatoria:
NMR Stato Solido. Non distruttivo. Studio di materiali. Polimeri insolubili, membrane cellulari, materiali ceramici, legno, ossa
NMR Stato Solido Non distruttivo Solidi cristallini, amorfi, polveri Studio di materiali Polimeri insolubili, membrane cellulari, materiali ceramici, legno, ossa Non richiede preparazione del campione,
Spettroscopia NMR (Risonanza Magnetica Nucleare)
Spettroscopia NMR (Risonanza Magnetica Nucleare) studia l assorbimento della radiazione a radiofrequenze da parte di molecole quando i loro atomi sono orientati da un campo magnetico applicato. rispetto
SISTEMI DI SPIN E COSTANTE DI ACCOPPIAMENTO. Corso Metodi Fisici in Chimica Organica Prof. Renzo LUISI Uniba. vietata la vendita
SISTEMI DI SPIN E COSTANTE DI ACCOPPIAMENTO Accoppiamento di spin Definizione dei sistemi di spin Nuclei chimicamente non-equivalenti vengono identificati dalle lettere A, B, C. X..etc. L attribuzione
Aromaticità Un composto si definisce aromatico se possiede un anello di elettroni chiuso.
Aromaticità Un composto si definisce aromatico se possiede un anello di elettroni chiuso. E anche detto aromatico, quando tramite i seguenti criteri soddisfa la regola di ückel: 1. I composti aromatici
INTERPRETAZIONE DEGLI SPETTRI IR
INTERPRETAZIONE DEGLI SPETTRI IR Anche se non esistono gruppi di regole per la interpretazione completa degli spettri infrarossi, si è trovato che possono essere utili alcune linee-guida generali. 1. Cominciare
COMPETENZE ABILITÀ CONOSCENZE. descrivere la. Comprendere ed applicare analogie relative ai concetti presi in analisi. struttura.
ca descrivere la struttura dell atomo, la tavola periodica e le sue caratteristiche per spiegare le differenze tra i vari tipi di legami, descrivendoli e interpretandoli alla luce degli elettroni di valenza
ESERCIZI SPETTROMETRIA DI MASSA
ESERCIZI SPETTROMETRIA DI MASSA A SPUNTI DI RIFLESSIONE 1. In cosa differiscono le tecniche soft da quelle strong? 2. Con quali tecniche si hanno maggiori probabilità di ottenere ioni molecolari? 3. Per
Risonanza Magnetico Nucleare
Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Risonanza Magnetico Nucleare 21/3/2005 RMN ovvero NMR Spettroscopia RMN permette di - acquisire immagini 2D e 3D di parti del corpo umano ottima risoluzione
Risonanza Magnetica Nucleare (NMR)
Risonanza Magnetica Nucleare (NMR) La spettroscopia di risonanza magnetica nucleare (NMR, dall inglese Nuclear Magnetic Resonance) sfrutta la differenza di energia che i vari stati di spin nucleari possono
4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati
4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi Accanto allo spettro continuo che i corpi emettono in ragione del loro stato termico, si osservano spettri discreti che sono caratteristici
Spettroscopia di Risonanza Magnetica Nucleare (NMR)
È basata sulle interazioni tra la componente magnetica di una radiazione elettromagnetica, dell ordine delle radiofrequenze, con i nuclei delle molecole poste in un forte campo magnetico. Permette di ottenere
EQUILIBRI ACIDO-BASE Trattamento grafico Diagrammi Logaritmici Costruzione della matrice comune a tutti i diagrammi logaritmici: Per definizione, log [H 3 O + ] = ph e log [OH ] = ph 14, per cui log [H
Risonanza magnetica nucleare protonica (NMR - PMR)
Risonanza magnetica nucleare protonica (NMR - PMR) Basi fisiche I nuclei degli atomi hanno un movimento di rotazione intorno a se stessi (spin). Posto che ogni carica dotata di moto genera un campo magnetico,
INTRODUZIONE ALLA SPETTROSCOPIA NMR
Mauro Tonellato INTRODUZIONE ALLA SPETTROSCOPIA NMR www.pianetachimica.it Basi teoriche della spettroscopia NMR www.pianetachimica.it Premessa La spettroscopia di Risonanza Magnetica Nucleare (NMR) è una
La spettroscopia EPR
La spettroscopia EPR Metodi Chimici Gli intermedi radicalici nelle reazioni chimiche sono di solito così altamente reattivi da precludere la loro individuazione o il loro isolamento attraverso metodi fisici.
Lezione n. 26. Principi generali della spettroscopia IR. 02/03/2008 Antonino Polimeno 1
Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 26 Principi generali della spettroscopia IR 02/03/2008 Antonino Polimeno 1 Spettroscopia infrarossa (1) - La spettroscopia infrarossa studia
Aldeidi e chetoni. 1) Rottura α 2) Rottura i. Più pronunciate nei chetoni. 3) Rottura β con trasposizione di H in γ (McLafferty)
Aldeidi e chetoni Hanno potenziale di ionizzazione inferiore a quello degli alcooli dunque lo ione molecolare è più intenso e più facilmente osservabile anche in aldeidi e chetoni superiori. 1) Rottura
Idrocarburi Saturi. Reazioni
Idrocarburi Saturi Reazioni Fonti ed usi Gli alcani lineari, ramificati e ciclici si ottengono principalmente dalla lavorazione (frazionamento, cracking, etc.), del petrolio. Fonti ed usi Gli alcani, soprattutto
Le sostanze chimiche
Le sostanze chimiche Ingredienti base della materia La materia si presenta con diverse forme. Accade perché esistono moltissimi «ingredienti di base» che mescolandosi tra loro danno innumerevoli combinazioni.
La datazione mediante radioisotopi
: Le trasformazioni nucleari: La datazione mediante radioisotopi Lezioni d'autore VIDEO Premessa (I) I processi radioattivi sono reazioni che dipendono dalla struttura nucleare degli atomi. Il rapporto
Spettroscopia NMR (Risonanza Magnetica Nucleare)
Spettroscopia NMR (Risonanza Magnetica Nucleare) studia l assorbimento della radiazione a radiofrequenze da parte di molecole quando i loro atomi sono orientati da un campo magnetico applicato. rispetto
La radiazione infrarossa si trova nella parte dello spettro elettromagnetico tra le regioni del visibile e delle microonde. La porzione di maggiore
La radiazione infrarossa si trova nella parte dello spettro elettromagnetico tra le regioni del visibile e delle microonde. La porzione di maggiore interesse per la spettroscopia IR è quella compresa tra
Spettroscopia di Risonanza Magnetica Nucleare
Spettroscopia di Risonanza Magnetica Nucleare TIPO DI SPETTROSCOPIA INTERVALLO DI LUNGHEZZA D ONDA TIPO DI TRANSIZIONE QUANTICA ULTRAVIOLETTO-VISIBILE 180-780 nm Elettroni di legame INFRAROSSO 0,75-300
Approfondimenti capitolo 9 (Formule di Lewis) e capitolo 11 (interazioni intermolecolari
Approfondimenti capitolo 9 (Formule di Lewis) e capitolo 11 (interazioni intermolecolari Scrivere le Strutture di Lewis 1. Disegna la struttura dello scheletro del composto posizionando gli atomi legati
LA STRUTTURA DELLA MATERIA
LA STRUTTURA DELLA MATERIA La materia è tutto ciò che ci circonda, che occupa uno spazio e ha una massa La materia si presenta sotto diverse forme, dette sostanze. Sono sostanze: il vetro, il legno, il
Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1
Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica
CAPITOLO 20 LA CHIMICA NUCLEARE
CAPITOLO 20 LA CHIMICA NUCLEARE 20.5 (a) La soma dei numeri atomici e la somma dei numeri di massa, da entrambi i lati dell equazione nucleare, deve coincidere. Dalla parte sinistra di questa equazione
LA STRUTTURA DELLE MOLECOLE. Le Molecole Poliatomiche
LA STRUTTURA DELLE MOLECOLE Le Molecole Poliatomiche LE MOLECOLE POLIATOMICE Le molecole poliatomiche sono quelle molecole che sono composte da più di due atomi e contengono nella maggior parte dei casi
3. Indicare quale (o quali) delle seguenti coppie di formule strutturali rappresenta la stessa molecola:
. Indicare quale (o quali) delle seguenti coppie di formule strutturali rappresenta la stessa molecola: l a) NO b) l l l c) l l 4. Quali tra i seguenti scheletri di atomi di carbonio non rappresentano
Fenomeno fisico. Le trasformazioni che la materia subisce senza modificare la sua composizione e che sono reversibili si chiamano fenomeni fisici
Atomi e molecole Fenomeno fisico Le trasformazioni che la materia subisce senza modificare la sua composizione e che sono reversibili si chiamano fenomeni fisici Fenomeno chimico Le trasformazioni che
Atomi a più elettroni
Atomi a più elettroni L atomo di elio è il più semplice sistema di atomo a più elettroni. Due sistemi di livelli tra i quali non si osservano transizioni Sistema di singoletto->paraelio Righe singole,
Introduzione alla Risonanza Magnetica Nucleare
Chimica Fisica III - Modulo B A.A. 203-204 Dott.ssa Marilena Di Valentin con la collaborazione del Dott. Marco Ruzzi Introduzione alla Risonanza Magnetica ucleare Testo di riferimento: Capitolo 4 Peter
NMR - 2D INTENSITA VS FREQUENZA INTENSITA VS FREQUENZA1 VS FREQUENZA2
NMR - 2D NMR - 2D INTENSITA VS FREQUENZA INTENSITA VS FREQUENZA1 VS FREQUENZA2 NMR - 2D Spettri shift correlati: chemical shift su entrambi gli assi Spettri J correlati: J su un asse TIPO DI ACCOPPIAMENTO:
Gruppi funzionali. aldeidi
Gruppi funzionali alcoli aldeidi chetoni Acidi carbossilici ' eteri ' esteri fenoli In grassetto il gruppo funzionale che definisce il carattere del composto 1 2 Gruppi funzionali: arrangiamento di pochi
L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo
L atomo 3. Le particelle fondamentali dell atomo Gli atomi sono formati da tre particelle fondamentali: l elettrone con carica negativa; il protone con carica positiva; il neutrone privo di carica. Il
COOH. a ottica, % Purezza. Eccesso enantiomerico, %
Determinazione purezza stereoisomerica Una volta effettuata una reazione stereoselettiva dobbiamo determinare: 1. Quale è la configurazione relativa e/o assoluta dello stereoisomero maggioritario 2. Con
Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti).
4. ORBITALI ATOMICI Energia degli orbitali atomici Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti). Il diagramma energetico dell'atomo di idrogeno: i livelli (individuati da n)
Teoria degli orbitali. Lo spazio intorno al nucleo in cui è possibile trovare con la massima probabilità gli elettroni viene chiamato orbitale.
Teoria degli orbitali Lo spazio intorno al nucleo in cui è possibile trovare con la massima probabilità gli elettroni viene chiamato orbitale. orbitale nucleo STPA-Chimica Organica 1 L orbitale 1s Gli
Alchini. Suffisso: -ino. d. H 3 CCH 2 CC CH
Alchini Suffisso: -ino Indicare la posizione del triplo legame con il numero che lo contraddistingue nella catena. La numerazione comincia sempre dall estremità più prossima al triplo legame. 3 3 2 2 2
ELEMENTI di CHIMICA NUCLEARE. La FISSIONE NUCLEARE
ELEMENTI di CHIMICA NUCLEARE La FISSIONE NUCLEARE Lo scienziato Otto Hahn nel 938 scoprì che l'uranio 35 9U è fissile. La fissione è una rottura dei nuclei pesanti e può avvenire quando un neutrone lento
numeri quantici orbitale spin
La funzione d onda ψ definisce i diversi stati in cui può trovarsi l elettrone nell atomo. Nella sua espressione matematica, essa contiene tre numeri interi, chiamati numeri quantici, indicati con le lettere
IDROCARBURI I ALCANI ANALISI CONFORMAZIONALE
IDROCARBURI I ALCANI NOMENCLATURA ANALISI CONFORMAZIONALE REAZIONI GLI IDROCARBURI CONTENGONO SOLO CARBONIO ED IDROGENO VENGONO DISTINTI IN TRE CLASSI 1. SATURI: SOLO LEGAMI SEMPLICI C-C SE SATURI ED ACICLICI:
Cos è un trasformazione chimica?
Chimica Lezione 1 Cos è un trasformazione chimica? Una reazione chimica è una trasformazione della materia che avviene senza variazioni misurabili di massa, in cui uno o più reagenti iniziali modificano
REAZIONE DI SOSTITUZIONE NUCLEOFILA MONOMOLECOLARE SN1
REAZIONE DI SOSTITUZIONE NUCLEOFILA MONOMOLECOLARE SN1 Gli alogenuri organici sono composti in cui un atomo di idrogeno è rimpiazzato con un atomo di alogeno. I due tipi di alogenuri organici più comuni
Identificazione di un composto organico:
Identificazione di un composto organico: Laboratorio di Chimica Organica II? O O NO 2 Identificazione di un composto organico: Laboratorio di Chimica Organica II? Analisi elementare: formula bruta (C x
L elettrizzazione. Progetto: Istruzione di base per giovani adulti lavoratori 2 a opportunità
1 L elettrizzazione Si può notare che corpi di materiale differente (plastica, vetro ecc.) acquisiscono la proprietà di attirare piccoli pezzetti di carta dopo essere stati strofinati con un panno di stoffa
LA STRUTTURA DELL ATOMO
Capitolo 4 LA STRUTTURA DELL ATOMO N.B I concetti proposti sulle slide, in linea di massima seguono l ordine e i contenuti del libro, ma!!!! Ci possono essere delle variazioni Prof. Vincenzo Leo - Chimica
Atomo: modello microscopico
Atomo: modello microscopico 1 Modello atomico di Dalton (1808) Materia è composta di atomi indivisibili e indistruttibili Atomi uguali hanno identica massa e identiche proprietà chimiche Gli atomi non
